
Frontiers in Neuroscience 01 frontiersin.org

Exploring neural mechanisms of 
gender differences in bodily 
emotion recognition: a 
time-frequency analysis and 
network analysis study
Tingwei Feng 1†, Mingdi Mi 2†, Danyang Li 3†, Buyao Wang 4 and 
Xufeng Liu 1*
1 Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China, 2 Weinan 
Vocational and Technical College Student Office, Weinan, China, 3 College of Education Science, 
Changji University, Changji, China, 4 Mental Health Education and Consultation Center, Tarim 
University, Alaer, China

Background: This study aimed to explore the neural mechanisms underlying 
gender differences in recognizing emotional expressions conveyed through 
body language. Utilizing electroencephalogram (EEG) recordings, we examined 
the impact of gender on neural responses through time-frequency analysis and 
network analysis to uncover gender disparities in bodily emotion recognition.

Methods: The study included 34 participants, consisting of 18 males and 16 
females. A 2 × 2 mixed design was employed, with gender (male and female) and 
bodily emotion (happy and sad) as the independent variables. Both behavioral 
and EEG data were collected simultaneously.

Results: Males demonstrated more stable brain activity patterns when 
recognizing different bodily emotions, while females showed more intricate 
and highly interconnected brain activity networks, especially when identifying 
negative emotions like sadness. Differences based on gender were also 
observed in the significance of brain regions; males had greater importance 
in central brain areas, whereas females exhibited higher significance in the 
parietal lobe.

Conclusion: Gender differences do influence the recognition of bodily emotions 
to some extent. The primary aim of this study was to explore the neural 
mechanisms underlying gender differences in bodily emotion recognition, 
with a particular focus on time-frequency analysis and network analysis 
based on electroencephalogram (EEG) recordings. By elucidating the role of 
gender in cognitive development, this study contributes to early detection and 
intervention.
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Background

Emotion recognition is vital for social interaction and emotional 
expression, involving the perception and interpretation of emotional 
signals such as facial expressions, vocal tones, and body language 
(Rosenberg et  al., 2020). This skill is essential for successful daily 
interactions and has significant clinical and psychosocial applications. 
Studies suggest that recognizing emotions through bodily postures is 
as accurate as through facial expressions in adults (Atkinson et al., 
2004). Zongbao et al. (2019) used videos depicting facial and bodily 
expressions of anger, fear, and joy and applied multivariate pattern 
classification analysis of functional connectivity patterns using 
fMRI. The findings revealed distinct neural network representations 
for facial and bodily emotions of the same valence, with facial 
expressions achieving higher classification accuracy (Atkinson et al., 
2007). However, bodily cues can sometimes convey emotional valence 
more effectively, especially under intense emotional states, due to the 
larger distinguishable area and greater distance compared to facial 
expressions (Zieber et  al., 2014). Furthermore, individuals can 
accurately recognize emotions from brief presentations of dynamic 
and static bodily stimuli, even without facial information. These 
studies demonstrate that humans can effectively extract emotional 
information from bodily postural cues (Aviezer et al., 2012).

Network analysis is a powerful visualization model that represents 
complex relationships through nodes and edges (Borsboom and 
Cramer, 2013). This method is extensively used in psychometrics and 
clinical medicine to explore the interconnections and intrinsic 
relationships between psychological variables or symptoms (Epskamp 
et al., 2012; Epskamp et al., 2018). In this study, we apply network 
analysis to investigate the neural mechanisms underlying gender 
differences in bodily emotion recognition. By constructing network 
models, we can quantitatively assess the core positions of different 
brain regions, known as centrality indices, to determine their 
importance within the entire network. This approach allows us to 
identify key brain regions involved in emotion recognition and how 
they differ between genders. Additionally, network analysis helps 
reveal “bridge symptoms,” which are symptoms that connect different 
mental disorders (Liang et al., 2022). Applying this concept, we aim to 
uncover how different neural networks interact during the recognition 
of bodily emotions, providing deeper insights into the gender-specific 
neural mechanisms involved in emotional processing.

The objective of this study is to explore the impact of gender 
differences on bodily emotion recognition, providing additional 
insights into the neural basis of these differences. By employing high 
temporal-resolution EEG combined with time-frequency analysis and 
network analysis techniques, the research investigates whether there 
are gender-based differences in neural responses during bodily 
emotion recognition tasks and whether these differences reflect 
unique neural mechanisms related to gender in emotion processing. 
Time-frequency analysis offers the advantage of capturing dynamic 
changes in brain activity over time, although it may require more 
complex data interpretation compared to other methods. Additionally, 
network analysis provides a comprehensive view of the intricate 
connectivity patterns in the brain, allowing for the identification of 
how different brain regions interact during emotion recognition. This 
approach not only enhances the understanding of the underlying 
neural mechanisms but also highlights potential gender-specific 
network characteristics that could inform targeted interventions.

Methods

Participants

A total of 36 undergraduate and graduate students from the Air 
Force Medical University were recruited for the study, including 18 
males, aged between 18 and 25 years, with an average age of 
23.65 years. All participants were right-handed, had normal or 
corrected vision, and had no history of cognitive or neurological 
disorders. The study was approved by the Clinical Trial Ethics 
Committee of the First Affiliated Hospital of the Air Force Medical 
University (approval number: KY20182047-F-1). Written informed 
consent was obtained from all participants prior to the experiment, 
and the study adhered to the principles of the Declaration 
of Helsinki.

Material

In this experiment, we used a 2 × 2 mixed-participation factorial 
design. The first factor was the trial condition, divided by gender 
(male vs. female), while the second factor related to the emotional 
expression displayed by the body, specifically happiness or sadness. 
The stimuli included 120 images obtained from the Chinese Library 
of Physical Emotional Materials (Luo et al., 2012), with valence and 
intensity rated on a 9-point Likert scale (Luo et al., 2010).

EEG recording and data analysis

The raw EEG data were preprocessed offline using EEGLAB 
(Nagabhushan Kalburgi et al., 2024) for analysis. The EEG equipment 
used consisted of a NeuroScan SynAmps 2 amplifier and acquisition 
system, along with a NeuroScan 32-channel Ag/AgCl electrode cap 
for EEG recording. The study followed the international standard 
10–20 system for electrode placement, with the left mastoid (A1) as 
the reference electrode and the central forehead as the ground 
electrode (GND), according to the guidelines of the International 
Society of Psychophysiology and the International Federation of 
Clinical Neurophysiology. After re-referencing, the reference 
electrodes were averaged from the left and right mastoids (A1, A2). 
The recording electrodes included FP1, FP2, F3, F4, F7, F8, Fz, FC3, 
FC4, FT7, FT8, FCz, T3, T4, C7, C8, Cz, CP3, CP4, TP7, TP8, CPz, 
P3, P4, T5, T6, Pz, O1, O2, Oz, and vertical (VEOG) and horizontal 
(HEOG) electrooculograms. During the experiment, the scalp 
impedance at each electrode site was kept below 5 kΩ, and the 
sampling rate was 1,000 Hz.

The preprocessing steps were as follows: data were analyzed using 
EEGLAB 14.0 software. After importing the data, electrode locations 
were verified, and unnecessary electrodes were removed. 
Re-referencing was performed with the average reference of the left 
and right mastoids (A1, A2). A 40 Hz low-pass filter and a 0.1 Hz 
high-pass filter were applied, followed by the removal of 50 Hz power-
line interference. The data were segmented from −200 ms to 1,000 ms 
and baseline corrected. Bad segments were removed and bad channels 
interpolated. Independent component analysis (ICA) was applied to 
remove eye artifacts (HEOG, VEOG), ECG, and EMG artifacts. The 
final step was to average the segments.
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The preprocessed raw EEG signals were analyzed using Fourier 
Transform to compute the power spectral density (PSD), with the 
power spectrum (in μV2/Hz) for each frequency range. After 
preprocessing, the EEG power was divided into six frequency bands: 
δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β1 (14–20 Hz), β2 (21–30 Hz), 
and γ (31–40 Hz).

Source localization was conducted to identify cortical regions 
involved in processing emotional stimuli. The sLORETA software was 
used to analyze the preprocessed data. A forward model was 
constructed based on individual head models, and an inverse solution 
was applied to estimate neural sources from the observed EEG signals. 
Statistical analysis of the resultant source activations was performed 
to identify cortical areas significantly associated with the different 
experimental conditions. Given the low spatial resolution and 
potential volume conduction issues inherent in source analysis, 
particularly in locating deeper brain structures such as the amygdala 
involved in emotional processing, the results were interpreted with 
these limitations in mind.

Network analysis

Network analysis was performed using R (version 4.3.1) for 
network data analysis and visualization. In the network, 14 nodes 
represent different dimensions of behavioral and EEG indicators 
across various community subgroups. Data fitting was performed 
using the Gaussian graphical model (GGM), where edges 
(connections between two nodes) represent partial correlations. 
Model selection was conducted using the graphical lasso algorithm 
(least absolute shrinkage and selection operator, LASSO) combined 
with the extended Bayesian Information Criterion (EBIC) to 
obtain a more stable and interpretable regularized partial 
correlation network. The Fruchterman–Reingold algorithm was 
used to display the network layout. Network construction and 
visualization were implemented using the qgraph package in R. In 
the network, positive correlations are represented by blue edges, 
and negative correlations by red edges (Fruchterman and 
Reingold, 1991).

The thicker the edge, the stronger the association between two 
symptoms/variables, and vice versa. The expected influence 
evaluates the importance of each node within the network. 
Predictability of a node refers to the degree to which changes in the 
node can be predicted and explained by the changes in its connected 
nodes. In the network, predictability is estimated by the upper 
bound of its connected nodes’ predictions, represented by a 
surrounding ring around the node. The accuracy and stability of the 
network were assessed using the bootnet package. First, 
non-parametric bootstrapping (2,000 bootstraps) was used to 
calculate the 95% confidence intervals for edge weights to measure 
their accuracy. Second, case-dropping bootstrap methods were 
used to obtain stability coefficients for correlation, thus evaluating 
the stability of expected influence for each node. Ideally, the 
stability coefficient should be greater than 0.5, not lower than 0.25. 
Finally, bootstrap (2,000 bootstraps) was used to conduct difference 
tests on edge weights and nodes’ expected influences to assess 
whether the differences between edge weights or expected 
influences of nodes were statistically significant (significance level 
α = 0.05).

Results

Frequency domain analyses

We extracted ERP signals from a time window (−500 to 0 ms) 
relative to the stimulus onset, For each subject and electrode, EEG 
signals were transformed to the frequency domain using a discrete 
Fourier transform, yielding an EEG spectrum ranging from 1 to 
30 Hz. Single-subject EEG spectra were averaged across subjects in 
each group, to obtain group-level prestimulus EEG spectra. To 
compare the group difference of prestimulus EEG spectra, 
we performed point-by-point independent-sample t-tests (i.e., each 
frequency point) for each electrode, with a false discovery rate (FDR) 
procedure. EEG contains different specific frequency bands. Features 
in sub-bands are particularly important to characterize different brain 
states. The sub-bands of interest are: delta (0.5–4 Hz), theta (4–7 Hz), 
alpha (8–13 Hz), beta1 (14–20 Hz), beta2 (20–30 Hz). The relative 
PSD can be obtained by dividing the PSD of each frequency band by 
the total PSD of the whole frequency band estimated by the AR Burg 
method. Figure  1 shows that the wave amplitude of the 16 EEG 
channels in the five frequency bands decreases with increasing 
frequency for both groups according to gender.

Different frequency bands of the electroencephalogram (EEG) 
have distinct physiological significance and are crucial for 
characterizing brain activity. To gain a deeper understanding of the 
rhythmic characteristics of EEG across frequency bands, this 
experiment averaged the power spectral density (PSD) values of the 
frequency signals from 16 electrodes of interest (FP1, FP2, F3, F4, C3, 
C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6) across 5 different frequency 
bands. Repeated measures analysis of variance (ANOVA) was used for 
statistical analysis between the two groups.

To gain insight into the variation in the overall brain region 
frequency domain FFT, we  further averaged the FFT values of 16 
electrodes in six frequency bands. Statistical analysis was carried out 
using both traditional ANOVA and data-driven point-to-point t-test 
respectively, as shown in Table 1.

Comparing the magnitudes in the frequency domain for the 
different gender groups, we obtained the following interesting results. 
Significant differences in FFT amplitude between gender groups in 
delta, theta, beta1 band. As shown in Figure 2, FFT amplitude in three 
frequency bands male > female.

Time-frequency domain analyses

Figure 3 show the grand average TFD of evoked power for the 
male- and female-body emotion conditions. The TFD of the two 
conditions differed significantly in one cluster exhibiting larger power 
in the female- than male- body emotion conditions (p = 0.03), which 
was detected in theta-band (around 4–7 Hz) in the time window of 
around 400–600 ms after stimulus onset, mainly distributed over the 
CZ channels.

Source analysis

The source localization results indicate that the main 
differences between males and females are observed in the 
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Broadmann area (Pirau and Lui, 2023; Peng et  al., 2018), 
Lobe, and brain structure at 816–820 ms. In particular, 
Broadmann area 6 and 8 are responsible for integrating 
sensory information, memory, and regulating attention. 
Broadmann area 9 is primarily involved in speech motor 
control, coordination between limbs, and motor learning. 
Broadmann area 10 plays a role in processing stimuli (see 
Figure 4).

Network analysis

Male happy the behavioral-electroencephalogram 
network structure, as depicted in Figure 5, shows the strongest 
edge between VPP_FZ and VPP_CZ (0.94). The N2_PZ node has 
the highest expected influence centrality at 1.49, while ACC has 

the lowest expected influence centrality at −2.70. ACC exhibits 
negative correlations with three ERP indicators: N2_CZ (−0.50), 
left (−0.41), and N2_FZ (−0.40). There is also a negative 
correlation between RT and N2_FZ (−0.55). Female happy the 
strongest edge is between N2_FZ and N2_CZ (0.92). N2_PZ has 
the highest expected influence centrality at 1.70, and this centrality 
is higher in females compared to males. In the female happy 
condition’s behavioral-EEG network structure, there are only two 
negative correlations: VPP_FZ-left (−0.58) and RT-N2_PZ 
(−0.51). Male sad the strongest edge is between VPP_FZ and 
VPP_CZ (0.87). LPC_CZ has the highest expected 
influence centrality at 1.48, while ACC has the lowest expected 
influence centrality at −1.90. ACC exhibits negative correlations 
with two ERP indicators: N2_CZ (−0.46) and VPP_CZ (−0.48). 
RT shows negative correlations with two ERP indicators: N2_FZ 
(−0.55) and N2_CZ (−0.45). The left node also exhibits negative 
correlations with LPC_PZ (−0.58) and LPC_FZ (−0.56). Female 
sad the strongest edge is between N2_FZ and N2_CZ (0.93). LPC_
PZ has the highest expected influence centrality at 1.25. In the 
female sad condition’s behavioral-EEG network structure, the left 
node shows negative correlations with four edges: VPP_FZ 
(−0.61), N2_PZ (−0.58), LPC_FZ (−0.47), and N2_CZ (−0.42) 
(see Figure 5).

Across all four conditions, the strongest connections 
consistently occur between the frontal lobe and the central 
region. Reaction time (RT) does not exhibit significant 
correlations with different brain regions. In the happy and sad 
conditions, males display strong network stability, while females, 
particularly in the sad condition, exhibit more closely-knit and 
robust correlations.

FIGURE 1

The overall relative power spectrum density (PSD) of 16 EEG channels in the (A) delta, (B) theta, (C) alpha, (D) beta1, (E) beta2, and (F) gamma.

TABLE 1 Results of ANOVA for relative PSD of six frequency bands 
between female and the male.

Sub-band F-value p-value

Delta −3.58 0.00***

Theta −2.25 0.03*

Alpha 0.11 0.91

Beta1 −2.29 0.02*

Beta2 −1.71 0.09

Gamma −1.22 0.28

*p < 0.05 and ***p < 0.001.
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Discussion

The present study analyzed the dynamic processing of positive 
and negative body expressions in the brain using time-frequency 
analysis and further investigated gender differences in the 
processing of body expressions. Results revealed that individuals 
recognized positive body expressions more accurately than 
negative ones, which contradicts the “negative bias” theory 
(McRae and Gross, 2020) supported by previous research. This 
discrepancy may be due to the fact that studies related to “negative 
bias” often use expressions from negative conditions (e.g., fear) 

compared to neutral conditions as stimuli (Van den Stock et al., 
2014; Hagenaars et al., 2014). Previous research has shown that 
negative emotions are often more difficult to identify than positive 
ones, and even in studies that have identified positive emotions, 
focusing only on behavioral data may lead to a ceiling effect that 
obscures group differences (Shriver et al., 2021; Walenda et al., 
2021). This is consistent with the findings of this study. 
Additionally, females recognized body expressions more 
accurately than males, regardless of stimulus type, indicating that 
females have an advantage in processing physical emotional 
information. This supports the “attachment promotion” theory, 

FIGURE 2

Normalized power spectral density (PSD) values across frequency bands for male and female participants.

FIGURE 3

Time-frequency domain (TFD) of CZ channels induced power. Grand average TFD for the male and female conditions.
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FIGURE 4

Gender differences in source localization analysis.

FIGURE 5

Network models for different gender groups of men and women of the network model and the ERP indicator level network.
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which suggests that females are better at processing all categories 
of emotional information, enabling them, as nurturers, to respond 
more quickly and accurately to infants’ emotions, thus facilitating 
the establishment of secure attachments (Addabbo and Turati, 
2020; Lambrecht et al., 2014).

The time-frequency analysis results are consistent with the 
time-domain results. When women process positive body 
expression, they activate higher power theta wave and lower alpha 
band than men. Theta band (4–7 Hz) waves were first observed in 
an individual’s sleep cycle, and were found to be related to the 
arousal level of the cerebral cortex, which is considered to 
be related to attention and memory search (Sorinas et al., 2020). 
The increase in Theta activity indicates that females have higher 
levels of cortical arousal in response to emotional information. 
There is an inverse relationship between Alpha band activity and 
cortical activation (Poláčková Šolcová and Lačev, 2017). In 
contrast, synchronized Alpha oscillations are usually associated 
with reduced cognitive activity (de Gelder et al., 2010). On the 
other hand, Alpha wave desynchronization is considered to be an 
indicator of cognitive demand, information processing, memory 
performance and attention (Irvin et al., 2022; Zhang et al., 2015). 
Thus, the time-frequency results similarly confirm the emotional 
processing advantage of women, who experience higher cortical 
activation than men when processing emotional information.

Based on the network analysis results, distinct neural mechanisms 
for recognizing bodily emotions in males and females are evident. 
Males consistently show the strongest connections between the frontal 
and central regions, with key ERP indicators such as N2_PZ and 
LPC_CZ having the highest influence centrality. This suggests crucial 
roles for these areas in processing emotions. Females, however, exhibit 
a more interconnected and robust network, especially in the sad 
condition, where the left node shows multiple negative correlations 
with other ERP indicators, reflecting more complex neural processing.

Reaction time (RT) did not significantly correlate with different 
brain regions, suggesting that neural processing of emotions operates 
independently of behavioral response times. Males displayed stable 
network connections, whereas females demonstrated a broader and 
more flexible network, indicating different neural strategies between 
genders. These findings emphasize the importance of gender-specific 
approaches in studying emotional processing and developing 
targeted interventions.

Conclusion

There are some differences between males and females in the 
recognition of bodily emotions. Network analysis offers a more 
detailed perspective on their inherent interrelationships. However, 
these differences are not absolute and should not be  overstated. 
Instead, we  should emphasize individual variances and cultural 
backgrounds to gain a more comprehensive understanding of the 
nature of bodily emotion recognition abilities.
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