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Editorial on the Research Topic

Deep learning methods and applications in brain imaging for the

diagnosis of neurological and psychiatric disorders

Introduction

Neuroimaging-based biomarkers have been used extensively for various neurological

and psychiatric disorders, although accurate brain image-based diagnosis at the individual

level remains elusive (Masdeu, 2011; Sui et al., 2020). In recent years, deep learning

techniques have achieved remarkable success in fields such as computer vision and natural

language processing, given their ability to learn complex patterns from large amounts of

data (Zhang et al., 2020; Quaak et al., 2021). Applying deep learning to neuroimaging-

assisted diagnosis, while promising, face challenges such as insufficiently labeled data,

difficulty in interpretation, data heterogeneity, and multi-modal integration (Yan et al.,

2022). This Research Topic highlights the development and application of cutting-edge

deep learning research using neuroimaging for brain disorders, marking a collective effort

to address these challenges.

The topics of the studies include differential diagnoses for brain tumors (Chen

et al.; Zhang et al.) and dementia (Ma et al.) subtypes, early detection (Lang et al.;

Huang et al.; Chattopadhyay et al.; Nie et al.; Liu et al.), and intervention (Yu and

Fang) for neurological and neuropsychiatric disorders, as well as intracranial fluid

segmentation (Puzio et al.). Various neuroimaging modalities were utilized, including

structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional

MRI (fMRI), Electroencephalogram (EEG), and computerized tomography (CT). A

diverse range of advanced deep neural network architectures were developed and

evaluated, including convolutional and graph neural networks (CNN, GNN), multi-modal

neuroimaging feature fusion, vision transformers, and composited architectures.
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Di�erential diagnosis, prognosis, and
treatment response evaluation

Distinguishing different tumor types is fundamental for

precision cancer treatment (Shoeibi et al., 2023; Wen et al., 2023).

Chen et al. performed effective feature extraction of T1-weighted

MRI by fusing multiple CNN models through pairwise feature

summation, achieving an accurate classification performance of

over 0.97. Zhang et al. employed a hybrid approach using

EfficientNet-based feature extraction followed by a support vector

machine (SVM), demonstrating comparable performance and

identifying tumor regions with a Grad-CAM-based saliency map.

Identifying dementia subtypes is also crucial for personalized

medicine for neurodegeneration (Ma et al., 2020; Chouliaras and

O’Brien, 2023; Haller et al., 2023; Wen et al., 2023). Ma et al.

introduced a multi-level, multi-type feature embedding and fusion

approach to differentiate three heterogeneity clinical phenotypes

of FTD: behavioral-variant (bvFTD), semantic-variant primary

progressive aphasia (svPPA), and nonfluent-variant-PPA (nfvPPA),

achieving a balanced accuracy of 0.84. The integrated-gradient-

based explainable AI approach demonstrated more localized

differential subtype patterns than groupwise statistical mapping.

Excessive accumulation of β-amyloid in the brain, a hallmark

of Alzheimer’s disease (AD) can be detected using PET (Jack et al.,

2010; Tosun et al., 2021). Chattopadhyay et al. evaluated various

machine-learning approaches to achieve this, including: (1) feature-

engineered approaches, including logistic regression, XGBoost,

and shallow artificial neural networks (ANN), (2) deep learning

models with 2D/3D convolutional neural networks (CNN), (3)

hybrid ANN-CNN models, (4) transfer learning on pretrained

CNNs, and (5) Vision Transformers (MINiT). Validating a large-

scale MRI/PET-paired dataset from 1,847 elderly participants, the

hybrid ANN-CNN and 3D vision transformer achieved the best

performance, reaching a balanced accuracy and an F1 score of

around 0.8.

For neuropsychiatric disorder, Yu and Fang examined the

effectiveness of exercise in Attention Deficit Hyperactivity Disorder

(ADHD) patients by predicting diagnosis and intervention

response through a composited approach. Random Forest was

first used to select features from multi-source data. A Time

Convolutional Network (TCN) was then applied to capture the

behavioral and physiological signals related to motor activities

over time. An Adaptive Control of Thought-Rational (ACT-R)

model was used to simulate ADHD patients’ cognitive processes,

behavioral responses, and symptoms. Evaluation of multiple

datasets demonstrated generalizable performance.

Brain network and EEG analysis

GNN has shown promising capability to analyze whole-

brain connectivity to gain insight of neuropsychiatric disorders

(Bessadok et al., 2023). Brain networks can be derived either

from functional connectivity or structural connectivity derived

from fMRI and DTI accordingly. Lang et al. introduced a novel

GNN approach incorporating task-specific prior (TSP) knowledge

to improve the characterization of the functional connectome

patterns, demonstrating state-of-the-art performance in classifying

different neuropsychiatric disorders, including ADHD, autism, and

schizophrenia, as well as distinct task-specific connectivity patterns

for various neuropsychiatric disorders. Huang et al. introduced

a novel multi-layer brain network graph embedding to integrate

multi-modal data. Complementary and unique information from

structural and functional connectivity was captured through

traversing nodes in each layer, with group differences computed at

both the nodal and network levels, improving schizophrenia and

bipolar disorder classification.

Nie et al. introduced a composited deep learning model

on the electroencephalogram (EEG) data to capture the brain’s

electrophysiological signals for the early diagnosis of epilepsy.

Fast Fourier Transform (FFT) extracted EEG signals were fed

into a nested CNN-LSTM model, demonstrating state-of-the-art

performance (accuracy/sensitivity/specificity = 0.96/0.93/0.96),

exceeding state-of-the-art methods. Liu et al. introduced an

attention-based multi-semantic dynamic graph convolutional

network (AMD-GCN) to detect fatigue from EEG functional

connectivity data. AMD-GCN integrates multiple modules,

including channel-attention to assign weights to different

input features, a multi-semantic dynamic graph convolution to

capture node dependency, and a spatial-attention mechanism to

remove redundant spatial node information, achieving the best

classification performance on the SEED-VIG public dataset (0.90

accuracy) on fatigue detection.

Intracranial fluid segmentation in
emergency settings

Image segmentation is a crucial step in clinical assessment

of brain disease (Siddique et al., 2021). Puzio et al. conducted

intracranial compartment (ICC) and cerebrospinal fluid (CSF)

segmentation on emergency trauma head CT scans for triaging

high-risk patients with traumatic brain injury for further

neurosurgical treatment, achieving a dice similarity score of

0.765/0.567/0.574/556 for ICC, right/left supratentorial and

infratentorial CSF regions. Comparison between automated and

manual segmentation on CSF compartments demonstrated high

inter-class correlation. The ICC to CSF ratio demonstrated clinical

relevance in identifying patients who require surgical intervention.

Conclusions and discussions

This Research Topic presented a collection of the latest

advancements in deep learning techniques on neuroimaging,

demonstrating the effectiveness in diagnosing brain disorders

such as neurodegeneration, neuropsychiatric symptoms, brain

tumors, and traumatic brain injury. Despite these successes,

challenges remain to be addressed to facilitate further clinical

translation in biomedical and health applications. First,

comprehensive evaluations on standard and diverse datasets

will be critical for benchmarking model performance, ensuring

generalizability and translatability. Second, beyond integrating

multi-modal neuroimaging data, future studies would incorporate

multidimensional data such as non-imaging biomarkers and
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electronic health records (EHR). Finally, more advanced

explainable AI approaches, such as counterfactual analysis to

infer causal relationships and uncertainty measurements, are

needed to ensure trustworthiness, human-in-the-loop, and

successful adoption of AI models.
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