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Introduction: Early identification of Autism Spectrum Disorder (ASD) is critical 
for effective intervention. Restricted interests (RIs), a subset of repetitive 
behaviors, are a prominent but underutilized domain for early ASD diagnosis. 
This study aimed to identify objective biomarkers for ASD by integrating 
electroencephalography (EEG) and eye-tracking (ET) to analyze toddlers’ visual 
attention and cortical responses to RI versus neutral interest (NI) objects.

Methods: The study involved 59 toddlers aged 2-4 years, including 32 with 
ASD and 27 non-ASD controls. Participants underwent a 24-object passive 
viewing paradigm, featuring RI (e.g., transportation items) and NI objects (e.g., 
balloons). ET metrics (fixation time and pupil size) and EEG time-frequency (TF) 
power in theta (4-8 Hz) and alpha (8-13 Hz) bands were analyzed. Statistical 
methods included logistic regression models to assess the predictive potential 
of combined EEG and ET biomarkers.

Results: Toddlers with ASD exhibited significantly increased fixation times and 
pupil sizes for RI objects compared to NI objects, alongside distinct EEG patterns 
with elevated theta and reduced alpha power in occipital regions during RI 
stimuli. The multimodal logistic regression model, incorporating EEG and ET 
metrics, achieved an area under the curve (AUC) of 0.75, demonstrating robust 
predictive capability for ASD.

Discussion: This novel integration of ET and EEG metrics highlights the potential 
of RIs as diagnostic markers for ASD. The observed neural and attentional 
distinctions underscore the utility of multimodal biomarkers for early diagnosis 
and personalized intervention strategies. Future work should validate findings 
across broader age ranges and diverse populations.
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1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous 
neurodevelopmental condition that manifests through deficits in 
social communication and the presence of restricted, repetitive 
behaviors (RRBs) (American Psychiatric Association, 2013) with an 
estimated global prevalence of 1% (Zeidan et  al., 2022). Early 
intervention is paramount as it plays a crucial role in significantly 
improving the prognosis of children with ASD as they transition into 
adulthood. This significance was underscored in a longitudinal study 
demonstrating that early intervention by parents at ages 2–3 correlates 
with marked improvements in adaptive skills, intelligence quotient 
(IQ), and even the likelihood of achieving full independence 
(Anderson et  al., 2014). Thus, finding biomarkers that are highly 
predictive of ASD is of paramount importance. Early diagnosis and 
intervention can be facilitated by such biomarkers, enabling timely 
support and treatment for affected children. Current biomarkers such 
as those related to visual attention (Bradshaw et al., 2020; Mason et al., 
2021) and neurophysiology (Hiremath et al., 2021; Roberts et al., 2021; 
Shic et al., 2022) predominantly examine the social communication 
domain of ASD symptomatology, rather than RRBs. Although often 
overlooked in ASD research, the presence of early onset RRBs can 
predict the severity and prognosis of ASD (Leekam et al., 2011; Wolff 
et al., 2014) and thus is a promising domain to study in the search for 
reliable, predictive biomarkers for ASD diagnosis.

Restricted interest (RI), a subset of the broader category of RRBs, 
is characterized by intense and narrowly focused interests that often 
affect daily functioning (Carter et al., 2020). According to South et al. 
(2005), parents report that the most challenging ASD symptoms to 
manage daily are those related to rigid, repetitive circumscribed 
interests. Furthermore, the pervasive nature of these interests 
contributes to difficulties in social skill acquisition and peer 
communication with some researchers purporting that RIs are driving 
the social communication deficit seen in ASD (Zivan et al., 2021). 
Despite their significant functional impairment, restrictive interests 
(RIs) are among the most prevalent symptoms in ASD, affecting 
75–95% of individuals (Grove et al., 2018). Given their high frequency 
in ASD and their detrimental impact on social development and 
functioning, RIs constitute a pertinent area of study for the 
development of biomarkers to enable early diagnosis and facilitate 
timely intervention. Thus, in this study, we aim to identify RIs among 
ASD toddlers with the use of a 24-object passive viewing paradigm. 
The restricted visual attention of toddlers will be quantified using 
electroencephalographic (EEG) time-frequency (TF) power and eye 
tracking (ET) indices including pupil size and fixation time.

EEG measurement has become a vital biological indicator for 
diagnosing and providing treatment feedback for children and 
adolescents while serving as an important data source for 
quantitatively measuring cortical dynamics (Loo et  al., 2016). In 
recent years, TF analysis has received widespread attention in the 
study of ASD (Levin and Nelson, 2015), revealing how brain signals 
are composed across various frequencies and time windows, effectively 
capturing the time dynamic of the three features of neural data: 
frequency, power, and phase (Morales and Bowers, 2022). This 
analytical approach provides a new perspective for a deeper 
understanding of the neural mechanisms of ASD. The EEG-derived 
measure, TF power, thus has been put forward as a potential biomarker 
owing to its ability to measure cortical activity (Wang et al., 2013) and 
thus disruptions in the brain’s oscillatory rhythms (Gabard-Durnam 

et al., 2019). Early brain activity changes have been demonstrated in 
ASD, with atypical connectivity noted in various frequency bands 
across the power spectrum of infants that later go on to develop ASD 
(Orekhova et al., 2014). This early atypical connectivity occurs on a 
background of aberrant brain network development that begins early 
after birth that leads to increased brain growth causing local 
hyperconnectivity and long distance hypoconnectivity between 
different brain regions (O’Reilly et al., 2017). The corpus of recent 
ASD research notes that differences in power across frequency bands 
can be seen as early as 3 months postnatal, with high-risk ASD infants 
showing lower alpha and beta power in the frontal cortex (Tierney 
et  al., 2012; Gabard-Durnam et  al., 2015; Levin et  al., 2017). 
Furthermore, at 6 months of age, infants at high risk for autism 
exhibited lower spectral power across delta, theta, low alpha, high 
alpha, beta, and gamma bands in frontal regions compared to low-risk 
infants; these high-risk infants also demonstrated distinct trajectories 
of spectral power changes as they developed. These differences seen 
in early life have been shown to delineate the core symptom domains 
of ASD, with evidence from a study of high-risk ASD toddlers 
expanding on the idea that hyper-alpha connectivity represents an 
attentional style that is over-focused and more closely related to 
restricted interests compared to other domains of RRBs (Sasson et al., 
2011). Therefore, EEG power spectrum analysis might be a potential 
asset to be used to examine circumscribed interests in toddlers in the 
hopes of finding highly predictive biomarkers for ASD.

According to Kim et al. (2022), attention and arousal are regulated 
by the locus coeruleus (LC) in the brainstem that produces the 
neuromodulator norepinephrine (NE). According to the adaptive gain 
theory, the locus coeruleus norepinephrine (LC-NE) system operates 
in two modes, a phasic and a tonic state (Berridge and Waterhouse, 
2003; Poe et al., 2020), which can be monitored indirectly through 
changes in pupil size (Kim et al., 2022). Pupil dilation studies that have 
focused on reactions to social stimuli or luminance changes have 
demonstrated atypical pupil metrics among ASD subjects, indicating 
LC-NE dysfunction. Therefore, employing ET, specifically 
pupillometry, can provide insight into LC-NE activity and potentially 
enhance our understanding of restricted attention in 
ASD. Furthermore, ET has emerged as a valuable tool in ASD research, 
offering a non-invasive, convenient, and safe method to study the 
disorder (Shic et al., 2022). By capturing pupil size, and fixation time 
metrics, ET technology provides insights into the atypical neural 
mechanisms underlying ASD and an objective approach for 
quantifying visual attention. This is particularly important because 
studies have shown that children with ASD often display differential 
interest in non-social objects such as cars, trains, and boats (Bodfish 
et al., 2000; Sasson et al., 2008, 2011). These differences in interest can 
be quantified, allowing us to better understand RIs observed in ASD 
and how they may differ from non-ASD subjects, especially in the 
early stages of development before behavioral atypicalities emerge. As 
the primary methods for identifying restrictive interests often rely on 
subjective measures, such as caregiver reports, observation, and 
questionnaires (Tian et al., 2022), employing objective approaches like 
ET holds promise in establishing reliable biomarkers for 
ASD diagnosis.

In our previous study (Sun et al., 2023), we investigated RIs in 
ASD using a sequential visual paradigm, incorporating EEG 
functional connectivity, pupil size, and fixation time as indices. Our 
findings revealed that under high restrictive interest stimulation 
(HRIS), children with ASD exhibited significantly higher alpha band 

https://doi.org/10.3389/fnins.2024.1502045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2024.1502045

Frontiers in Neuroscience 03 frontiersin.org

connectivity, increased fixation time, and pupil enlargement compared 
to non-ASD children. Furthermore, by employing a network-based 
machine learning approach, we  achieved an area under the ROC 
curve (AUC) of 0.81 (95% CI: 0.61–0.98) using ADOS-2 scores and 
fixation time as predictors. Recent autism research has delved into the 
integration of ET and EEG modalities in studying RRBs, with most 
studies focusing on paradigms centered around social or facial stimuli 
(Thapaliya et al., 2018; Geng et al., 2020; Zhang et al., 2021). Notably, 
Sasson et  al. (2008) employed an object-only array to investigate 
circumscribed interests while using ET to quantify visual attention. 
However, the integration of TF power, pupil size, and fixation time to 
examine restricted interests (RIs) in ASD using an object-only viewing 
paradigm remains unexplored. Therefore, in this current study, we aim 
to identify RIs in ASD toddlers using a visual paradigm designed to 
include images of objects known to be of RI (South et al., 2005) and 
others of neutral interest. Expanding on our prior research, this study 
explores the use of a single object paradigm instead of a sequential 
one, allowing us to examine RIs in an environment of competing 
stimuli, which could reveal nuances underlying RIs in ASD. In 
addition, early abnormalities in TF power, particularly observed in 
high-risk ASD infants (Tierney et al., 2012; Gabard-Durnam et al., 
2015; Levin et  al., 2017) present an opportune avenue for early 
detection and thus will be explored in this current work. Therefore, by 
leveraging EEG TF power and ET metrics—specifically, pupil size and 
fixation time—we aim to detect increased responses to RI objects 
within the ASD group. We  intend to integrate indices from both 
modalities and construct logistic regression models to predict ASD as 
an outcome.

2 Materials and methods

2.1 Participants

Participants comprised 32 children diagnosed with ASD, aged 
2–4 years, and 27 age and sex-matched non-ASD controls. The 
diagnosis for ASD participants was established according to the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-5) and the Autism Diagnostic Observation Schedule, Second 
Edition (ADOS-2), with an additional requirement of a Childhood 
Autism Rating Scale (CARS) score above 30. Non-ASD controls were 
screened to exclude psychiatric and neurological disorders, including 
ASD and developmental delay. Exclusion criteria for all participants 
included hyperactivity, refusal to wear an electrode cap, and 
astigmatism. Participants were not on medication for at least 2 weeks 
before EEG recording and washed their hair the day before 
participating in the study to reduce scalp oil interference. Ethical 
approval was granted by the Ethics Committee of Shenzhen Maternity 
and Child Healthcare Hospital (ID: SFYLS 2022), with informed 
consent obtained from the guardians of all participants.

2.2 Experiment stimulus

An object-only interest paradigm was created based on the ASD 
Stereotyped Behavior Scale and the Yale Special Interest Interview 
(South et al., 2005). This paradigm comprised 24 objects, which are 
categorized into restricted interest (RI) and neutral interest (NI) 

objects (see Figure 1). The RI objects included transportation vehicles 
like cars, planes, bullet trains, and electronic products such as 
computers and a mouse. Additionally, NI objects like balloons, cakes, 
switches, and hats representing daily life items were included. Objects 
directly associated with social attributes, such as faces and eyes, were 
not included. Standardization of the image size (360 × 864 pixels) and 
resolution (5 × 12 inches) was achieved using Adobe Photoshop 
CC 2021.1

2.3 Experimental process

Data collection for our experiments employed the EyeLink 1000 
Plus Eye Tracker alongside a 32-lead EEG system (HydrocCel 
Geodesic Sensor Net and a Net Amps 300 amplifier) produced by SR 
Research and Electrical Geodesics, Inc. (EGI) respectively. Our 
experiments were conducted in a sound-controlled examination 
room free from electromagnetic interference that had constant 
lighting. Parents holding study participants were positioned 65 cm 
away from the eye tracker display, with the subject’s chin fixed on the 
chin rest to maintain head stability. The settings of the setup were 
calibrated to optimize eye tracking and the recording of EEG 
parameters, with a sampling rate of 1,000 Hz, pupil size resolution 
0.2% of diameter, and using a sampling rate of the pupil and cornea 
(pupil + CR) in both eyes, so that the sampling cursor for both eyes 
turn green at the same time. The specific parameters are left eye, 
error: <0.5° avg., <1° max (POOR), right eye, error: <0.5° avg., <1° 
max (POOR), with the right eye being selected as dominant. The 
sampling rate was set to 250 Hz and the Cz electrode as the reference, 
with the impedance of all electrodes kept at less than 50 kΩ. The 
procedure was explained to the participants and their guardians 
before commencement to ensure comfort and comprehension. At the 
beginning of the experiment, the researcher guided the participants 
to complete the five-point calibration of the right eye and then 
instructed the participants to view the 24-object interest paradigm. 
The entire experiment lasted for 2–5 min. Additional details on the 
experimental procedure, including calibration and trial timing, are 
provided in Supplementary File 1.

2.4 ET data preprocessing

The preprocessing of raw pupil size data was performed using 
MATLAB2019.2 Firstly, trials with a single blink duration exceeding 
100 ms were eliminated, while those with blinks lasting less than 
100 ms underwent linear interpolation to sample and interpolate 
missing points, thereby maintaining data integrity. Additionally, trials 
exhibiting abnormal pupil size measurements, where more than 50% 
of measurements were replaced by interpolation were excluded. For 
each participant, trials were further screened, removing those in 
which the average value exceeded four standard deviations from the 
mean pupil diameter (+4SD). Furthermore, due to the potential 

1 https://www.adobe.com/cn/products/photoshop.html

2 https://sccn.ucsd.edu/eeglab/index.php
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influence of low-level stimuli, particularly brightness on pupil size 
(Laeng and Sulutvedt, 2013), calculations for pupil size involved 
comparing pupil diameter done under our experimental conditions 
to baseline measurements (Mathôt et al., 2018). Thus, baseline pupil 
size was defined as the average pupil size within the 100 ms window 
before presentation (1.42 mm). Calibration was performed by 
subtracting the baseline pupil size from the measurement during 
stimulus presentation (corrected pupil size = pupil size − baseline), 
tailored to the specific requirements of eye tracking data integration.

2.5 EEG data preprocessing

EEG data preprocessing was accomplished using the EEGLAB 
v.13.4.4b toolbox (see text footnote 2) under MATLAB 2019b (see text 
footnote 2). Firstly, we filtered the data by setting the lower edge of the 
frequency pass band to 0.1 Hz and the higher edge to 30 Hz, effectively 
eliminating any 50 Hz power frequency interference. This was followed 
by extracting epochs and correcting the baseline; we used the stimulation 
moment as the time origin and segmented the data into durations of −1 
to 2 s. Next, we  performed artifact rejection by dismissing the bad 
channels, leaving 22 electrodes remaining after interpolating electrodes. 
Independent component analysis (ICA) was then run to identify retained 
components. We further utilized the threshold method (ranging from 
−100 to 100 μV) to identify and eliminate any segments that exceeded the 
threshold. Finally, we reset the reference electrode to serve as the whole 
brain average reference electrode. We superimposed and averaged EEG 
signal segments evoked by restrictive interest paradigm and filtered these 
through a 30 Hz low-pass filter to yield event-related potential signals. The 
FieldTrip toolbox3 was then employed to carry out spectrum 
decomposition on the preprocessed −1 to 2 s segmented data. For this 
process, we selected the wavelet corresponding to the center frequency 
point of 3 cycles. The decomposition frequency was set to range from 4 to 
30 Hz, with a frequency point interval of 1 Hz. The baseline (−624 to 
−376 ms) was corrected using the relchange method, our primary focus 

3 https://www.fieldtriptoolbox.org/

was on theta frequencies from 4 to 8 Hz at 0 to 300 ms (positive wave) and 
alpha frequencies from 8 to 13 Hz at 500 ms to 1,400 ms (negative wave), 
sourced from three electrodes in the occipital region (O1, Oz, O2). The 
results were visually represented through time-frequency maps and 
topographic maps, as detailed in Figures  2, 3. Supplementary File 1 
contains further details on artifact rejection and cumulative 
data processing.

2.6 Statistical framework

Data analysis for this study was conducted using MATLAB2019b 
(see text footnote 2). Firstly, we performed a two-sample t-test to 
identify differences in developmental indicators between children 
with ASD and non-ASD children. This test also compared the 
differences in power in theta and alpha frequency bands in the 
occipital region and the differences in eye-tracking fixation time and 
pupil size when observing our 24-object interest paradigm. Secondly, 
Pearson correlation analysis explored the relationships among EEG 
time-frequency power, eye-tracking metrics, and developmental 
scores, and we calculated the area under the curve (AUC) of EEG and 
ET indicators (average fixation time and average pupil size) using 
receiver operating characteristic (ROC) curves. Finally, we  used 
multivariate logistic regression analysis to establish a diagnostic 
prediction model that integrates these various parameters. Having 
age and gender as covariates, a comprehensive EEG time-frequency 
power, ET fixation time, and pupil size prediction model for ASD was 
established to identify potential biomarkers for the early 
diagnosis of ASD.

3 Results

3.1 Demographic and clinical 
characteristics

The study comprised a total of 59 children, with 32 in the ASD 
group and 27 in the age and gender-matched non-ASD group. The 

FIGURE 1

Heat maps of eye tracking fixation times for viewing the interest paradigm. (A) Fixation trajectory and fixation times of children in the ASD group. 
(B) Fixation trajectory and fixation times of children in the non-ASD group. The connected purple and blue lines represent eye-tracking fixation 
trajectories, and the purple circle and the blue circle represent the heat map of the fixation times. The larger the circle and the darker the color, the 
longer the fixation times.
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analysis revealed no significant differences in age (ASD: 3.1 ± 0.5 years, 
non-ASD: 2.9 ± 0.5 years; p = 0.493) and no gender disparity between 
the two groups (p = 0.191). The average developmental quotient (DQ) 
of ASD was (69.9 ± 3.6), which was considered mild developmental 
delay, while the average DQ of non-ASD children was (86.6 ± 5.4; 
p < 0.01). The mean CARS score for the ASD group was (32.9 ± 2.1) 
and the mean ADOS total score was (15.09 ± 3.0).

3.2 Overview of eye-tracking results

ET data showed differences in fixation time, and pupil size between 
ASD and non-ASD children during the viewing of the 24-object interest 
paradigm. Specifically, the data showed there were 9 key objects of 
interest: balloon, cake, cantaloupe, glasses, mail car, bullet train, plane, 
sailboat, and truck, as illustrated by the visual illustration of the ET results 
(Figure 1). We subsequently describe the measurements of fixation time 
and pupil size obtained via our eye-tracking paradigm.

3.3 Quantitative summary of fixation time 
outcomes

Fixation times for objects in the interest paradigm were 
compared between children with ASD and non-ASD children. 
Results revealed significant differences between the two groups 
across several objects of interest. Specifically, ASD children exhibited 
significantly greater mean fixation times compared to non-ASD 
children for the bullet train (p = 0.026), steamship (p = 0.031), 

sailboat (p = 0.037), sedan car (p = 0.041), and mail car (p = 0.047). 
However, non-ASD children had significantly greater mean fixation 
times compared to ASD children for balloon (p = 0.019), cap 
(p = 0.022), paper bag (p = 0.037), and cake (p = 0.017). Please refer to 
Table  1 for a detailed quantitative overview of the eye-tracking 
outcomes in terms of fixation time of the comprehensive list of 
24 objects.

3.4 Quantitative summary of pupillometry 
outcomes

The pupil sizes of children with ASD and non-ASD children were 
compared across the objects of interest during the viewing of the 
interest paradigm. Our results indicate significant differences in mean 
pupil sizes between the two groups across 9 objects. Specifically, 
compared to non-ASD children, ASD children exhibited greater mean 
pupil sizes for the bullet train (p < 0.001), sailboat (p < 0.001), mail car 
(p < 0.001), plane (p < 0.001), and truck (p < 0.001). However, 
compared to ASD children, non-ASD children demonstrated greater 
mean pupil sizes for balloon (p < 0.001), cake (p < 0.001), cantaloupe 
(p < 0.001), and glasses (p < 0.001). Please refer to Table 2 for a detailed 
quantitative overview of the eye-tracking outcomes in terms of pupil 
size of the comprehensive list of 24 objects.

3.5 EEG time-frequency analysis

We analyzed the EEG time-frequency responses with a particular 
focus on the theta (4–8 Hz) and alpha (8–13 Hz) frequency bands, 

FIGURE 2

Comparison of θ-band time-frequency power for ASD and non-ASD Cohorts. (A,B) The time-frequency diagrams for the non-ASD and ASD groups 
respectively, and the selected time-frequency window is marked with the black box. (C,D) The time-frequency topographic maps of the non-ASD and 
ASD groups respectively, and the selected electrodes are marked in black. (E) The average time course diagram for the two groups showing the time-
frequency power, and the shaded area is the 0–300  ms time window. (F) The comparison of the mean values of the time-frequency power between 
the two groups. “*” denotes p  <  0.01.

https://doi.org/10.3389/fnins.2024.1502045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2024.1502045

Frontiers in Neuroscience 06 frontiersin.org

examined within the 0–300 ms and 500–1,400 ms time windows, 
respectively. This analysis was conducted across the occipital region 
EEG channels (O1, O2, and Oz). To obtain evoked power, we calculated 
trial-averaged power by averaging the EEG signals across trials, which 
provided a robust measure of stimulus-related power changes. Baseline 
correction was applied from −624 ms to −376 ms to control for inter-
trial variability. Our findings indicate that the theta band power in 
ASD children at 0–300 ms was significantly higher than that of 
non-ASD children (p < 0.01; Figure 2). Additionally, we observed that 
the alpha band evoked power in the occipital region at 500–1,400 ms 
was significantly different between groups (p < 0.05; Figure 3).

3.6 Predictive modeling using EEG indices

The area under the curve (AUC) for predicting ASD with the 
independent theta-band time-frequency power of the occipital lobe was 
0.7328 (0.5175–0.8681), with a sensitivity of 77.78% and a specificity of 
82.35%; the determined threshold for predictive power is 0.3000, as 
illustrated in Figure  4A. The AUC for predicting ASD with the 
independent alpha-band time-frequency power of the occipital lobe 
was 0.5556 (0.3574–0.7537) with a sensitivity of 55.56% and a specificity 
of 58.82%, and the cutoff was 0.0527, see solid line curve in Figure 4A.

3.7 Predictive modeling using ET indices

The AUC for predicting ASD phenotype using total eye-tracking 
fixation time alone was 0.53 (95% CI: 0.36–0.70) with a sensitivity of 
54.2% and a specificity of 58.3%. The AUC for predicting ASD with 

total pupil size alone was 0.51 (95% CI: 0.34–0.67) with a sensitivity 
of 54.2% and specificity of 62.5% (Figure 4B).

3.8 Multi-modal predictive modeling

We constructed a multimodal logistic regression model 
incorporating ET fixation time, pupil size, EEG TF indices (α and θ 
power), gender, and age. This model, represented by the equation 
logit(P(Y = ASD)) = −1.581 + 0.2727 * age + 3.795 * θ band power − 
1.515 * α band power − 0.2244 * gender − 1.613 * pupil size + 
0.0001249 * total fixation time, demonstrated an Akaike information 
criterion (AIC) of 50.6. Additionally, the model achieved an area 
under the curve (AUC) of 0.75, with sensitivity at 66.7%, and 
specificity at 70.6%, using a cutoff value of 0.5 (Figure 5).

4 Discussion

Our study utilized a 2 4-object interest paradigm to explore the 
visual attention characteristics of children with and without ASD aged 
2–4 years. Our findings highlight the tendency of children with ASD 
to have circumscribed interests, a component of RRBs, particularly 
oriented towards transportation-related objects. Notably, our results 
revealed differences in ET indices between ASD and non-ASD 
children. We observed significant increases in pupil size and fixation 
time (FT) among toddlers with ASD when viewing objects of 
restrictive interest (RI), and similarly observed these changes among 
toddlers without ASD when viewing neutral interest (NI) objects. To 
our knowledge, the current study is the first to study RIs in ASD using 

FIGURE 3

Comparison of α-band time-frequency power for ASD and non-ASD Cohorts. (A,B) The time-frequency diagrams for the non-ASD and ASD groups 
respectively, and the selected time-frequency window is marked with the black box. (C,D) The time-frequency topographic maps of the non-ASD and 
ASD groups respectively, and the selected electrodes are marked in black. (E) The average time course diagram for the two groups showing the time-
frequency power, and the shaded area is the 500–1,400  ms time window. (F) The comparison of the mean values of the time-frequency power 
between the two groups. “*” denotes p  <  0.01.

https://doi.org/10.3389/fnins.2024.1502045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2024.1502045

Frontiers in Neuroscience 07 frontiersin.org

an integration of EEG TF power, pupil size, and fixation time with the 
aid of an object-only viewing paradigm.

Our results regarding changes in pupil size demonstrated that 
children with ASD had significantly increased mean pupil sizes for RI 
objects such as the mail car, bullet train, plane, sailboat, and truck, as 
compared to their non-ASD counterparts. This underscores the 
potential utility of pupil size as a marker for identifying restricted 
interest in ASD. To our knowledge, measuring changes in pupil size 
due to passive viewing of a 24-object interest paradigm has never been 
done before to identify circumscribed interests in ASD children. In 
recent years, studies have shown that changes in pupil size during 
viewing tasks may reflect psychological impairment, with abnormal 
changes in pupil size postulated as probable diagnostic and risk 
prediction indicator for autism, depression, schizophrenia, and other 
mental disorders (Kudinova et al., 2016; Nyström et al., 2018; Burley 
et al., 2019). Pupil measurements therefore offer an important avenue 
for gaining insights into the presence of RRBs, specifically restricted 
interests in ASD. Prior research has implicated the locus coeruleus-
norepinephrine (LC-NE) system as an important underlying 
mechanism involved in attention regulation as measured by 
pupillometry. The LC-NE is posited to control attentional states, and 
it has been suggested that differences in attention capacities between 
ASD and non-ASD toddlers could explain pupil differences during the 

performance of tasks (Blaser et  al., 2014; de Vries et  al., 2021). 
Extending this idea to restricted interests could explain the differences 
in pupil size that we see in children with ASD compared to children 
without ASD, although the underlying reason for orienting towards 
transportation-related objects still remains unclear. Prior studies 
investigating circumscribed interests and pupillary changes in the 
ASD population have yielded diverse results. For instance, DiCriscio 
and Troiani (2017) found a correlation between pupil adaptation due 
to light stimulus and quantitative measures of ASD. Specifically, they 
found that pupil adaptation correlated with total Social Responsiveness 
Scale (SRS) score and most of its subscores, though the RRB subscore 
was unrelated to pupil size. Moreover, a separate study that examined 
the association between pupil light reflex (PLR) and autistic traits 
found that increased RRBs in adults were associated with weaker PLR, 
but this finding was not demonstrated in children (Soker-Elimaliah 
et al., 2023). Thus, given these evident disparities, we believe that 
instead of using light as a stimulus, using a passive viewing paradigm 
designed specifically for identifying restricted interests may offer a 
more effective means of differentiating ASD children from non-ASD 
children at a younger age based on changes in pupil size. Our novel 
interest paradigm thus offers this advantage over previous paradigms 
and tasks. We believe our results contribute to the growing evidence 
of using pupil size to identify traits of autism such as restricted 

TABLE 1 Comparison of ET fixation time by object for ASD and non-ASD cohorts in milliseconds (ms).

ASD Non-ASD t/F p-value

Mean SD Mean SD

Bullet train 9110.01 307.46 1689.12 569.03 2.34 0.026*

Steamship 8953.31 206.44 658.38 111.62 1.97 0.031*

Sailboat 8314.44 154.14 1812.71 249.39 1.61 0.037*

Sedan car 8104.97 324.91 2424.65 232.11 0.65 0.041*

Water bottle 6634.21 233.23 4434.06 220.26 0.27 0.207

Mail car 6214.02 615.49 176.31 193.03 1.52 0.047*

Truck 5510.06 673.85 3904.16 331.23 1.832 0.513

Cantaloupe 4478.39 252.59 4798.07 632.79 −1.31 0.199

Balloon 2011.75 134.65 10658.20 202.53 −2.33 0.019*

Electric-fan 1362.48 339.15 4654.11 373.42 −0.31 0.758

Plane 1340.32 293.01 0.00 — — —

Laptop 1278.19 361.74 0.00 — — —

Briefcase 1204.21 274.50 842.52 276.52 0.82 0.416

Trash can 1132.23 520.12 0.00 — — —

Bread 866.64 230.29 1658.18 124.61 1.10 0.276

Cap 552.45 216.94 6316.21 112.81 −1.22 0.022*

Paper bag 348.79 171.83 3502.49 144.26 −3.33 0.037*

Switch 298.15 81.06 0.00 — — —

Cake 274.81 120.24 6652.10 161.44 −3.18 0.017*

Glasses 110.06 94.04 316.24 86.93 −0.47 0.635

Mouse 0.00 — 3658.02 321.07 — —

Umbrella 0.00 — 1538.65 261.03 — —

Swivel chair 0.00 — 2812.18 115.02 — —

A “0” means no object of interest/fixation time is less than 100 ms; “*” denotes p < 0.05 after Bonferroni correction.
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interests and could help refine the development of early 
screening methods.

Furthermore, our utilization of FT proved successful in identifying 
circumscribed interests in ASD, with our findings being consistent 
with the current literature, where studies have noted an atypical 
preference for RI objects over NI objects among children with ASD 
(South et al., 2005; Sasson et al., 2008; Sasson and Touchstone, 2014; 
Frazier et al., 2017). In particular, our results resonated with a separate 
study conducted by Sasson and colleagues that also used eye-tracking 
technology and a visual exploration task involving object and social 
arrays to demonstrate patterns of attention in ASD and non-ASD 
children aged 2–5 years (Sasson et al., 2011). Similar to our results, 
they found that children diagnosed with ASD, relative to their 
non-ASD counterparts, exhibited prolonged fixation times for images 
associated with high autistic interest, such as trains, in contrast to 
objects with low autistic interest, such as clothing and food. This 
fixation on RI objects by ASD children could be explained by a visual 
preference for predictability. For example, a truck has a predictable 
purpose, as well as wheels that move in a repetitive and predictable 
motion, which has been posited to reduce anxiety in situations of 
hyper-arousal (Wang et  al., 2018). Hence, the predictable nature 
inherent to the objects themselves, including the low-level properties 
of objects (e.g., wheels on a truck), explains the interest that children 

with ASD have for RI objects in our 24-object paradigm. The 
prolonged fixation times observed under restricted interest 
stimulation in our study may be a characteristic of ASD and thus, with 
more research, be considered when developing screening tools for 
RRB detection in ASD.

Interestingly, our 24-object interest paradigm was able to identify 
differential visual interest patterns in the non-ASD cohort. Our 
findings showed that non-ASD toddlers displayed increases in FT and 
pupil size in response to NI objects such as balloons, cake, cantaloupe, 
and umbrella. In a prior study using an object-only array, non-ASD 
children had no visual preference for any object (Sasson et al., 2008), 
which contrasts with our findings of circumscribed interests. An 
explanation for the non-ASD cohort demonstrating a preferential 
visual pattern can be attributed to several factors. Firstly, non-ASD 
children can also have restricted or intense interests at a certain age of 
development, and those interests often change or expand over time 
(DeLoache et al., 2007; Lewis and Kim, 2009; Burrows et al., 2021). 
Secondly, several of the NI objects that captured the interest of 
non-ASD children held social connotations, such as cake and balloons, 
commonly associated with celebratory occasions. Given the positive 
emotional associations linked with these objects, they likely elicited 
heightened attention from non-ASD children compared to other 
objects in the paradigm. Furthermore, increased interest in some 

TABLE 2 Comparison of ET pupil size by object for ASD and non-ASD cohorts in millimeters (mm).

ASD Non-ASD t/F p-value

Mean SD Mean SD

Bullet train 4.03 0.31 1.53 0.12 0.97 <0.001

Steamship 1.44 0.22 1.19 0.07 0.37 0.701

Sailboat 4.48 0.37 1.09 0.11 3.42 <0.001

Sedan car 1.35 0.21 1.04 0.07 0.31 0.627

Water bottle 1.10 0.07 1.66 0.15 −0.27 0.611

Mail car 4.10 0.32 1.50 0.11 −0.51 <0.001

Truck 4.02 0.31 1.09 0.10 3.11 <0.001

Cantaloupe 1.35 0.12 3.03 0.32 −1.72 <0.001

Balloon 1.35 0.12 4.22 0.21 −0.39 <0.001

Electric-fan 1.50 0.11 1.26 0.11 0.40 0.522

Plane 3.31 0.29 1.09 0.14 1.84 <0.001

Laptop 2.47 0.12 0.00 — — —

Briefcase 1.33 0.10 1.19 0.08 0.23 0.461

Trash can 1.20 0.09 0.00 — — —

Bread 1.34 0.10 1.13 0.11 0.37 0.524

Cap 1.76 0.14 1.20 0.09 1.04 0.041*

Paper bag 1.54 0.07 1.41 0.17 0.47 0.722

Switch 1.13 0.04 0.00 — — —

Cake 1.39 0.11 3.21 0.21 −1.56 <0.001

Glasses 1.90 0.14 2.73 0.22 −2.96 <0.001

Mouse 0.00 — 1.17 0.11 — —

Umbrella 0.00 — 1.41 0.26 — —

Swivel chair 0.00 — 1.32 0.17 — —

A “0” denotes the pupil is at the baseline value of 1.42 mm and indicates no change; “*” denotes p < 0.05 after Bonferroni correction.
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objects could be due to prior exposure, such as the chair, fan, and cap. 
Studies have shown that differences in the amount of exposure to 
certain objects could drive differences in attentional preference and 
thus explain why non-ASD children were more interested in objects 
that are easily seen in daily life (Scheerer et al., 2021).

In response to viewing the 24-object interest paradigm, our study 
demonstrated a notable increase in TF power within the alpha and 
theta frequency bands at intervals 0–300 ms and 500–1,400 ms, 
respectively. This was specifically seen within the occipital region of 
the brains of toddlers diagnosed with ASD as compared to their 
non-ASD counterparts. Our results indicated that theta-band power 
was elevated in children with ASD during the early viewing period 
compared to non-ASD children, while alpha-band power was 
comparatively reduced. Baseline measurements showed differences 
between groups in theta but no significant difference in alpha waves. 
These findings may be due to differences in neural activity between 
the two groups at baseline. These differences may be  partially or 
completely eliminated after the baseline correction, which more truly 
reflects the impact of interest stimulation on brain activity. The 
enhancement of theta activity in the ASD group may reflect attention 

control or attention distribution (Sauseng et al., 2007). Additionally, 
this increase may be due to heightened excitement in the cerebral 
cortex when viewing restricted-interest objects or may reflect a 
synchronous increase in neural network activity. Within the range of 
500–1,400 ms, it was observed that alpha power in individuals with 
ASD was weaker than in non-ASD individuals. This may indicate a 
stronger response to viewing restricted-interest objects or suggest 
challenges in processing information. The lack of inhibitory activity 
in the cerebral cortex may make it difficult for individuals with ASD 
to effectively integrate and filter unrelated information, which can 
impact normal social functioning. Of course, verification of these 
findings through the use of big data is necessary.

In a cross-sectional replication study of 143 infants with varying 
familial risk for ASD, Haartsen et al. demonstrated that having an 
increased alpha connectivity at 14 months predicts a subsequent 
diagnosis of ASD and the development of RRBs, with restricted 
interests having the strongest association (Haartsen et  al., 2019). 
Moreover, they also proposed that abnormalities seen in the frontal 
and striatal structures of the brain contribute to the manifestation of 
restricted interests among children with ASD. This idea of structural 

FIGURE 4

ROC curves of temporal frequency and pupil size indices. (A, black dotted line) ROC curve of time-frequency index in the theta band of the occipital 
lobe for predicting ASD. (A, black solid line) ROC curve of time-frequency index in the alpha band of the occipital lobe for predicting ASD. (B, black 
dotted line) ROC curve of eye tracking fixation time for index predicting ASD. (B, black straight line) ROC curve of eye tracking pupil size index for 
predicting ASD.

FIGURE 5

Diagnostic performance of multimodal logistic regression model. (A) ROC curve for multimodal model. (B) Model predicted and measured 
probabilities. (C) Cutoff value, with different prediction thresholds, the change in accurate prediction probability. “0” denotes ASD and “1” denotes non-
ASD.

https://doi.org/10.3389/fnins.2024.1502045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2024.1502045

Frontiers in Neuroscience 10 frontiersin.org

or functional brain aberrations has been seen across several studies 
that report cortical thickening of the corpus callosum during infancy 
and its higher structural connectivity with the cerebellum at 6 months 
being linked to the subsequent development of higher order RRBs 
such as circumscribed interest. According to Wolff et al. (2017), these 
findings support the idea that increased alpha connectivity within 
these aberrant neural pathways are indicative of an over-focused 
attention style most strongly associated with restrictive interests.

Although interesting, it is crucial to note that there is no consensus 
in the research community regarding these findings. Several studies 
have reported an increase in alpha band power (Sutton et al., 2005; 
Chan and Leung, 2006; Cornew et al., 2012) in individuals with ASD, 
while others have noted a decrease (Sheikhani et al., 2012; Afifi et al., 
2015; Takagaki et  al., 2015) or found no significant difference 
(Hyvärinen and Oja, 2000; Coben et al., 2008). These findings align 
with a systematic review by Bogéa Ribeiro and da Silva Filho (2023) 
that showed significant variations in the alpha frequency band, with 
TF power being reduced in children of the same age and elevated in 
studies involving older children (Machado et  al., 2015). The 
discrepancies witnessed across studies can be attributed to factors 
such as varying sample sizes, the age range of subjects, and differing 
experimental approaches. In addition, these differences may also 
underscore the complexity and heterogeneity of ASD, with studies 
possibly reflecting different subgroups within the ASD population and 
varying developmental trajectories. Several theories have been 
proposed to account for these differences in power across various 
frequency bands. One such hypothesis is the U-shaped profile theory, 
which posits that individuals with ASD may demonstrate excessive 
power in both the lower (delta and theta) and higher (beta and 
gamma) frequency bands while showing diminished power in the 
intermediate alpha band (Wang et al., 2013). Our findings suggest an 
atypical pattern of neuronal activity in the occipital region of ASD 
toddlers when engaged with objects of high autistic interest. It lends 
further credence to our hypothesis that when visually stimulated with 
images of high interest associated with ASD, toddlers with this 
disorder exhibit different brain activity patterns compared to their 
non-ASD counterparts. These observed differences in neuronal 
activity between ASD and non-ASD toddlers indeed lend support to 
the functional underpinnings and heterogeneity inherent to ASD 
(Masi et al., 2017). It underscores the theory of local over-connectivity 
in various brain regions, a phenomenon associated with ASD (Happé 
and Frith, 2006; Klimesch et al., 2007). Thus, over-connectivity in the 
occipital brain region of ASD toddlers may explain the pattern of 
neuronal activity identified relating to increased power across the 
alpha and theta frequency bands, highlighting the complexities and 
individual differences present within ASD as a condition.

In order to better understand the relationship and significance of 
ET and EEG indices in relation to circumscribed interest in autism, 
we constructed multiple univariate logistic regression models to explore 
these associations. Our regression model utilizing the independent θ 
band TF power of the occipital lobe proved to be superior in predicting 
ASD, achieving an AUC of 0.73 (95% CI: 0.52–0.87), with a sensitivity 
of 0.78 and a specificity of 0.82, much better than the univariate models 
which were mostly slightly above 0.5 [univariate models which utilized 
α band TF power, total eye fixation time, and total pupil size, with 
AUCs of 0.56 (95% CI: 0.36–0.75), 0.53 (95% CI: 0.36–0.70) and 0.50 
(95% CI: 0.34–0.67) respectively]. The superior predictive capacity of 
the θ band index in predicting ASD as an outcome could potentially 
be elucidated by the localized cortical overconnectivity of neuronal 

circuits within the occipital lobe, whereas α oscillations are indicative 
of and rely more heavily on long-range, global connections across brain 
regions (Nunez and Srinivasan, 2006). Recent autism research has 
explored the integration of ET and EEG modalities to predict ASD as 
an outcome, with the majority employing paradigms centered around 
social or facial stimuli (Thapaliya et al., 2018; Geng et al., 2020; Zhang 
et al., 2021). To the best of our knowledge, employing a multimodal 
approach to investigate circumscribed interests in ASD through an 
object-only paradigm, with the integration of both EEG and ET indices 
represents a novel endeavor that has not been previously undertaken. 
When integrating both ET and EEG indices into our multivariate 
regression model, while adjusting for age and gender, we observed a 
notable improvement of the AUC which was 0.75 for predicting 
ASD. The improvement in model’s performance compared to our best 
performing univariate θ band model can be  credited to the 
incorporation of both modalities into the regression analysis. This 
highlights the effectiveness of ET and EEG as tools not only for 
detecting restricted interests in ASD toddlers but also for identifying 
potential biomarkers for early ASD diagnosis, preceding the 
manifestation of behavioral traits. Furthermore, the utilization of EEG 
and ET, especially in clinical settings, is justified by their user-friendly 
nature, affordability, and time-saving benefits (Gurau et  al., 2017; 
Thapaliya et al., 2018), in addition to their potential for early diagnosis.

While our study yielded promising results in objectively identifying 
RRBs in toddlers with ASD, we also encountered several limitations. 
Firstly, one limitation was the narrow age range of our cohort, which 
only included children 2–4 years old. Studies have shown that children 
acquire RRBs and restricted interests at different time points during 
development, with often “lower order” behaviors such as stereotyped 
behaviors manifesting in younger children and “higher order” 
behaviors such as restricted interests manifesting in older individuals 
(Lewis and Kim, 2009). Given the dynamic nature of RRBs and 
specifically restricted interests across development, future studies may 
benefit from employing longitudinal approaches or including a broader 
age range of participants to better capture these complexities. Another 
notable limitation was the small sample size of both the ASD and 
non-ASD cohorts in the current study, which hindered our ability to 
effectively internally validate our models’ results. This constraint was 
further compounded by the fact that we had no independent dataset 
to use for external validation. Therefore, future endeavors should 
prioritize replicating studies of this nature with larger cohorts and an 
independent dataset to ensure the comprehensive validation of the 
results obtained. Furthermore, the ethnic makeup of our cohorts was 
predominantly Chinese, potentially limiting the generalizability of our 
findings to other populations with a more heterogeneous ethnic 
makeup. It is important to note the lack of intelligence quotient (IQ) 
matching of participants in our current study. Nonverbal IQ in children 
with ASD has been found to be positively correlated with circumscribed 
interests (Gabriels et  al., 2005), thus supporting the need to have 
IQ-matched ASD and non-ASD subjects.

5 Conclusion

This study sheds light on the eye-tracking patterns and EEG 
characteristics associated with restricted interests in children with ASD, 
viewed through a developmental lens. Each metric—eye-tracking fixation 
time, pupil size, and EEG theta and alpha power—holds promise as a 
potential biomarker for early ASD identification, offering insights into the 
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neural mechanisms underlying restricted interests in autism. Notably, our 
logistic regression model, which integrates ET and EEG metrics, provides 
strong evidence supporting a multimodal approach to early ASD 
detection. This complementary assessment strategy could enhance 
detection accuracy, especially when used in conjunction with traditional 
diagnostic methods. Future studies will aim to further validate the 
sensitivity and specificity of these biomarkers and investigate their 
effectiveness across diverse age groups and demographics.
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