
Frontiers in Neuroscience 01 frontiersin.org

Antioxidants in neuropsychiatric 
disorder prevention: 
neuroprotection, synaptic 
regulation, microglia modulation, 
and neurotrophic effects
Fangfei Liu 1†, Qianqian Bai 1†, Wenchao Tang 1†, Shumin Zhang 1, 
Yan Guo 1, Shunji Pan 1, Xiaoyu Ma 1, Yanhui Yang 2* and Hua Fan 3*
1 The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and 
Technology, Luoyang, China, 2 Department of Trauma Center, The First Affiliated Hospital of Henan 
University of Science and Technology, Luoyang, China, 3 Office of Research and Innovation, The First 
Affiliated Hospital of Henan University of Science and Technology, Luoyang, China

Oxidative stress, caused by an imbalance between the generation of reactive oxygen 
species (ROS) and the body’s intrinsic antioxidant defenses, plays a critical role in 
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. 
Beyond these conditions, recent evidence indicates that dysregulated redox balance 
is implicated in neuropsychiatric disorders, including schizophrenia, major depressive 
disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated 
the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic 
acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating 
neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic 
plasticity, reducing microglial overactivation and promoting synaptogenesis. This 
review explores the role of oxidative stress in the pathogenesis of neuropsychiatric 
disorders. It provides an overview of the current evidence on antioxidant therapy’s 
pharmacological effects, as demonstrated in animal models and clinical studies. 
It also discusses the underlying mechanisms and future directions for developing 
antioxidant-based adjuvant therapies. Given the limitations and side effects of 
existing treatments for neuropsychiatric disorders, antioxidant therapy presents a 
promising, safer alternative. Further research is essential to deepen our understanding 
and investigate the clinical efficacy and mechanisms underlying these therapies.
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1 Oxidative stress and brain disorders

The brain relies heavily on oxygen to generate the energy required for cognitive function. 
The release of neurotransmitter-loaded vesicles at synapses demands substantial energy, with 
approximately 1.64 × 10^5 ATP molecules needed per vesicle released (Alle et  al., 2009; 
Magistretti and Allaman, 2015). Consequently, neuronal mitochondria must consume oxygen 
(O2) at a disproportionately high rate to meet the brain’s energy needs (Alle et al., 2009). The 
brain depends on O2 for aerobic respiration to sustain its high metabolic activity; however, this 
process produces reactive oxygen species (ROS) as byproducts, including superoxide anions 
(O2⁻), hydrogen peroxide (H2O2), and hydroxyl radicals (·OH), alongside the complete 
reduction of oxygen to water (Lennicke and Cocheme, 2021). Under normal physiological 
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conditions, ROS participates in cellular signaling, regulating cell 
growth and maintaining homeostasis. For instance, low concentrations 
of O2⁻ and H2O2 can stimulate the proliferation of adult hippocampal 
progenitor cells (Dickinson et al., 2011). However, when oxidative 
stress (OS) overwhelms the body’s antioxidant defenses, excessive 
ROS can damage neurons, contributing to the development of 
neurodegenerative (Shadfar et al., 2023) and neuropsychiatric diseases 
(Rossetti et al., 2020).

While the body’s antioxidant enzymes typically neutralize 
peroxidation products, ROS have evolved to fulfill critical 
physiological roles, especially within the central nervous system. 
Consequently, the brain’s antioxidant system must make certain 
compromises (Murphy et al., 2011). For instance, neurons contain 
significantly lower levels of catalase (CAT) (approximately 50 times 
less than liver cells) (Ren et al., 2017) and approximately half the 
amount of cytoplasmic glutathione (GSH) compared to liver cells 
(Paul et al., 2018; Cobley et al., 2018). This relatively weak endogenous 
antioxidant defense makes the brain particularly vulnerable to OS 
(Cobley et al., 2018).

Moreover, the brain’s neuronal membranes are rich in unsaturated 
fatty acids, making them susceptible to oxidative damage, which can 
produce reactive aldehydes (Maiorino et al., 2018). During immune 
responses, microglia release substances such as O2⁻ and ROS (Block 
et al., 2007). Furthermore, H2O2 is produced during the metabolism 
of neurotransmitters (Ren et al., 2017). Mitochondrial dysfunction 
further exacerbates OS by increasing ROS production, creating a 
vicious cycle in neuronal cells reliant on mitochondrial activity 
(Rizzuto et al., 2012; Slimen et al., 2014).

The brain’s vulnerability to OS stems from several factors, 
including its high metabolic demands, relatively weak antioxidant 
defenses, and abundant unsaturated fatty acids in neuronal 
membranes. These characteristics suggest that OS plays a pivotal role 
in the pathogenesis of neurological and psychiatric disorders.

2 The role of oxidative stress in 
neuropsychiatric disorders

The brain is particularly susceptible to OS, and its role in the 
pathogenesis of neuropsychiatric disorders has gained increasing 
attention in recent years (Rossetti et al., 2020). Therefore, this section 
reviews the evidence linking OS to conditions such as schizophrenia 
(SZ), anxiety disorders, major depressive disorder (MDD) and bipolar 
disorder (BD).

2.1 Oxidative stress in schizophrenia

SZ is a severe mental disorder affecting approximately 0.3 to 
0.66% of the population, significantly impairing quality of life and 
imposing a substantial socio-economic burden (Maas et al., 2017).

While traditional models of SZ pathogenesis emphasize 
neurotransmitter dysfunction, particularly involving dopamine, 
emerging research points to OS as an additional underlying mechanism 
(Miljevic et al., 2018). This hypothesis is supported by numerous studies 
and meta-analyses (Goh et al., 2021; Goh et al., 2022). For instance, 
research by Li et al. (2024) and Chien et al. (2020) has shown significantly 
elevated levels of malondialdehyde (MDA), a marker of lipid 

peroxidation (LP), in the blood samples of patients with SZ. Similarly, a 
study by Jia et al. (2023) indicated that OS contributes to hippocampal 
damage in patients with first-episode SZ, leading to cognitive 
impairment. Raffa et al. (2011) identified reduced activity of antioxidant 
defense systems, such as GSH and CAT, in individuals with SZ. Further 
evidence from Al-Amin et  al. (2016) suggests that the antioxidant 
astaxanthin can ameliorate behavioral deficits in SZ mice. Concurrently, 
MacDowell et  al. (2016) suggested that the antipsychotic drug 
paliperidone may mitigate OS by upregulating nuclear factor erythroid 
2-related factor 2 (Nrf2) in the Phosphoinositide 3-kinase/Protein kinase 
B (PI3K/AKT) pathway. Kulak et al. (2013) observed heightened OS in 
the anterior cingulate cortex during early development in GSH synthesis-
deficient (gclm −/−) mice accompanied by microglial activation and 
redox-sensitive matrix metalloproteinase 9 (MMP9) upregulation. 
Inhibiting MMP9 activation can normalize parvalbumin-expressing 
interneurons (PVI)/ perineuronal nets (PNN) maturation and alleviate 
SZ-related psychopathology (Dwir et al., 2020).

Furthermore, extensive research suggests that OS may impact 
cognitive function through various pathways, such as directly 
damaging parvalbumin-expressing interneurons (PVIs) (Schiavone 
et  al., 2009), hindering oligodendrocyte precursor cell (OPC) 
proliferation and myelin formation in the prefrontal cortex (PFC) 
(Maas et al., 2021), disrupting the blood–brain barrier (BBB) (Geng 
et al., 2023), and inducing mitochondrial dysfunction (Fizikova et al., 
2023). Therefore, targeting OS may be  crucial for SZ prevention 
and treatment.

2.2 Oxidative stress in major depressive 
disorder

According to the World Health Organization (WHO), MDD was 
the fourth leading cause of disability worldwide and was predicted to 
rise to second by 2020. Nearly half of those affected may not receive 
timely diagnosis and treatment, underscoring the urgent public health 
challenge of managing depression (Lolak et al., 2014).

Traditional models attribute depression to disruptions in 
monoamine and glutamate neurotransmission. However, emerging 
evidence suggests that OS and pro-inflammatory signaling may also 
contribute to MDD (Bader et al., 2024; Tuon et al., 2021). Jiménez and 
Chung et al. found significantly elevated levels of MDA in the plasma 
of patients with MDD (Jimenez-Fernandez et al., 2022; Chung et al., 
2013). Similarly, Maes et  al. (2019) reported increased levels of 
superoxide dismutase 1 (SOD1), nitric oxide (NO), ROS, and lipid 
peroxides in patients with depressive symptoms. Conversely, Kotan 
et al. (2011) identified decreased activity of antioxidant enzymes, such 
as SOD and CAT, in the serum of patients with MDD. Szebeni et al. 
(2014) reported significantly reduced mRNA levels of SOD, CAT, and 
glutathione peroxidase (GPX) in oligodendrocytes from the white 
matter of patients with MDD in post-mortem analysis. Moreover, 
Moreno et  al. (2013) found elevated platelet NO and platelet 
mitochondrial membrane potential (PMMP) in patients with MDD, 
suggesting that mitochondrial bioenergetic alterations may contribute 
to the onset and progression of depression via OS. This evidence is 
further supported in animal models of depression (Tuon et al., 2021). 
Moreover, knockout (KO) mice lacking the antioxidant transcription 
factor Nrf2 displayed depression-like behaviors in various tests (Dang 
et al., 2022; Zeng et al., 2023).
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OS may disrupt neurotransmitter metabolism, such as that of 
serotonin (Ding et  al., 2020), impair neurogenesis and synaptic 
plasticity (Hou et  al., 2017), and induce DNA and RNA 
hypermethylation (Wu et al., 2021; Han et al., 2022), all of which may 
contribute to depression. These findings underscore the therapeutic 
potential of antioxidants in treating depression.

2.3 Oxidative stress in anxiety disorders

Anxiety, an essential evolutionary mechanism for alertness and 
self-protection, can become maladaptive when excessive, leading to 
anxiety disorders. The lifetime prevalence of pathological anxiety 
exceeds 20% (Filiou and Sandi, 2019; Koskinen and Hovatta, 2023).

Anxiety disorders, including generalized anxiety disorder (GAD) 
and phobias, are not fully understood. However, emerging research 
hints at a potential role for impaired antioxidant defense and oxidative 
damage in their development (Kaya et al., 2013; Oktay et al., 2024). 
Oktay et al. (2024) clinical study revealed significantly increased levels 
of LP markers, such as MDA and F2-isoprostanes, in patients with 
severe anxiety. Bellisario et al. (2014) demonstrated that deleting the 
p66Shc gene, a key regulator of mitochondrial ROS production, 
reduced anxiety behaviors by reducing OS. Furthermore, Bersuker 
et al. (2019) discovered that Lactobacillus plantarum guanidinoacetate 
(LbGp), an OS regulator, alleviated anxiety-like behavior by enhancing 
glutathione peroxidase 4 (GPX4) activity and preventing ferroptosis. 
Conversely, the deletion of the GPX4 gene in dopaminergic neurons 
increased anxiety behaviors (Dang et  al., 2022). Moreover, 
overexpression of genes such as glutathione reductase 1 (GSR1) and 
glyoxalase enzyme 1 (GLO1) has been strongly correlated with anxiety 
phenotypes (Hovatta et  al., 2005), with GLO1 inhibitors showing 
potential in alleviating anxiety (Distler et al., 2012). Moreover, OS may 
exacerbate anxiety by depleting reduced GSH (Nisar et al., 2023) and 
promoting N-methyl-D-aspartate (NMDA) receptor-mediated 
synaptic inhibition in the basolateral amygdala (BLA) (Wu 
et al., 2022).

Despite inconsistent findings across studies, a general pattern of 
oxidative imbalance has been observed in patients with anxiety, 
suggesting that targeting OS may offer a promising therapeutic avenue 
for anxiety disorders.

2.4 Oxidative stress in bipolar disorder

Bipolar disorder (BD) is a chronic mental illness characterized by 
an alternation between mania or hypomania and depression. It is often 
associated with impaired functionality (Munkholm et al., 2024).

Several lines of evidence point to the presence of low-grade 
inflammation and oxidative stress in patients with bipolar disorder 
(Rosenblat and McIntyre, 2016), while findings to some extent are 
inconsistent and have been limited by methodological issues (Garcia-
Gutierrez et al., 2020; Kirkpatrick et al., 2021; Munkholm et al., 2024). 
Increased lipid peroxidation has been observed in the prefrontal 
cortex and anterior cingulate cortex of patients with BD (Wang et al., 
2009). Moreover, One study conducted with 94 BD patients and 41 
healthy controls reported higher OS index levels in the BD patients 
compared with the controls (Yumru et  al., 2009). It also found 
decreased antioxidant and OS markers; however, many other studies 

have reported the opposite finding. For example, some studies 
corroborated this finding of increased serum TBARS levels in BD 
patients during mania, depression, and euthymia (Andreazza et al., 
2007). Moreover, Sowa-Kucma et  al. (2018) found a significant 
positive association between higher TBARS level and severity of BD, 
including the risk of suicidality. Additionally, studies have found that 
serum copper concentrations may be higher in certain subgroups, 
such as patients in the early stages of the disease. Furthermore, serum 
copper concentrations may be  associated with certain 
pathophysiological processes of bipolar disorder, such as oxidative 
stress. Although this study suggests that there are differences in serum 
copper concentrations among bipolar disorder patients at different 
stages of the disease, these differences did not reach statistical 
significance (Siwek et al., 2017).

BD is becoming increasingly understood as a condition of 
aberrant neuroplasticity. Multiple factors, such as OS, imbalance of 
neurotransmitters, and genetics, are associated with the 
pathophysiology of BD.

3 The role of antioxidants in treating 
neuropsychiatric disorders

The antioxidant system of cells is mainly composed of two parts: 
the enzymatic antioxidant system and the non-enzymatic antioxidant 
system. These two systems are not isolated but form an integral whole. 
The enzymatic antioxidant system includes a series of active enzymes 
with antioxidant properties, such as superoxide dismutase (SOD, 
including Cu-Zn SOD and Mn-SOD), catalase (CAT), glutathione 
peroxidase (GPx), thioredoxin (Trx), and others (Wen et al., 2022; 
Chen et al., 2023). These enzymes can catalyze antioxidant reactions, 
converting free radicals into harmless substances, thereby maintaining 
redox balance within organisms. The non-enzymatic antioxidant 
system, on the other hand, is primarily composed of small molecular 
antioxidant substances. Numerous preclinical and clinical studies 
highlight the potential of antioxidants (Rossetti et al., 2020) such as 
N-acetylcysteine (NAC), sulforaphane (SFN), alpha-lipoic acid (ALA), 
L-carnitine (L-Car), ascorbic acid, selenocompounds, and flavones. 
Beyond their direct radical-scavenging properties, these compounds 
have demonstrated an ability to modulate endogenous antioxidant 
systems. (Figure 1).

3.1 N-acetylcysteine

N-acetylcysteine (NAC), an essential precursor for GSH synthesis, 
is a critical brain antioxidant (Raghu et  al., 2021). Its antioxidant 
mechanisms primarily encompass: serving as a reductant to reduce 
oxidized molecules by donating electrons; activating the glutathione 
(GSH) cycle to restore glutathione to its reduced form; directly 
scavenging free radicals, including superoxide anions, hydroxyl 
radicals, and hydrogen peroxide; and curbing inflammation by 
suppressing oxidative stress and inflammatory cytokine production 
(Raghu et al., 2021). Several studies have suggested that NAC can 
ameliorate clinical symptoms in patients with SZ, AN, and MDD 
(Sceneay et  al., 2013; Hoepner et al., 2021). For instance, NAC 
modulates GSH and glutamate levels, potentially reducing the negative 
symptoms and cognitive impairments associated with SZ (Yang et al., 
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2022). However, while evidence supports NAC’s therapeutic effect in 
stable patients with SZ, its efficacy in patients with refractory SZ on 
clozapine remains inconclusive (Fornaro et al., 2024). Furthermore, 
animal experiments indicate that NAC can mitigate elevated glutamate 
levels in the cerebral cortex, reduce ROS levels in interneurons (Neill 
et  al., 2022; Buhner et  al., 2022), and upregulate brain-derived 
neurotrophic factor (BDNF) mRNA and protein, leading to improved 
behavioral and cognitive outcomes in SZ animal models (Phensy et al., 
2017; Aslanlar et al., 2024). Similarly, NAC has been shown to alleviate 
moderate depressive symptoms (Liang et al., 2022) by curbing ROS 
production in microglia (Lehmann et al., 2019) and regulating the 
glutamatergic system in the PFC (Nery et al., 2022). However, a meta-
analysis of randomized controlled trials found that NAC was not 
significantly better than placebo in treating severe depression or 
bipolar disorder (Andrade, 2021).

Overall, NAC exhibits multiple biological activities, demonstrating 
promise as a treatment for SZ, MDD, and AN; however, further 
research is warranted.

3.2 Sulforaphane

Sulforaphane (SFN) is a naturally occurring organic sulfur 
compound found in cruciferous vegetables such as broccoli, 
cauliflower, and mustard greens, characterized by its unique 

isothiocyanate group (Kamal et al., 2020). As an indirect antioxidant, 
SFN activates the Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/
Antioxidant response element (ARE) signaling pathway. When cells 
are stimulated by oxidative stress or other stressors, SFN binds to 
specific sites on Keap1, causing a conformational change in Keap1. 
This change frees Nrf2 from its binding with Keap1, allowing it to 
translocate to the nucleus. In the nucleus, Nrf2 binds to ARE, initiating 
the transcription of a series of antioxidant enzymes and proteins, 
thereby preserving cellular redox balance and homeostasis (Mangla 
et al., 2021). Additionally, by activating the Nrf2/Keap1/ARE signaling 
pathway, SFN upregulates the activity of multiple antioxidant enzymes, 
protecting cells from oxidative damage (Ma et al., 2023). Beyond its 
antioxidant effects, SFN exhibits potent anti-inflammatory properties 
(Kiser et al., 2021).

Some clinical studies indicate that SFN can prevent cognitive 
impairment in SZ through its anti-inflammatory (Zeng et al., 2024) 
and antioxidant effects (Shirai et al., 2015). However, other trials have 
not consistently replicated these findings (Dickerson et al., 2021). In 
animal models, SFN appears to be a promising adjunct therapy for SZ, 
mitigating side effects such as metabolic defects, biochemical 
imbalances, and liver histological abnormalities associated with 
olanzapine (OLA) (El-Shoura et al., 2024). Concurrently, SFN has 
been shown to improve anxiety and depression symptoms in mice by 
activating the Nrf2/ heme oxygenase-1 (HO-1) signaling pathway 
(Ferreira-Chamorro et  al., 2018) and inhibiting the 

FIGURE 1

The hypothesis map illustrates the interplay between natural antioxidant compounds, the body’s innate antioxidant defenses, reactive oxygen species 
(ROS), microglial inflammatory responses, and the management of neuropsychiatric disorders. Antioxidants such as N-acetylcysteine, sulforaphane, 
alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones, and zinc, etc., not only function by scavenging ROS, enhancing the activity of 
antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and thioredoxin (Trx), and promoting the 
expression of antioxidant genes such as nuclear factor erythroid 2-related factor 2 (Nrf2), but they also exert effects on specific molecular targets. For 
instance, N-acetylcysteine (NAC) and zinc can directly interact with N-methyl-D-aspartate (NMDA) receptors, ascorbic acid can directly affect the 
activity of Tet Methylcytosine Dioxygenase 2 (TET2) enzymes, and Flavonoid compounds have the ability to directly interact with tyrosine kinase 
receptor B (TrkB) receptors and subsequently activate downstream signaling pathways such as Phospholipase C (PLC), Extracellular Signal-Regulated 
Kinase (ERK), and Protein kinase B (AKT).
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hypothalamic–pituitary–adrenal (HPA) axis and stress response (Wu 
et al., 2016). Furthermore, SFN may activate Nrf2 by initiating the 
transcription of trigger receptor expressed on myeloid cells-2 
(TREM2) in the medial PFC (mPFC), increasing the expression of the 
M2 microglial marker arginase 1 (ARG1), which may alleviate 
depressive phenotypes through its anti-inflammatory and 
neuroprotective functions (He et al., 2022).

In summary, SFN has demonstrated potential as a treatment for 
SZ, MDD, and AN. However, further high-quality clinical and animal 
studies are necessary to confirm its therapeutic efficacy and 
mechanisms of action.

3.3 Alpha-lipoic acid

Alpha-lipoic acid (ALA) is a natural compound commonly found 
in the diet, serving as a crucial cofactor for mitochondrial respiratory 
enzymes and playing a vital role in maintaining cellular oxidative 
metabolism (Holmquist et al., 2007). ALA can directly scavenge ROS, 
promote the regeneration of vitamins C and E, and upregulate the 
activity of antioxidant enzymes like superoxide dismutase and catalase 
(El-Houseiny et al., 2023). Evidence suggests that ALA may alleviate 
symptoms associated with SZ and reduce OS (Emsley et al., 2014; 
Vasconcelos et al., 2015). Furthermore, ALA supplementation has been 
shown to improve the psychopathology of patients with treatment-
resistant SZ (TRS) by decreasing OS (Sanders et al., 2017; Mishra et al., 
2022). However, these promising findings were not confirmed in a 
subsequent double-blinded, placebo-controlled trial conducted by 
Emsley et al. (2014), warranting caution due to potential side effects, 
including a decrease in blood cell count associated with ALA treatment 
(De Lima et  al., 2023). Iannuzzo et  al. (2022) investigated ALA’s 
potential for treating depression, particularly in combination with 
other therapies, as it can effectively mitigate drug-related side effects 
such as the risk of diabetes and liver dysfunction. Moreover, ALA has 
been demonstrated to regulate the neuropathology of BDNF in mice 
model (Vasconcelos et al., 2015; Aliomrani et al., 2022). Furthermore, 
ALA alleviates methamphetamine-induced memory deficits and 
anxiety-like behavior in rats by enhancing the activity of antioxidant 
enzymes, including SOD and CAT (Kargar and Noshiri, 2024).

These findings underscore ALA’s potential to enhance cognitive 
function and emotional well-being while highlighting the necessity for 
further clinical validation in human populations.

3.4 L-carnitine

L-Carnitine (L-Car) is an essential nutrient in human tissues, 
including the brain. The antioxidant mechanism of L-Car primarily 
involves facilitating fatty acid entry into mitochondria for oxidative 
breakdown, reducing intracellular fatty acid accumulation, 
stabilizing mitochondrial membrane potential, scavenging free 
radicals, upregulating the expression of antioxidant enzyme genes, 
and enhancing antioxidant enzyme activity (Da Silva et al., 2023). 
These actions collectively protect cells from damage caused by 
oxidative stress. Specifically, acetyl-L-Car (ALCAR), as a critical 
form of L-Car, has been substantially linked to several mental health 
disorders (Cao et al., 2019). Previous studies indicate that low levels 
of ALCAR are closely associated with conditions such as depression 

and SZ (Cao et  al., 2020). L-Car has been shown to improve 
psychiatric scores in a mouse model of SZ through anti-
inflammatory and antioxidant pathways (Ebrahimi et  al., 2023). 
Meanwhile, clozapine can disrupt lipid metabolism in the liver by 
affecting L-Car reabsorption, and concurrent L-Car supplementation 
is an effective strategy to mitigate these metabolic disturbances 
(Bruno et  al., 2016; Wang et  al., 2018). Moreover, metabolomic 
analyses of serum from patients with severe depression suggest that 
L-Car and ALCAR may serve as potential biomarkers for this 
condition (Nie et al., 2021). Supplementation with L-Car may serve 
as an effective adjuvant therapy for patients with refractory 
depression. The Canadian Emotion and Anxiety Treatment Network 
has established clinical guidelines recommending ALCAR 
monotherapy as a third-line treatment option for mild to moderate 
depression based on existing research evidence (Yatham et al., 2018). 
A recent meta-analysis showed that ALCAR supplementation as a 
standalone intervention significantly alleviated depressive symptoms 
compared to placebo or no intervention (Veronese et  al., 2018). 
Animal studies suggest that ALCAR may exert antidepressant effects 
through the PI3K/AKT/BDNF signaling pathway (Wang et al., 2015).

Although ALCAR’s potential in treating mental illness has been 
preliminarily validated, further high-quality research is necessary to 
explore its specific mechanisms and optimize treatment dosages and 
regimens. Moreover, attention must be  paid to the interactions 
between ALCAR and other medications and their potential 
adverse reactions.

3.5 Ascorbic acid

Ascorbic acid, or vitamin C, is a widely recognized antioxidant 
that plays a crucial protective role in the body (Conklin et al., 2024). 
Ascorbic acid directly scavenges superoxide anions, hydroxyl 
radicals, and other free radicals, and regenerates antioxidants such 
as vitamin E and GSH. It also modulates the expression of 
antioxidant enzymes like SOD and CAT, enhancing cellular 
antioxidant capacity and chelating metal ions to remove harmful 
ions such as iron and copper from the body (Chen et al., 2021). 
Systematic reviews indicate that ascorbic acid promotes neuronal 
differentiation of precursor cells, enhances adult hippocampal 
neurogenesis, and facilitates synaptic plasticity, thereby improving 
behavioral and biochemical changes in psychiatric disorders such as 
SZ, anxiety, MDD, and bipolar disorder (Moretti and Rodrigues, 
2022). Evidence indicates that patients with SZ exhibit lower vitamin 
C levels (Myken et al., 2022). Research has shown that ascorbic acid 
can alleviate phenotypic symptoms of SZ by restoring the balance 
between ROS and antioxidant defenses (Dakhale et  al., 2005; 
Damazio et  al., 2017), reducing inflammatory factor levels, and 
employing other mechanisms (Supp et al., 2021). Similarly, ascorbic 
acid may exert antidepressant effects by restoring antioxidant 
enzyme activity (Moretti et al., 2013), activating the opioid receptor 
system (particularly the μ-opioid receptor), inhibiting NMDA 
receptors, or both (Moretti et  al., 2018; Moretti et  al., 2019). 
Furthermore, a recent study indicated that ascorbic acid can alleviate 
anxiety symptoms by upregulating synaptic proteins, increasing 
dendritic spine density, and promoting the maturation of the ventral 
dentate gyrus (DG) (Fraga et al., 2018; Fraga et al., 2020). Ascorbic 
acid can also directly enhance the catalytic activity of Tet 
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methylcytosine dioxygenase 2 (TET2) in the oxidation of 
5-methylcytosine (5mC), promote the folding and/or recycling of 
the cofactor Fe (2+) for TET2, and improve symptoms of depression 
(Ma et al., 2024; Yin et al., 2013).

These findings collectively highlight the therapeutic potential of 
ascorbic acid in treating mental illnesses.

3.6 Selenocompounds

Selenium is the active center of GPX, and recent advancements 
have led to the development of various mimetics designed to replicate 
GPX functions (Ferreira et al., 2021). The antioxidant mechanism of 
selenocompounds primarily involves the direct reaction of selenium 
atoms with free radicals generated by oxidative stress, thereby 
reducing the number of free radicals (Bartolini et al., 2017).

Serum selenium levels are considerably lower in patients with SZ 
compared to healthy controls (Li et al., 2018), suggesting a protective 
role for selenium in SZ and AN (Guo et al., 2023). Moreover, GPX 
activity is generally reported to be reduced by approximately 20% in 
patients with SZ. Supplementation with selenium has been shown to 
enhance cognitive function and improve clinical symptoms such as 
appetite and memory (Alsharif et al., 2023). Furthermore, dietary 
selenium appears to mitigate stress-induced depression symptoms, 
with epidemiological studies linking low selenium intake to an 
increased risk of severe depression (Pasco et al., 2012). However, this 
association has faced scrutiny from other studies (Guo et al., 2023; 
Bot et al., 2019). Animal studies have demonstrated the antidepressant 
and anti-anxiety properties of selenium compounds. For instance, 
F-DPS [2,5-diphenyl-3-(4-fluorobenzeneselenyl) selenophenyl] 
alleviates depression symptoms by restoring glutamate uptake in the 
PFC of mice (Gai et al., 2014a) and activating Extracellular Signal-
Regulated Kinase (ERK) signaling (Gai et  al., 2014b) pathways. 
MFSeI [1-methyl-3-(phenylselenyl)-1H indole] exerts antidepressant 
and anti-anxiety effects by reducing OS, regulating neurotransmitter 
balance, and affecting glucocorticoid receptor expression (Bampi 
et al., 2020). Diphenyl diselenide (DPDS) shows anti-anxiety effects 
by modulating Gamma-Aminobutyric Acid Type A (GABAA) and 
5-Hydroxytryptamine (5HT) receptors (Ghisleni et  al., 2008). 
Similarly, ebselen reduces impulsivity in rodent models and has been 
suggested as an alternative to lithium in the treatment of bipolar 
disorder and other mood disorders (Singh et al., 2016). Liquiritigenin 
display neuroprotection through exerting anti-oxidative and anti-
inflammatory activities to suppress neuronal apoptosis (Chiu 
et al., 2018).

Selenium and its compounds show considerable potential in 
regulating nervous system functions, alleviating stress responses, and 
preventing mental illnesses. However, further research is necessary to 
confirm these findings.

3.7 Flavones

Flavonoids are low-molecular-weight compounds that belong to 
a class of plant secondary metabolites characterized by a polyphenolic 
structure. Flavonoids primarily exhibit their antioxidant mechanism 
by directly scavenging free radicals such as reactive oxygen species 
(ROS). Through specific functional groups, they react with free 

radicals to halt radical chain reactions. Moreover, flavonoids can also 
upregulate the activity of antioxidant enzymes, thereby enhancing the 
antioxidant defense system (Calis et al., 2020). They are categorized 
into six subcategories based on the carbon atoms connected to the C 
ring by the B ring, as well as the degree of unsaturation and oxidation 
of the C ring: flavanones, flavones, isoflavones, flavonols, chalcones, 
and anthocyanins (Hostetler et al., 2017).

Research has shown that 7,8-dihydroxyflavone (7,8-DHF) can 
alleviate SZ-like symptoms by effectively mimicing the effect of brain-
derived neurotrophic factor (BDNF) in the brain (Jaehne et al., 2021) 
to selectively activate tyrosine kinase receptor B (TrkB) (Emili et al., 
2022) and downstream Phospholipase C (PLC), AKT, and ERK1/2 
signaling pathways. Similarly, the natural flavonoid 
4′,5,7-trihydroxyflavone boosts the neurotrophic effects of BDNF by 
strengthening TrkB receptor signaling (Gao et al., 2023). Meanwhile, 
Deng et al. (2024) suggest that flavonoids have a protective role against 
depression, a finding supported by various animal and epidemiological 
studies (Amin et  al., 2020; Zhang et  al., 2015; Gui et  al., 2023). 
Moreover, 7,8-DHF improves anxiety-like behavior in mice subjected 
to chronic alcohol exposure by regulating TrkB signaling in the 
amygdala (Wang et al., 2021). Natural flavonoids, such as chrysin, 
have demonstrated anxiolytic effects in animal models through 
mechanisms including interaction with the GABAA/benzodiazepine 
receptor complex and free radical scavenging (Karim et al., 2012; 
Gadotti and Zamponi, 2019; German-Ponciano et  al., 2020). In 
summary, flavonoids possess significant therapeutic potential in 
treating SZ, depression, and AN due to their diverse biological 
activities and effects.

3.8 Zinc

Zinc, as an essential trace element, possesses the ability to 
modulate intracellular redox levels, preventing oxidative damage to 
biomembrane systems and reducing the formation of reactive oxygen 
species. Deficiency in zinc can increase the susceptibility of the body 
to oxidative stress, and appropriate supplementation can alleviate the 
resulting damage (Chasapis et al., 2020).

In the exploration of zinc’s potential in treating depression, a 
series of literature reviews have delved into the role of zinc in 
depression, including its potential mechanisms in regulating 
neurotransmitter, endocrine, and neurogenesis pathways, and 
have emphasized the reported antidepressant-like and mood-
enhancing activities of zinc in both human and rodent intervention 
studies (Wang et al., 2019). Furthermore, a systematic review and 
meta-analysis found that zinc supplementation can alleviate 
depressive symptoms in patients undergoing antidepressant 
treatment (Da Silva et al., 2021). Another review has discussed the 
role of zinc in regulating brain-derived neurotrophic factor 
(BDNF) and its impact on neural function, suggesting that the 
combination of zinc supplementation with antidepressants can 
effectively treat major depressive disorder (Mlyniec, 2021). A 
preliminary study showed that individuals with anxiety have 
significantly elevated plasma copper levels and very low zinc 
levels, and supplementation with zinc significantly improved 
anxiety symptoms (Russo, 2011). However, the exact molecular 
mechanisms underlying the potential relevance of zinc have not 
been fully elucidated. Relevant animal studies have shown that 
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zinc can regulate 5-HT receptors, exerting antidepressant effects 
(Satala et al., 2018). Additionally, zinc can block NMDA receptors, 
preventing glutamate from entering cells, thus producing an 
anxiolytic effect (Dou et al., 2018). It is noteworthy that the G 
protein-coupled receptor 39 (GPR39) is abundantly distributed in 
brain regions related to anxiety, and zinc, being a natural ligand 
for GPR39, is involved in the regulation of anxiety (Laitakari et al., 
2021).These findings collectively highlight the therapeutic 
potential of zinc in treating mental illnesses.

3.9 Gut microbial biotransformation

Microbiota, particularly the gut microbiota, has been confirmed 
to play a significant role in neuropsychiatric health (Xiong et  al., 
2023). In the small intestine, the absorption of polyphenolic 
compounds is limited, hence the majority of these compounds reach 
the colon where they interact with the gut microbiota, exerting their 
oxidative activity (Ozdal et al., 2016; Wang et al., 2022).

Studies have shown that the gut microbiota can convert dietary 
polyphenols into low molecular weight bioactive metabolites, such 
as short-chain fatty acids (SCFAs) and phenolic acids, which may 
exert their antioxidant and anti-inflammatory effects through 
signaling pathways like Nrf2 and NF-κB (Balkrishna et al., 2024). 
Not only that, but polyphenols can utilize the structural 
characteristics of hydroxyl groups on their benzene rings to scavenge 
free radicals through H atom transfer (Papuc et  al., 2017). 
Furthermore, polyphenols provide electrons to free radicals, 
stabilizing them and terminating the reaction. Epigallocatechin 

gallate (EGCG) from green tea can stimulate the nuclear 
translocation of Nrf2 in HepG2 cells, modulating the expression of 
antioxidant genes (Mi et  al., 2018). Concurrently, polyphenolic 
compounds can exert neuroprotective effects by regulating adult 
neurogenesis, synaptogenesis, and neuroplasticity, as well as the 
activation of microglia (Godos et al., 2020). These studies provide 
in-depth insights into the relationship between gut microbiota and 
its metabolic components with mental health and offer directions for 
the development of dietary natural products for the prevention and 
treatment of psychiatric disorders.

4 Mechanisms underlying the effect of 
antioxidants on neuropsychiatric 
disorders

The mechanisms through which antioxidants impact 
neuropsychiatric disorders can be summarized into several key areas: 
neuroprotection, synaptic regulation, modulation of microglial 
activity, and neurotrophic effects (as depicted in Figure 2).

4.1 Neuroprotection

Antioxidants are crucial in promoting the proliferation and 
differentiation of neural stem cells, enhancing neurons’ number 
and functionality, and ultimately improving functional recovery in 
the nervous system. For instance, SFN protects neurons from 
inflammation-mediated damage by lowering inflammatory 

FIGURE 2

The mechanisms through which antioxidants impact neuropsychiatric disorders, including: (A) neuroprotection, which shields neurons from damage; 
(B) synaptic regulation, which modulates the transmission of signals between neurons; (C) modulation of microglial activity, which influences microglia 
polarization; and (D) neurotrophic effects, which support the growth and survival of neural cells.
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markers such as high-sensitivity C-reactive protein (hs-CRP), 
restoring antioxidant enzyme expressions such as HO-1 and GSH, 
and reducing OS (Zeng et  al., 2024). Similarly, ascorbic acid 
mitigates the production of ROS triggered by antipsychotic 
medications, thereby providing neuroprotective benefits (Dakhale 
et al., 2005; Damazio et al., 2017). Selenium supplementation can 
enhance the activity of GPX, thereby reducing OS damage to 
neurons (Bampi et al., 2020). Furthermore, flavonoids promote 
neuronal survival and repair through their antioxidant properties 
(Harvey, 2022).

4.2 Synaptic regulation

Antioxidants primarily function by mitigating OS effects on 
synaptic structure and function. Synaptic plasticity, characterized by 
dynamic synapse morphology, structure, and function changes, is 
essential for higher cognitive functions such as learning and memory 
(Magee and Grienberger, 2020). Antioxidants regulate synaptic 
plasticity by modulating neurons’ metabolic and signaling processes 
at pre- and postsynaptic levels.

For instance, NAC enhances synaptic transmission efficiency by 
promoting NMDA receptor activation and depolarizing the 
postsynaptic membrane (Phensy et al., 2017). This mechanism has 
been shown to alleviate long-term behavioral deficits associated with 
ketamine treatment in a preclinical SZ model during the perinatal 
period (Neill et al., 2022; Buhner et al., 2022). Selenium compounds 
can normalize glutamate uptake in the PFC, a process frequently 
disrupted in neuropsychiatric disorders (Gai et al., 2014a). Similarly, 
ascorbic acid can improve SZ symptoms by upregulating synaptic 
proteins, increasing dendritic spine density, and facilitating the 
maturation of ventral DG (Fraga et al., 2020).

4.3 Microglia modulation

Neuropsychiatric disorders are frequently characterized by 
increased OS and inflammatory responses, with abnormal activation 
and dysfunction of microglia playing a significant role (Lehmann 
et al., 2019). Antioxidants can slow the progression of these disorders 
by modulating microglial function and activity. For instance, SFN 
alleviates depressive symptoms by activating the Nrf2/HO-1 
signaling, reducing microglial activation, and facilitating a transition 
to the M2 phenotype (Ferreira-Chamorro et al., 2018; He et al., 2022). 
Concurrently, NAC prevents behavioral deficits in mice by inhibiting 
microglial activation (Lehmann et al., 2019).

4.4 Neurotrophic action

Neurotrophic action refers to the effects of specific substances 
that promote neuron growth, development, maintenance, and 
regeneration (Castren and Monteggia, 2021). For instance, 
N-acetylcysteine ameliorates chemotherapy-induced impaired 
anxiety and depression-like behaviors by regulating BDNF release 
(Aslanlar et al., 2024). Furthermore, ALA can reverse ketamine-
induced SZ-like symptoms in mice, potentially through its 
influence on BDNF in the PFC, as well as in a mouse model of 

depression (Vasconcelos et  al., 2015; Aliomrani et  al., 2022). 
Flavones enhance the neurotrophic effects of BDNF by reinforcing 
TrkB receptor signaling (Wang et al., 2021; Emili et al., 2022; Gao 
et  al., 2023). Moreover, flavones significantly regulate 
neurotransmitter balance and improve the neuronal 
microenvironment, promoting neuronal nutrition and metabolic 
activity (Jaehne et al., 2021).

5 Conclusion

After a thorough review and analysis of existing literature, we have 
drawn the following conclusion: Antioxidants play a pivotal role in 
preventing neuropsychiatric disorders by effectively scavenging free 
radicals and mitigating oxidative stress, thereby forming a protective 
barrier for brain neural tissue. Specifically, antioxidants can efficiently 
neutralize reactive oxygen and nitrogen species, significantly reducing the 
damage these harmful molecules cause to brain neurons, and ensuring the 
preservation of neuronal structural and functional integrity. Furthermore, 
by regulating the synthesis, release, and reuptake of neurotransmitters, 
antioxidants maintain the normal functioning of the nervous system, 
providing robust support for the prevention of neuropsychiatric disorders. 
Additionally, antioxidants exhibit notable anti-inflammatory effects, 
inhibiting inflammatory responses and mitigating the damage caused by 
inflammatory mediators to neural tissue, thereby protecting the nervous 
system from inflammatory diseases. Lastly, antioxidants improve 
mitochondrial energy metabolism efficiency and antioxidant capacity, 
reducing the production of free radicals and further alleviating the 
potential damage caused by oxidative stress to neuronal cells.

While early studies suggest potential therapeutic effects of 
antioxidants in certain conditions, many of these studies are limited by 
small sample sizes, raising concerns about the reliability and 
reproducibility of the findings. Furthermore, the heterogeneity among 
patients remains a significant challenge in clinical trials. Factors such 
as physiological status, genetics, and lifestyle can significantly influence 
the effectiveness of antioxidant treatments. Moreover, the potential side 
effects of antioxidants may limit their therapeutic value. Therefore, a 
comprehensive evaluation of safety and efficacy is essential during drug 
development. Despite the numerous challenges and limitations 
associated with targeting OS for disease treatment, advances in science 
and technology, coupled with continued research, offer hope for 
overcoming these barriers. Future breakthroughs may provide novel 
approaches to disease prevention and treatment.
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