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This paper illustrates the development of two efficient source localization 
algorithms for electroencephalography (EEG) data, aimed at enhancing real-time 
brain signal reconstruction while addressing the computational challenges of 
traditional methods. Accurate EEG source localization is crucial for applications in 
cognitive neuroscience, neurorehabilitation, and brain-computer interfaces (BCIs). 
To make significant progress toward precise source orientation detection and 
improved signal reconstruction, we introduce the Accelerated Linear Constrained 
Minimum Variance (ALCMV) beamforming toolbox and the Accelerated Brain 
Source Orientation Detection (AORI) toolbox. The ALCMV algorithm speeds up 
EEG source reconstruction by utilizing recursive covariance matrix calculations, 
while AORI simplifies source orientation detection from three dimensions to 
one, reducing computational load by 66% compared to conventional methods. 
Using both simulated and real EEG data, we demonstrate that these algorithms 
maintain high accuracy, with orientation errors below 0.2% and signal reconstruction 
accuracy within 2%. These findings suggest that the proposed toolboxes represent 
a substantial advancement in the efficiency and speed of EEG source localization, 
making them well-suited for real-time neurotechnological applications.
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1 Introduction

Accurate source localization in electroencephalography (EEG) is fundamental for 
understanding brain function and neural dynamics, making it essential in cognitive neuroscience, 
neurorehabilitation, and brain-computer interface (BCI) applications. Despite the critical role of 
EEG in these fields, high speed processing remains a significant challenge due to the high 
computational demands of current source localization algorithms. As applications continue to 
demand both speed and precision, the development of accelerated algorithms for source 
orientation detection and beamforming has become increasingly important.

Traditionally, Linearly Constrained Minimum Variance (LCMV) beamforming has been 
the go-to technique for EEG source localization. This approach is favored for its ability to 
spatially filter signals, enhancing the signal-to-noise ratio (SNR) by suppressing noise and 
interference. However, LCMV beamforming methods can be  computationally intensive, 
especially when applied to high-density EEG systems with numerous channels (Ilmoniemi 

OPEN ACCESS

EDITED BY

Jürgen Dammers,  
Helmholtz Association of German Research 
Centres (HZ), Germany

REVIEWED BY

Mohammad Pooyan,  
Shahed University, Iran
Keivan Kaboutari,  
University of Aveiro, Portugal
Jaspreet Kaur,  
University of Glasgow, United Kingdom

*CORRESPONDENCE

Bahador Makkiabadi  
 b-makkiabadi@tums.ac.ir

RECEIVED 01 October 2024
ACCEPTED 16 December 2024
PUBLISHED 04 March 2025

CITATION

Yektaeian Vaziri A and Makkiabadi B (2025) 
Accelerated algorithms for source orientation 
detection and spatiotemporal LCMV 
beamforming in EEG source localization.
Front. Neurosci. 18:1505017.
doi: 10.3389/fnins.2024.1505017

COPYRIGHT

© 2025 Yektaeian Vaziri and Makkiabadi. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 04 March 2025
DOI 10.3389/fnins.2024.1505017

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1505017&domain=pdf&date_stamp=2025-03-04
https://www.frontiersin.org/articles/10.3389/fnins.2024.1505017/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1505017/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1505017/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1505017/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1505017/full
mailto:b-makkiabadi@tums.ac.ir
https://doi.org/10.3389/fnins.2024.1505017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1505017


Yektaeian Vaziri and Makkiabadi 10.3389/fnins.2024.1505017

Frontiers in Neuroscience 02 frontiersin.org

and Sarvas, 2024). The computational complexity of covariance matrix 
calculations and matrix inversions, coupled with the need for accurate 
estimation of brain source orientation, makes fast processing difficult.

To address these challenges, we  propose a set of accelerated 
algorithms aimed at improving the efficiency of both LCMV 
beamforming and source orientation detection. Specifically, we have 
developed two MATLAB toolboxes (Nan and Yulin, 2011): ALCMV 
and AORI. The ALCMV toolbox expedites the LCMV beamforming 
by initiating recursive calculations as soon as we have acquired EEG 
samples equivalent to the number of electrode channels—necessary 
for achieving a full-rank matrix—we can significantly enhance 
processing speed. This approach enables faster source localization 
while maintaining accuracy (Jonmohamadi et al., 2014).

In the LCMV algorithm, electrical signals generated by brain 
sources in specific directions propagate through various layers of the 
brain and ultimately reach the EEG recording electrodes. If the source 
activity is denoted by S(t) and the estimated source activity by ( )Ŝ t , 
we employ beamforming techniques to isolate and reconstruct the 
source signals from the noisy background (Sekihara and 
Nagarajan, 2015).

Existing EEG source localization methods, such as minimum 
norm estimation and traditional LCMV beamforming, have 
demonstrated their effectiveness in various applications. Automatic 
localization of seizure events from EEG signals has been explored 
through machine learning, frequency transforms, and nonlinear 
association analysis. Although these approaches offer valuable 
insights, accurately pinpointing the seizure onset zone (SOZ) remains 
difficult due to the low signal-to-noise ratio (SNR) of scalp EEG 
recordings (Myers et  al., 2020). Beamformer techniques and the 
LORETA method are widely applied for source localization, but these 
solutions are computationally intensive and often yield non-unique or 
ambiguous source estimates (Myers et al., 2020). Recent studies have 
focused on analyzing the phase and energy of EEG signals to reliably 
localize seizure foci on the scalp, achieving 93.3% precision and 
accuracy and 100% sensitivity in detecting true seizure activity, even 
in the presence of common EEG artifacts (Myers et  al., 2020). 
However, these methods often struggle with fast processing due to 
their reliance on extensive matrix computations.

For example, minimum norm estimation techniques tend to 
require significant computational resources, making them less suitable 
for fast applications (Huang et al., 2014). Beamforming methods, such 
as LCMV, have demonstrated potential in localizing rhythmic ictal 
activity and offer several advantages over traditional ECD models, 
particularly in the context of temporal lobe epilepsy. The next step 
would involve further validating these methods with larger patient 
datasets while integrating accelerated algorithms to improve 
computational efficiency. This would make real-time application in 
clinical environments more feasible (Garcia Dominguez et al., 2023). 
The beamforming method can be reliably applied to both mesial and 
neocortical temporal lobe epilepsy, providing significant 
improvements in pre-surgical evaluation but they have lot. Similarly, 
conventional LCMV beamforming can become computationally 
prohibitive as the number of EEG channels increases, leading to 
longer processing times and potential delays in source localization 
(Jaiswal et al., 2020). Our approach addresses these limitations by 
introducing novel algorithms that reduce the computational load 
without compromising accuracy (Masoud et al., 2025). The recursive 
calculation method implemented in the ALCMV toolbox and the 

dimensionality reduction provided by the AORI toolbox offer 
significant improvements over traditional methods (Oostenveld et al., 
2011). By building on the strengths of LCMV beamforming while 
mitigating its weaknesses, our work represents a meaningful 
advancement in the field of EEG source localization (Sekihara and 
Nagarajan, 2015).

The primary innovation of this study lies in the combination of 
recursive calculations and dimensionality reduction to accelerate 
source localization in EEG. Unlike previous approaches that treat the 
problem in a static manner, our methods dynamically adapt to the 
incoming EEG data, enabling faster calculations. The ALCMV toolbox 
optimizes the LCMV beamforming process, reducing the time 
required to achieve full-rank matrix conditions. At the same time, the 
AORI toolbox transforms the complex three-dimensional orientation 
problem into a more manageable one-dimensional problem, further 
enhancing computational efficiency. These innovations are not only 
theoretical but have been implemented in MATLAB toolboxes 
designed for practical use in real-time applications. By validating our 
algorithms with simulated EEG signals using the EEGg1 toolbox 
(Vaziri et al., 2024), we have demonstrated that these methods can 
achieve substantial gains in processing speed while maintaining the 
precision necessary for accurate source localization.

The accelerated algorithms developed in this study hold significant 
potential for a wide range of EEG applications. In neurorehabilitation, 
epilepsy detection, emotion recognition, for instance, fast and accurate 
source localization is crucial for real-time feedback in brain-computer 
interface systems. Similarly, in clinical diagnostics, such as seizure 
detection and monitoring, the ability to quickly identify the origin of 
abnormal brain activity can be life-saving. Our toolboxes provide the 
better spatial resolution without sacrificing accuracy, making them 
valuable assets for both research and clinical practice.

This study introduces novel algorithms—ALCMV and AORI—
that address long-standing gaps in brain mapping by significantly 
improving the efficiency of EEG source localization. Through 
recursive covariance calculations and dimensionality reduction, these 
toolboxes reduce computational load while maintaining high 
accuracy. These innovations enable real-time brain signal processing, 
overcoming delays associated with traditional methods.

2 Method

The present study employs the Linearly Constrained Minimum 
Variance (LCMV) beamformer as a cornerstone for advanced EEG 
signal analysis, focusing on source localization and signal reconstruction. 
The LCMV beamformer leverages spatial filtering to minimize output 
variance while maintaining signal integrity, enabling precise localization 
of brain activity. This method incorporates mathematical constructs, 
such as the lead field matrix derived from MRI imaging and forward 
problem solutions, alongside efficient computational techniques for 
covariance matrix estimation and inversion. Through the development 
and integration of novel algorithms, including the Accelerated Brain 
Source Orientation Detection (AORI) toolbox and enhancements to 

1 EEGg is a toolbox designed for generating synthetic EEG data using both 

real and simulated EEG signals (Vaziri et al., 2024).
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covariance matrix computations, we aim to address the computational 
challenges typically associated with high-dimensional EEG data. These 
advancements are implemented and validated using simulated and 
experimental EEG datasets, ensuring robust and efficient application to 
real-world scenarios.

The LCMV beamformer is formulated as a spatial adaptive filter 
that minimizes the output variance, enhancing its ability to localize 
sources. Mathematically, this is expressed in Equation 1.

 ( ) ( ) ( ) ( )
11 1Tw r R L r L r R L r
−− − =    

(1)

where w(r) is the beamforming weight vector, R is the covariance 
matrix of the transposed EEG data, and 𝐿 is the lead field matrix, 
typically obtained through MRI imaging and forward problem solutions 
(Cho et al., 2015). The source estimate Ŝ (t) is given by Equation 2.

 ( ) ( ) ( )ˆ , TS r t w r y t=  (2)

where y(t) is the recorded EEG signal (Van Veen et al., 1997). 
( )Tw r  is the transpose of w(r) from Equation 1.

2.1 Covariance calculation and efficiency

The covariance matrix is a key computational component when 
working with EEG data, particularly in the context of LCMV 
beamforming. For k channels and N recorded samples, the EEG data 
matrix typically has dimensions k × N. However, the covariance 
matrix derived from the transposed EEG data is a much smaller k × k 
matrix, reducing the computational burden and providing substantial 
efficiency. The covariance between EEG channels j and k can 
be computed in Equation 3 (Wu and Xiao, 2012).

 
( ) ( )

1

1
1

N
jk ij j ik k

i
a x x x x

N =
= − × −

− ∑
 

(3)

where jx  and kx  are the means of the 𝑗-th row and k-th column, 
respectively. This computational efficiency is one of the primary 
advantages of the LCMV beamformer, allowing for precise source 
localization without excessive computational load.

2.2 Source orientation estimation

Estimating the orientation of brain sources often involves utilizing 
3D MRI images of the individual. However, this process can 
be computationally demanding. To improve efficiency, we developed 
the AORI toolbox, which reduces the dimensionality of the orientation 
problem from three to one by leveraging the lead field matrix and the 
inverse covariance matrix. The optimal direction ( )opt rη  is calculated 
by maximizing the output power. Mathematically, the optimal 
orientation is given in Equation 4.

 ( ) ( ) ( ){ }1
min

T
opt r L r R L rη ϑ −=

 
(4)

where ( )opt rη  represents the eigenvector corresponding to the 
smallest eigenvalue. The reduction in dimensionality can lead to faster 
calculations and more efficient source localization.

2.3 Covariance calculation in ALCMV 
beamforming

To address inverse covariance requirement reliably, we adopted the 
Miller computational method for recursively calculating the inverse 
covariance. In the ALCMV method, covariance was initially calculated 
using the addition and subtraction technique. Subsequently, inversion 
was performed using the general inverse method, implemented 
through Miller’s approach. In Figure 1, covariance using the addition 
and subtraction method contains first samples (ns) that are equal to the 
number of channels (k) and calculate the covariance using the standard 
method, which gives us the initial covariance ( 1C ). After recording 
another cy (cycle) samples now we have ns + cy samples, we separate 
the first cy samples of the EEG data and the last cy samples of the EEG 
data and name them ( )1D and (

´
1)D , respectively. Then, we calculate 

the covariance of the transposed 1D  and 
´
1D  and name them 1R and 

´
1R . 

Finally, we use Equation 3 to calculate the second updated covariance 
2.C  The Equation 3 can be extended in Equation 5 (Wu and Xiao, 2012).

 
´

2 1 1 1C C R R= − +  (5)

 
´

1n n n nC C R R+ = − +  (6)

It is important to note that the number of columns used in the initial 
calculations (ns) must ensure that the matrix is full rank. In other words, 
ns should be at least equal to the number of electrode signal channels 
(k). For the remaining data, however, the covariance can be updated 
incrementally (cy = 1), vector by vector or any value less than (ns/2).

2.4 Inverse covariance calculation with 
General Miller (GM) in ALCMV 
beamforming

To calculate the inverse covariance matrix efficiently, we employed 
the General Miller (GM) method, which is known for its robustness 
in handling high-dimensional data. The GM approach in Equation 7 
leverages iterative refinement to achieve accurate estimates, making it 
particularly suitable for cases where standard inversion techniques 
may fail due to numerical instability (Oliver, 1998).

 
1 1 1 1
1 k kk k k kC C C E Cυ− − − −
+ = −  (7)

2.4.1 Miller algorithm
Each time covariance is calculated using the addition and 

subtraction method, before the final addition and subtraction, in 
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Miller method the inversion is performed specifically for the addition 
and subtraction. By combining the two methods, we proceed step by 
step for recursive and accelerated calculations.

2.4.2 Miller’s equation
To apply the Miller method to Equation 6, we first denote the 

current covariance ( nC ) matrix as G (Cn = G) (Equation 8). Then, 
we define 

´
nnR R− +  as H  (Equation 9). Thus, the updated covariance 

matrix ( 1nC + ) is expressed as G H+  (Equation 10).

 nC G=  (8)

Equation 8 step one in Miller equation

 
´

nnH R R= − +  (9)

Equation 9 step two in Miller equation

 1nC G H+ = +  (10)

Equation 10 step three in Miller equation

2.5 General Miller equation

In the general Miller method, the matrix 𝐻 is transformed into a 
sum of rank-one matrices. This involves decomposing 𝐻 into a 
summation of rank-one components, where each component is a 
product of single column vectors and their corresponding row vectors 

(Equation 8). This allows 𝐻 to be expressed as a sum of these rank-one 
matrices ( kE ).

Given that H was the transposed covariance of a part of the EEG, 
the maximum number of sums is equal to the number of channels (k). 
This decomposition method does not yield unique solutions. However, 
in ALCMV, to construct iE , we kept the i-th column of matrix H and 
set the other elements to zero. The updated inverse covariance 1

1kC−
+  is 

calculated by Equation 7.

 1 2 kH E E E= + +…+  (11)

Equation 11 step four in Miller equation

 1 1 2k kC G E E E+ = + + +…+  (12)

Equation 12 step five in Miller equation

 ( )1
1

1
k

kk

v
tr C E−

=
+

 

(13)

Equation 13 step six in Miller equation.
kv : “tr” function sums the elements on the main diagonal of the 

square matrix, resulting in a one-dimensional kv  (coefficient).

 ( ) 1 1 1 1
r r r r rG H C C E Cυ− − − −+ = −  (14)

Substituting Equation 10 into Equation 7 results in Equation 14.
This method is capable of solving the inverse covariance 

recursively. We  will have a recursive inverse covariance, which 

k

ns

−

1 = ( )

y =

…=

=
́ = + + …

+

1 = ( 1 ) ́
1 = ( ́ 1 )

FIGURE 1

Covariance calculation in ALCMV beamforming.
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provides us with flexibility for quick responses. The covariance 
method, utilizing addition and subtraction with a function named 
“ICOV” in MATLAB, the general Miller method with a function titled 
“GMINVSUM,” and the general miller inverse covariance with a 
function called “RECUR_INVICOV,” have been implemented in 
MATLAB (Miller, 1981).

2.6 Accelerated brain source orientation 
detection (AORI)

By examining the characteristics of the expression ( ) ( )1TL r R L r−

, specifically, we discovered that the result of ( ) ( )1TL r R L r−  is always 
a 3 × 3 symmetric matrix. We used an optimal, reliable, fast, and 
dedicated method to calculate the eigenvector of this matrix, which 
is noteworthy for its minimal computations and ease of 
implementation. A custom function has been written for this 
purpose, available under the name “smlegnVec” (Siddique and 
Khraishi, 2020). The smlegnVec function has been implemented in 
MATLAB 2020a and achieves an accuracy equivalent to MATLAB 
commands with fewer computations. Fast orientation detection takes 
another step toward accelerated signal reconstruction of sources, as 
it reduces dimensionality by multiplying the lead field matrix, with 
dimensions (number of channels × 3), by the orientation matrix, with 
dimensions (3 × 1). This results in the involvement of a vector with 
dimensions (number of channels × 1) instead of a multidimensional 
matrix in future computations, significantly contributing to speed 
enhancement. In Equation 4, the maximum rank of the matrix 
A= ( ) ( )1TL r R L r−  (number of independent rows or columns) will 
be 3. As a result, we will have a maximum of 3 eigenvalues (where 
i = 1,2,3).

 

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
   

(15)

Equation 15 ‘A’ Matrix with elements.
In AORI, the rapid detection of brain source orientation was 

achieved through the use of Tables 1, 2, and switch-case commands.

2.7 Data acquisition

In addition to simulated EEG data, obtaining T1 MRI images and 
asynchronous 24-channel EEG from 4 healthy individuals aged 20 to 
55 years. To generate EEG source signals, pre-prepared EEG data for 
voluntary movements of hands and feet available on the internet and 
publicly accessible have been used. Using Equation 16, we calculate 
the error for the number of brain sources in the x, y, and z directions 
relative to the maximum power method, and then normalize it by 
dividing by the maximum difference values. Where [ x y zO O O ] is the 
result of “eig” function and [ ˆ ˆ ˆx y zO O O ] as a result of “smlegnVec” 
function. We used absolute value cause both vector [ ˆ ˆ ˆx y zO O O ] and 
its opposite, [ ˆ ˆ ˆx y zO O O− − − ], are the vectors corresponding to the 
smallest eigenvalue. Therefore, both of them are correct solutions (Fa-
Long and Yan-Da, 1994).

 ( )
ˆ ˆ ˆ

ˆ3max , ,ˆ ˆ
x x y y z z

error
x x y y z z

O O O O O O
Ori

O O O O O O

− + − + −
=

− − −
 

(16)

With the presence of the direction vector, our signal has been 
reduced from 3 dimensions to 1 dimension. Therefore, for error 
analysis, we use Equation 17. In Equation 17, we calculate the absolute 
difference between the reconstructed signals of the accelerated and 
traditional LCMV methods and then normalized it with maximum 
value in each signal. N is the total number of elements in the 
reconstructed matrix, where r denotes the number of rows and c 
denotes the number of columns, as shown in Equation 18 (Ryynänen 
et al., 2004; Dalal et al., 2011).

 max

ˆ ˆ

ˆ ˆ
ALCMV LCMV

error
ALCMV LCMV

S S
SignalRecons

N S S

∑ −
=

−
 

(17)

 N r c= ×  (18)

3 Results

The following sections present the results from applying the 
ALCMV, AORI, ORI, and LCMV methods to simulated EEG data 
with EEGg and real EEG with moving thumb movement task 
(Alomari et  al., 2013). The orientation and signal reconstruction 
results are compared across the different approaches.

3.1 ORI and LCMV method results

The traditional ORI method was applied to the same EEGg data 
to obtain orientation results, which were then compared with those 
from the AORI method. Additionally, the conventional LCMV 
(Linearly Constrained Minimum Variance) beamforming method was 
used for signal reconstruction. The results from LCMV were 
compared with the source reconstruction outputs from the ALCMV 
method. Errors for the orientation results were calculated using 
Equation 16, while errors for signal reconstruction were computed 
using Equation 16 and Equation 17.

3.2 AORI, ALCMV, and comparative results

EEGg (generated EEG) data were first processed using the AORI 
(Accelerated Brain Source Orientation Detection) method, which 
provided the initial orientation results. Following this, the ALCMV 
(Accelerated Linear Constrained Minimum Variance) method was 
applied to the EEGg data to perform source signal reconstruction. The 
reconstruction error was then calculated using Equation 16 and 
Equation 17.

On average, ALCMV combined with AORI reduces computational 
load by 66% compared to LCMV and ORI. Additionally, the errorOri  
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were consistently below 0.2%, indicating an accuracy of approximately 
99.8% (Figure 2). The average errorSignalRecons was 2%.

3.3 Real EEG validation

The real EEG data underwent signal reconstruction using 
ALCMV, and the results were compared to the real EEG sources. The 
comparison clearly illustrated the spike detection; however, the 
amplitude decreased significantly. To address this, the normalized 
version of each segment was recursively calculated, achieving 98% 
accuracy (Figure 3).

The most active source locations in the sensory motor cortex, 
identified by summing the absolute values of source signals, were 
detected using the ORI and LCMV methods, as well as their adaptive 
versions (AORI and ALCMV) (Idowu et al., 2020). These methods 
were validated using real EEG data. The detection error for the most 

active and second most active sources in 3D source localization was 
3.2% (Figure 4), corresponding to an accuracy of 96.8%, with a 66% 
reduction in computational cost.

In summary, the average reduction in computational load was 
66%. The accuracy of detecting active sources from non-active sources 
was 99.92%, meaning that out of 10,000 sources, 9,992 were correctly 
classified as active or non-active. The average normalized correlation 
of signal reconstruction with EEG data was 0.98, while for the LCMV, 
ORI, ALCMV, and AORI methods, the average normalized correlation 
was 0.95. The average localization error for detecting the most active 
source using ALCMV and LCMV was 2.6 mm.

4 Discussion

The results of this study highlight the significant performance 
improvements achieved through the proposed ALCMV and AORI 

TABLE 1 Optimal computation of eigenvectors: part one [17].

Eigenvector of symmetric matrix

case Eigenvectors

Only diagonal elements present in A {{1,0,0},{0,1,0,},{0,0,1}}

 
 =  
  

0 0
If 0

0
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22 23
23 33
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algorithms in the context of EEG source localization. The primary 
advantage of these methods lies in their ability to reduce computational 
load while maintaining a high degree of accuracy. This is particularly 
important for real-time applications, such as neurorehabilitation and 
brain-computer interface (BCI) systems, where fast and accurate 
source localization is crucial.

The recursive covariance calculation in the ALCMV toolbox is a 
notable innovation, allowing the beamforming process to begin before 
the full set of data is available. This approach, combined with the 
General Miller method for inverse covariance calculation, significantly 
reduces the time required for source signal reconstruction. Similarly, 
the AORI toolbox simplifies the traditionally complex task of source 

TABLE 2 Optimal computation of eigenvectors: part two [14].
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orientation detection by reducing the problem from three dimensions 
to one. This not only accelerates the orientation estimation process but 
also maintains the accuracy of source localization.

The validation results from both simulated and real EEG data 
further reinforce the effectiveness of these methods. The 66% 
reduction in computational load is a substantial improvement over 
traditional techniques, such as LCMV and ORI, which often struggle 
with processing delays, especially when dealing with large datasets. 
Additionally, the low orientation error (below 0.2%) and signal 
reconstruction error (approximately 2%) demonstrate that these 
accelerated algorithms do not compromise the precision of EEG 
source localization.

In real-world applications, the enhanced speed and accuracy of 
the ALCMV and AORI toolboxes have significant implications. For 
example, in clinical diagnostics, fast and precise localization of 
abnormal brain activity could aid in early detection and intervention 
for neurological disorders, such as epilepsy. In BCI applications, the 
ability to localize brain signals in real time could improve the 
responsiveness and reliability of the system, thereby enhancing the 
overall user experience.

While this study focuses on EEG data, the principles behind the 
ALCMV and AORI algorithms could potentially be adapted for other 
types of neuroimaging data, such as magnetoencephalography (MEG). 
Future work could explore the application of these accelerated 
algorithms in other domains and further optimize the toolboxes for 
use in different EEG system configurations. EEG source localization 
is an ill-posed problem due to the mismatch between the number of 

electrodes and activated neurons. This aligns with the need for 
advanced algorithms in your paper to address this challenge by 
improving the accuracy and efficiency of source detection through 
LCMV beamforming and other accelerated techniques (Zorzos 
et al., 2024).

While the integration of EEG and MRI data through ALCMV for 
source localization has shown promising results in terms of accuracy 
and spike detection, several hardware and setup limitations must 
be considered, particularly in real-world applications. One significant 
challenge arises from the use of specialized software such as MATLAB 
to create masks that combine MRI with EEG channel data. Although 
this approach facilitates a more efficient mapping of brain activity, it 
requires a high level of computational resources, which can be  a 
barrier for widespread clinical use. In practice, clinicians may face 
difficulties with the high setup time and the complexity of these tools, 
which could hinder their adoption in fast-paced clinical environments 
where quick decision-making is crucial. Furthermore, the reliance on 
the precise alignment of EEG and MRI data can present difficulties in 
patients with certain anatomical variations or movement artifacts, 
leading to potential inaccuracies in localization and reduced reliability 
in real-time feedback.

Moreover, while the feedback system provided by the 
integrated EEG and MRI processing aids in the speed and accuracy 
of brain-computer interface (BCI) systems, these systems are not 
yet fully optimized for use in rehabilitation settings outside of 
controlled environments. In real-world scenarios, such as home-
based rehabilitation or in-field applications, hardware limitations 

FIGURE 2

AORI error compared to traditional ORI for EEGg signals.
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(e.g., portability, sensor calibration) and setup requirements (e.g., 
lengthy preparatory time) could hinder the effectiveness and 
scalability of the system. Ensuring robust performance in diverse, 
less-controlled settings, where subjects may not be as compliant or 
may experience physical discomfort, remains an area for 
improvement. Lastly, while this system offers a higher degree of 
personalization and real-time feedback for users, future research 
will need to address the cost-effectiveness and accessibility of such 
technologies to facilitate broader clinical implementation, 
especially for individuals with limited resources or those in 
remote areas.

In conclusion, the ALCMV and AORI toolboxes represent a 
significant advancement in EEG source localization, providing a 
solution that balances speed and accuracy. These toolboxes offer 
practical benefits for both research and clinical settings, where real-
time data processing is increasingly becoming a necessity.

4.1 Limitations

The ALCMV system remains highly sensitive to the precise 
placement of EEG electrodes and their alignment with MRI images, 

FIGURE 3

Visualization of real sources and their reconstructions segments. (A) Column is the produced sources in EEGg. (B) Column is the result of ALCMV and 
AORI signal reconstruction algorithm.
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making it dependent on laboratory conditions and requiring stricter 
standards for accurate results. It is also reliant on MRI data and the 
leadfield matrix (Wolters et al., 2004), preventing it from functioning 
independently of these. Additionally, ALCMV is unable to reconstruct 
multiple source signals simultaneously, requiring significant 
computational resources for parallel processing. Its accuracy diminishes 
in the presence of background noise correlated with the dominant signal 
(Kobald et al., 2016), and while higher spatial resolution is possible with 
more sources, it demands more powerful hardware and careful lab setups.

4.2 Future work

Future work could involve expanding non-invasive experiments 
to include more active sources, multiple tasks, and specialized cases 
such as brain diseases or tumors, enabling real-time tracking of brain 
activity. Simplifying the preparation of large datasets for deep learning 
through ALCMV and AORI could lead to real-time algorithmic 
diagnostic systems for patient classification. There is also potential for 
applying ALCMV in detecting readiness potential (RP) signals in 
intelligent machines (Yousefzadeh et al., 2022) with BCIs, as well as 
integrating these algorithms for simultaneous fMRI and EEG 
recordings. Additionally, enhancing BCI systems and robotics with 
ALCMV and AORI for fast brain activity tracking could improve real-
time control and responsiveness.

5 Conclusion

In this study, we developed and evaluated two accelerated algorithms, 
ALCMV and AORI, aimed at enhancing the efficiency of EEG source 
localization. The results demonstrated that these algorithms significantly 
reduce computational load by 66% while maintaining high accuracy, 
with orientation and signal reconstruction errors below 0.2 and 2%, 

respectively. These improvements make the algorithms suitable for real-
time applications, such as neurorehabilitation and brain-computer 
interfaces. Future work could focus on extending these methods to other 
neuroimaging techniques and optimizing them for broader clinical use.
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