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lenticulostriate atheromatous 
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Background and aim: This study aimed to develop a predictive model for early 
neurological deterioration (END) in branch atheromatous disease (BAD) affecting 
the lenticulostriate artery (LSA) territory using machine learning. Additionally, it 
aimed to explore the underlying mechanisms of END occurrence in this context.

Methods: We conducted a retrospective analysis of consecutive ischemic stroke 
patients with BAD in the LSA territory admitted to Dongyang People’s Hospital 
from January 1, 2018, to September 30, 2023. Significant predictors were 
identified using LASSO regression, and nine machine learning algorithms were 
employed to construct models. The logistic regression model demonstrated 
superior performance and was selected for further analysis.

Results: A total of 380 patients were included, with 268 in the training set and 
112  in the validation set. Logistic regression identified stroke history, systolic 
pressure, conglomerated beads sign, middle cerebral artery (MCA) shape, and 
parent artery stenosis as significant predictors of END. The developed nomogram 
exhibited good discriminative ability and calibration. Additionally, the decision 
curve analysis indicated the practical clinical utility of the nomogram.

Conclusion: The novel nomogram incorporating systolic pressure, stroke 
history, conglomerated beads sign, parent artery stenosis, and MCA shape 
provides a practical tool for assessing the risk of early neurological deterioration 
in BAD affecting the LSA territory. This model enhances clinical decision-making 
and personalized treatment strategies.
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Introduction

Branch atheromatous disease (BAD) is a common cause of progressive ischemic stroke 
(Deguchi and Takahashi, 2023; Petrone et al., 2016). Among the penetrating arteries, the 
lenticulostriate artery (LSA) has larger ramification zones and a more intricate course 
(Marinkovic et al., 1985). Consequently, lesions in the LSA are more likely to induce early 
neurological deterioration (END), characterized by motor deficits (Liu H. et al., 2023).
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Currently, antithrombotic agents such as argatroban and tirofiban 
have been proven effective in treating progressive stroke, including 
cases associated with BAD (Zhang X. et al., 2024; Du et al., 2022; 
Zhang et al., 2022). However, in clinical practice, concerns persist 
about the routine use of these novel antithrombotic agents in the 
context of pre-progression ischemic stroke due to the potential risk of 
hemorrhage. Therefore, identifying and closely monitoring high-risk 
individuals for END is beneficial for timely and precise 
medication administration.

Currently, numerous studies are investigating the risk factors 
for END in BAD. However, some studies focus solely on single 
subcortical infarction (Nam et al., 2021b; Nam et al., 2021a; Jang 
et  al., 2020), disregarding the distinct pathogenic mechanisms 
between lacunar infarction caused by lipohyalinotic degeneration 
and subcortical infarction associated with BAD (Kwan et al., 2011; 
Sun et  al., 2017), potentially introducing selection bias. 
Additionally, some studies indiscriminately investigate all 
penetrating arteries (Wu et al., 2020; Oji et al., 2018), overlooking 
the influence of parent artery morphology on penetrating artery 
disease (Ha et  al., 2022; Jeong et  al., 2015; Liu et  al., 2024). 
Furthermore, there is currently a lack of predictive models to 
systematically forecast END caused by BAD in the LSA territory. 
The objective of this article is to establish a model for predicting 
END in BAD-related ischemic stroke in the LSA territory through 
machine learning. Furthermore, the study aims to explore the 
underlying mechanisms of END occurrence in the LSA territory.

Materials and methods

Patients

In this retrospective observational study, we  exclusively 
examined consecutive ischemic stroke patients with BAD in the 
LSA territory at Dongyang People’s Hospital between January 1, 
2018, and September 30, 2023. Ethical approval was obtained from 
the Ethics Committee of Dongyang People’s Hospital, and the 
study strictly adhered to the principles outlined in the Declaration 
of Helsinki. Personal information was concealed throughout data 
extraction and analysis to ensure patient privacy protection. 
Patients were included based on the following criteria: (1) 
admission within 48 h of symptom onset; (2) meeting the 
diagnostic criteria for stroke related to BAD in the LSA territory, 
defined as follows: diffusion-weighted imaging (DWI) indicating 
that the infarct extended over three or more slices within the 
territory supplied by the lenticulostriate artery (Deguchi et al., 
2013), encompassing the basal ganglia, corona radiata, and 
internal capsule; (3) complete cranial and cervical computed 
tomography angiography (CTA). The imaging evaluation was 
completed 48 h after admission. Exclusion criteria consisted of: 
(1) significant (> 50%) stenosis of the cerebral middle artery 
(MCA), internal carotid artery, or common carotid artery 
ipsilateral to the infarct; (2) potential sources of cardioembolism, 
such as atrial fibrillation, cardiomyopathy, and valvular heart 
disease; (3) other potential causes of ischemic stroke, such as 
dissection, patent foramen ovale, antiphospholipid syndrome, and 
Moyamoya disease; (4) missing data.

Data collection

We collected a comprehensive set of baseline characteristics, 
including demographic information, vascular risk factors, 
pre-admission and post-admission medication use, blood pressure at 
admission, and laboratory test results on admission or the following 
day. Hypertension was defined as the previous use of antihypertensive 
medication, systolic blood pressure > 140 mm Hg, or diastolic blood 
pressure > 90 mm Hg at discharge (Whitworth, 2003). Diabetes 
mellitus was defined as the previous use of glucose-lowering 
medication or hemoglobin A1c ≥6.5% (Rayburn, 1997). 
Hyperlipidemia was defined as the previous use of lipid-lowering 
medication, fasting low-density lipoprotein cholesterol >160 mg/dL, 
or fasting total cholesterol >240 mg/dL (Expert Panel on Detection, 
Evaluation, and Treatment of High Blood Cholesterol in Adults, 
2001). Ischemic heart disease (IHD) was considered present if there 
was a clear medical history or if the condition was definitively 
diagnosed at discharge. A prior history of stroke was defined as a 
history of transient ischemic attack or ischemic stroke (Wang et al., 
2011). Cigarette smoking was defined as a history of smoking at least 
one cigarette per day for 6 months or more (Tong et al., 2016). Alcohol 
consumption was defined as consuming 15 g or more alcoholic drinks 
per day in the previous year (Lemarchand et al., 2015). The medication 
history of antiplatelet and statin use referred to regular drug usage 
before admission, irrespective of drug type and dosage. Recombinant 
tissue plasminogen activator (RTPA) was administered following the 
standard protocol: a dose of 0.9 mg/kg, not exceeding 90 mg total, 
infused over 60 min, with an initial bolus of 10% of the dose delivered 
within the first minute (Powers et al., 2018). All patients received 
antiplatelet therapy upon admission, including monotherapy with 
either aspirin or clopidogrel, or dual antiplatelet therapy with aspirin 
combined with clopidogrel, regardless of dosage and loading status. 
All patients were administered statins orally upon admission, 
irrespective of dosage and statin type.

Neuroimaging protocol and analysis

The scanner parameters for DWI were as follows: repetition time, 
7,500 ms; echo time, 84 ms; matrix size, 128 × 128; two b values, 0 and 
1,000 s/mm2; slice thickness, 5 mm; and inter-slice gap, 2 mm. The 
scanner parameters for CTA included 100 kVp, 200 mAs, and 
0.625 mm axial slice thickness. After intravenous injection of 100 mL 
of non-ionic contrast material, serial axial thin sections were obtained 
from the aortic arch to the vertex. Patients were categorized into PSSI 
(proximal single subcortical infarction) and DSSI (distal single 
subcortical infarction) groups according to the involvement of the 
lowest portion of the basal ganglia (Zhang et al., 2014) (Figure 1). PSSI 
was considered as an infarction extending to the basal surface of the 
MCA. Lesions on the axial DWI plane were classified into two groups 
based on shape: those presenting without and those presenting with a 
conglomerated beads sign (Ryu et al., 2012) (Figure 2). The maximum 
length and width of the largest infarction area on an axial view were 
measured. The number of axial image slices showing cerebral 
infarction was counted. The infarct volume of the selected slice with 
the largest lesion observed on DWI was measured using the ABC/2 
method: 0.5 × diameter of the length × diameter of the width × 
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(0.5 × number of DWI slices with acute infarction) (Zhang et  al., 
2014). Parent artery stenosis was defined as 0 to 50% narrowing in the 
M1 segment of the MCA (Jeong et al., 2015). Asymptomatic stenosis 
was defined as a stenosis of ≥50% of the intracranial large artery that 
was not associated with the infarct (Yang et al., 2023a). The number of 
asymptomatic intracranial stenoses in each participant was counted. 
From the three-dimensional reconstructed image of CTA, the shape 
of the MCA was measured between the anterior cerebral artery 
(ACA)-MCA bifurcation and the M2 bifurcation in the anterior–
posterior direction. MCA shape was classified into four groups: (1) 
straight; (2) inverted U-shaped; (3) U-shaped; and (4) S-shaped MCA 

(Ha et  al., 2022; Kim et  al., 2015) (Figure  3). Neuroimaging was 
independently assessed by two experienced neurologists, with disputes 
resolved through group discussions.

Definition of END

All patients were admitted within 48 h after the onset of 
symptoms, and MRI examinations were completed within 48 h after 
admission. The NIHSS score was checked daily until hospital 
discharge. END was immediately reported after its development to the 
staff on duty or to neurology residents. END was defined as an 
increase of ≥2 points in the total NIHSS score compared to the NIHSS 
score at admission during the first week of admission (Liu Y. et al., 
2023; Wu et al., 2020). The END should not be attributed to other 
conditions such as symptomatic hemorrhagic transformation, 
infection, electrolyte disturbance, medication side effects, or other 
significant medical comorbidities (Jeong et al., 2015). Considering the 
heterogeneity of NIHSS score assessment in medical records, our 
third-party assessment team, blinded to the study group assignment 
and treatment, conducted a central assessment of END based on 
medical records. If the assessment results were inconsistent with the 
previous assessment, the third assessor intervened in the assessment.

Statistical analysis

Continuous variables were assessed for normality using the 
Kolmogorov–Smirnov test and presented as either medians with 

FIGURE 1

Lesions location on the diffusion-weighted MRI. (A) Proximal single subcortical infarction. (B) Distal single subcortical infarction.

FIGURE 2

Lesions pattern on the diffusion-weighted MRI. (A) Single infarcts are 
observed in the left corona radiata. These infarcts were designated as 
oval shape without conglomerated beads sign. (B) Grouped infarcts 
in the left basal ganglia, defined as conglomerated beads shape, are 
observed.
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FIGURE 3

Shape of MCA from three-dimensional reconstructed image of CTA. Straight (A), inverted U-shaped (B), U-shaped (C) and S-shaped MCAs (D). MCA, 
middle cerebral artery; CTA, computed tomography angiography.

interquartile ranges (IQRs) or means with standard deviations (SD), 
depending on their distribution. Categorical variables were expressed 
as numbers and percentages. Comparisons between two groups of 
continuous variables were made using the independent t-test for 
normally distributed data and the Mann–Whitney U-test for 
non-normally distributed data. For categorical variables, differences 
between the groups were analyzed using Fisher’s exact test or the 
Chi-square (χ2) test, as appropriate.

LASSO regression analysis was employed to identify the most 
significant features. Nine machine learning algorithms were applied: 
Logistic Regression (LR) used the glm function from the stats package 
to model binary outcomes, followed by examining coefficients and 
p-values using the summary function. Support Vector Machine 
(SVM) parameters were optimized using the tune.svm function from 
the e1071 package through cross-validation. Gradient Boosting 
Machine (GBM) from the gbm package iteratively built decision tree 
ensembles to enhance prediction accuracy. Artificial Neural Networks 
(ANN) constructed customizable networks using the nnet package to 
capture complex data relationships. Tree Bag (TG) employed random 
forest to create ensembles with bootstrapped samples and feature 
randomness, preventing overfitting. Partial Least Squares (PLS) 
through pls extracted components maximizing predictor-outcome 
covariance. Neural Networks configured via neuralnet adapted for 
regression and classification tasks. Bayesian Classifiers using 
naiveBayes assumed predictor independence for categorical data 
analysis. Random Forests powered by randomForest built robust 

decision tree ensembles suited for high-dimensional datasets, resistant 
to overfitting.

The performance of models in both the training and validation 
sets was evaluated using the area under the curve (AUC). The model 
achieving the highest AUC in the validation set was identified as the 
optimal model. Identified risk factors were used to construct a 
nomogram, with calibration assessed via the Hosmer-Lemeshow 
goodness-of-fit test and calibration plots with 500 bootstrap resamples. 
Decision Curve Analysis (DCA) was conducted in both sets to 
evaluate the clinical utility of the nomogram. All statistical tests were 
two-tailed with a significance level of p < 0.05. Analyses were 
performed using R version 4.0.4 and SPSS version 26.

Results

Baseline patient characteristics

A total of 380 patients were included in this study. Among them, 
268 individuals were assigned to the training set, and the remaining 
112 individuals formed the validation set in a 7:3 ratio (Figure 4). 
Table 1 displays the baseline characteristics of the patients in both sets. 
The percentages of patients with END were 23.1% in the training set 
and 16.1% in the validation set. All variables were found to be balanced 
between the two groups, with p-values exceeding 0.05, indicating no 
significant differences.
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Machine learning model evaluation

By applying LASSO regression filtration in the training set, 
we identified systolic pressure, stroke history, conglomerated beads 
sign, parent artery stenosis, and MCA shape as significant predictors 
(Figure 5). We employed nine machine learning algorithms (LR, SVM, 
GBM, ANN, Treebag, PLS, NNET, Bayes, RF) to construct models 
using these five predictors. The performance of the models was 
assessed using ROC curves for both the training and validation sets 
(Figure 6). In the training set, the treebag model achieved the highest 
AUC of 0.998 (95% CI, 0.996–1.000). However, in the validation set, 
the logistic regression model exhibited the highest AUC of 0.812 (95% 
CI, 0.712–0.912) compared to the other models (p < 0.05, DeLong 
test). Consequently, the logistic regression model was selected for 
further analysis due to its superior performance in the validation set.

Predictive model development

The predictors, including stroke history, systolic pressure, 
conglomerated beads sign, MCA shape, and parent artery stenosis, were 
entered into the multivariable logistic regression analysis using the 
backward stepwise method. All variables remained in the final model: 
stroke history (OR, 2.472; 95% CI, 0.933–6.548; p = 0.069), systolic 
pressure (OR, 1.01; 95% CI, 0.996–1.025; p = 0.154), conglomerated 
beads sign (OR, 2.617; 95% CI, 1.387–4.940; p = 0.003), MCA shape 
(straight MCA OR, 1.368; 95% CI, 0.419–4.47; p = 0.604; U-shape MCA 

OR, 2.63; 95% CI, 0.856–8.078; p = 0.091; S-shape MCA OR, 2.902; 95% 
CI, 0.968–8.704; p = 0.057; compared to inverted U-shaped), and parent 
artery stenosis (OR, 2.025; 95% CI, 1.01–4.058; p = 0.047) (Table 2).

Development and evaluation of nomogram

Based on the results from logistic regression analysis, we constructed 
a nomogram incorporating significant predictors (Figure  7). The 
discriminative ability of the nomogram was assessed using AUC, 
demonstrating moderate predictive power in both the training set 
(AUC, 0.800; 95% CI, 0.739–0.861) and the validation set (AUC, 0.812; 
95% CI, 0.712–0.912) (Figure 6). Additionally, the goodness-of-fit of the 
nomogram was evaluated using the Hosmer-Lemeshow test, revealing 
good agreement between predicted and observed probabilities in both 
the training set (p = 0.640) and the validation set (p = 0.736). Calibration 
plots for both sets showed excellent alignment between predicted END 
probabilities and actual observations (Figure 8). To assess clinical utility, 
decision curve analysis (DCA) was conducted, indicating threshold 
probabilities ranging from 11 to 67% in the training set and 9 to 92% in 
the validation set (Figure 9).

Discussion

In this study, we  comprehensively incorporated various 
parameters to construct a model, including cerebrovascular disease 

FIGURE 4

Flow diagram of study design. AIS, acute ischemic stroke; MRI, magnetic resonance imaging; BAD, branch atheromatous disease; AUC, area under the 
curve.
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TABLE 1 Baseline characteristics of BAD-related AIS in lenticulostriate artery territory: Training set vs. Validation set.

Variables All patients (n = 380) Training set (n = 268) Validation set (n = 112) p-value

Demographic data

Age (years), median (IQR) 66.00 (55.00, 74.00) 65.00 (55.00, 74.00) 66.50 (55.75, 74.25) 0.974

Sex, male, n (%) 211 (55.5) 145 (54.1) 66 (58.9) 0.388

Weight (kg), mean (SD) 61.79 (12.03) 61.59 (11.60) 62.26 (13.04) 0.622

Height (cm), median (IQR) 162.00 (157.00, 169.0) 162.00 (157.00, 169.00) 163.00 (158.00, 168.25) 0.526

BMI, mean (SD) 23.37 (3.93) 23.37 (3.90) 23.36 (4.02) 0.973

Vascular risk factors, n (%)

Hypertension 292 (76.8) 210 (78.4) 82 (73.2) 0.278

Diabetes mellitus 70 (18.4) 44 (16.4) 26 (23.2) 0.119

Hyperlipidemia 76 (20.0) 55 (20.5) 21 (18.8) 0.694

Ischemic heart disease 51 (13.4) 39 (14.6) 12 (10.7) 0.317

Previous stroke 33 (8.7) 21 (7.8) 12 (10.7) 0364

Smoke- current or previous 128 (33.7) 88 (32.8) 40 (35.7) 0.588

Drinking 93 (24.5) 63 (23.5) 30 (26.8) 0.498

Prior medication, n (%)

Antiplatelet 18 (4.7) 16 (6.0) 2 (1.8) 0.080

Statin 17 (4.5) 14 (5.2) 3 (2.7) 0.274

Post-admission medication, n (%)

IVT 52 (13.7) 41 (15.3) 11 (9.8) 0.157

Antiplatelet 0.361

Aspirin alone 120 (31.6) 88 (32.8) 32 (28.6)

Clopidogrel alone 88 (23.2) 65 (24.3) 23 (20.5)

DAPT 172 (45.3) 115 (42.9) 57 (50.9)

Baseline data

NIHSS (scores), median (IQR) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 3.00 (2.00, 4.25) 0.882

SBP (mmHg), mean (SD) 161.66 (22.16) 162.02 (21.89) 160.79 (22.88) 0.624

DBP (mmHg), median (IQR) 89.00 (79.00, 100.00) 89.00(80.00, 101.00) 87.50 (79.00, 99.00) 0.175

END, n (%) 80 (21.1) 62 (23.1) 18 (16.1) 0.124

Laboratory data, median (IQR)

WBC (*109/L), median (IQR) 6.92 (5.69, 8.27) 7.05 (5.78, 8.50) 6.59 (5.38, 8.04) 0.074

Neutrophil (*109/L), median 

(IQR)

4.50 (3.46, 5.61) 4.54 (3.58, 5.62) 4.20 (3.28, 5.61) 0.234

Lymphocyte (*109/L), median 

(IQR)

1.71 (1.27, 2.21) 1.71 (1.29, 2.23) 1.70 (1.24, 2.09) 0.369

NLR, median (IQR) 2.60 (1.80, 3.70) 2.50 (1.87, 3.70) 2.85 (1.80, 3.80) 0.607

RBC (*1012/L), mean (SD) 4.65 (0.55) 4.68 (0.54) 4.57 (0.56) 0.064

Hemoglobin (g/L), mean (SD) 142.88 (17.75) 143.93 (17.52) 140.37 (18.13) 0.074

Platelet (*109/L), median (IQR) 210.50 (174.75, 248.00) 207.50 (176.00, 244.75) 212.00 (170.50, 251.00) 0.806

MPV (fL), median (IQR) 9.50 (8.90, 10.30) 9.50 (8.90, 10.30) 9.55 (8.88, 10.10) 0.324

Serum uric acid (μmol/L), median 

(IQR)

286.00 (239.00, 347.00) 288.00 (239.00, 348.25) 284.50 (241.75, 339.25)
0.619

Serum creatinine (μmol/L), 

median (IQR)
61.00 (52.00, 72.25) 60.00 (52.00, 73.00) 63.50 (52.00, 72.00) 0.281

Sua/Scr, median (IQR) 4.70 (3.90, 5.70) 4.70 (4.00, 5.80) 4.40 (3.77, 5.40) 0.060

(Continued)
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risk factors, medications, laboratory tests, and imaging characteristics 
of cerebral vessels and infarct lesions. We utilized machine learning 
algorithms to construct predictive models. However, some algorithms 
demonstrated low AUC values in both the training and validation sets, 
indicating that they may not be well-suited to the dataset. Others, such 
as the tree bagging algorithm, performed well on the training set but 
showed lower AUC in the validation set, likely due to overfitting 
caused by an insufficient training sample size. In contrast, logistic 
regression showed strong and consistent performance across both the 
training and validation sets. We attribute this to two key factors. First, 
logistic regression is a well-established and reliable method in medical 
statistics, known for its robustness across diverse data types. Second, 
our training set adhered to the 10 EPV (events per variable) rule 
(Peduzzi et  al., 1996), ensuring at least 10 positive outcomes per 
predictor variable, a critical factor for the stability and reliability of 
logistic regression. Finally, we apply logistical regression to develop 
and validate a novel nomogram for predicting END in BAD of the 
LSA territory. The final model comprises factors such as stroke history, 
systolic pressure, conglomerated beads sign, MCA shape, and parent 
artery stenosis. These risk factors are routinely collected in clinical 
practice, thereby enhancing the model’s practicality and applicability 

in clinical settings. Decision curve analysis (DCA) in the training set 
demonstrated that when an individual’s threshold probability ranges 
from 11 to 67%, this model offers greater net benefit compared to 
treat-all or treat-none strategies. In clinical practice, patients within 
this range require closer monitoring to ensure early detection of 
END. Further studies exploring whether early administration of 
argatroban and tirofiban in high-risk patients can reduce the incidence 
of END would be valuable.

We observed a positive correlation between systolic blood 
pressure at admission and the occurrence of END, consistent with 
prior study (Park et al., 2020). This association may stem from the 
interplay between blood pressure levels and the inflammatory 
response triggered by cerebral infarction (Di Napoli and Papa, 2006). 
Ischemic stroke initiates a robust inflammatory cascade in the brain, 
leading to neuroinflammation (Anrather and Iadecola, 2016). 
Hypertension has been proven to be  associated with 
neuroinflammatory responses and atherosclerosis mediated by 
neurotransmitters (Di Napoli and Papa, 2005). We  speculate the 
systolic blood pressure measured at the onset of acute cerebral 
infarction could indirectly indicate the severity of neuroinflammation, 
potentially causing cerebral edema and enlargement of the infarcted 

TABLE 1 (Continued)

Variables All patients (n = 380) Training set (n = 268) Validation set (n = 112) p-value

Blood sugar (mmol/L), median 

(IQR)

5.14 (4.70, 5.87) 5.14 (4.70, 5.81) 5.20 (4.71, 6.32) 0.557

HbA1c (%), median (IQR) 5.70 (5.40, 6.10) 5.70 (5.40, 6.10) 5.80 (5.38, 6.28) 0.275

TG (mmol/L), median (IQR) 1.31 (0.92, 1.81) 1.32 (0.92, 1.83) 1.30 (0.91, 1.79) 0.998

LDL (mmol/L), mean (SD) 2.85 (0.86) 2.85 (0.90) 2.85 (0.77) 0.963

HDL (mmol/L), median (IQR) 1.09 (0.93, 1.30) 1.08 (0.93, 1.29) 1.12 (0.93, 1.31) 0.929

TC (mmol/L), median (IQR) 4.50 (3.96, 5.15) 4.50 (3.94, 5.15) 4.53 (3.97, 5.13) 0.798

Neuroimaging data

Onset to initial MRI (h), median 

(IQR) 45.00 (33.00, 61.00) 45.50 (33.00, 58.25) 49.00 (34.75, 70.00) 0.148

PSSI, n (%) 219 (57.6) 154 (57.5) 65 (58.0%) 0.918

CBS, n (%) 103 (27.1) 73 (27.2) 30 (26.8) 0.928

Layers (slice), median (IQR) 4.00 (3.00, 4.00) 4.00 (3.00, 4.00) 4.00 (3.00, 4.00) 0.889

Length (mm), median (IQR) 17.00 (14.00, 23.33) 17.00 (14.00, 23.02) 17.65 (13.00, 24.00) 0.949

Width (mm), median (IQR) 9.15 (7.92, 13.00) 9.00 (8.00, 13.00) 10.00 (7.55, 13.93) 0.403

Volume (cm3), median (IQR) 2.80 (1.80, 5.00) 2.80 (1.78, 4.73) 2.80 (1.80, 5.62) 0.697

PAS, n (%) 81 (21.3) 54 (20.1) 27 (24.1) 0.390

Asymptomatic stenosis, mean 

(SD)

0.23 (0.59) 0.24 (0.61) 0.21 (0.56) 0.756

MCA shape, n (%) 0.712

Straight 107 (28.2) 77 (28.7) 30 (26.8)

U-shape 105 (27.6) 71 (26.5) 34 (30.4)

Inverted U-shape 54 (14.2) 41 (15.3) 13 (11.6)

S-shape 114 (30.0) 79 (29.5) 35 (31.2)

BAD, branch atheromatous disease; AIS, acute ischemic stroke; IVT, intravenous thrombolysis; DAPT, dual antiplatelet therapy; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; END, early neurological deterioration; WBC, white blood cell; NLR, neutrophil-to-lymphocyte; ratio; RBC, red blood cell; MPV, mean platelet 
volume; Sua/Scr, serum uric acid-to-serum creatinine ratio; HbA1c, glycosylated hemoglobin; TG, triglycerides; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein 
cholesterol; TC, total cholesterol; MRI, magnetic resonance imaging; PSSI, proximal single subcortical infarction; CBS, conglomerated beads shape; PAS, parental arterial disease; MCA, 
middle cerebral artery.
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area, thereby exacerbating neurological deficits (Vila et al., 2000). In 
our study, we included parameters such as neutrophils, lymphocytes, 
and the neutrophil-lymphocyte ratio, but no correlation with END 

was found through univariate logistic regression across all samples. 
Further investigation is warranted to explore the relationship between 
other neuroinflammatory markers such as CRP, interleukins and END.

FIGURE 5

Predictor selection using the LASSO regression analysis with five-fold cross-validation. (A) The binomial deviance curve with error bar is plotted against 
log (λ), where λ is the tuning parameter. The dotted vertical lines are drawn at the optimal values by minimum criteria and the one standard error of the 
minimum criteria (1se criteria). (B) A coefficient profile plot was created against the log (lambda) sequence. In this study, predictor’s selection was 
according to the minimum criteria, where 5 nonzero coefficients were selected. LASSO, least absolute shrinkage and selection operator.

FIGURE 6

ROC curve analysis of machine learning algorithms for prediction of END in BAD-related ischemic stroke in LSA territory. END, early neurological 
deterioration; BAD, branch atheromatous disease; LSA, lenticulostriate artery. (A) the training set, (B) the validation set.
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Previous studies have shown that in stroke patients undergoing 
thrombolysis or those with severe intracranial arterial stenosis or 
occlusion, stroke history increases the risk of stroke progression (Li 
N. et al., 2024; Li et al., 2020). In this study, we also observed an 
association between prior stroke and END in BAD-related stroke 
in LSA territory, which may explain why individuals with a history 
of stroke are at higher risk of poor long-term outcomes following 
recurrent stroke (Patti et al., 2019; Hsu et al., 2020). Patients with 
previous strokes often exhibit compromised collateral circulation 
(Ding et al., 2022; Leker et al., 2019), potentially leading to ischemic 
penumbra progression to core infarcts due to insufficient collateral 

perfusion (Kawano et al., 2016; Rusanen et al., 2015), exacerbating 
neurological deficits. However, our study also included the variable 
of moderate to severe asymptomatic intracranial stenosis, but 
found no association with END by univariate logistic regression 
across all samples. We  speculate that mild asymptomatic 
intracranial stenosis could similarly affect collateral circulation 
in stroke.

Our study demonstrated that in ischemic stroke related to BAD, 
the morphology rather than the size of the infarct lesion correlates 
with END. Univariate regression analysis of the full sample showed 
that CBS remained significantly associated with END (p  < 0.01), 

TABLE 2 Logistic regression analysis for predicting END in BAD-related AIS in LSA territory.

Variable OR 95%CI P-value

Conglomerated beads shape 2.617 (1.387, 4.940) 0.003

Parent artery stenosis 2.025 (1.010, 4.058) 0.047

Systolic pressure 1.010 (0.996, 1.025) 0.154

Stroke history 2.472 (0.933, 6.548) 0.069

Inverted-U shaped MCA Reference

Straight MCA 1.368 (0.419, 4.470) 0.604

U-shaped MCA 2.630 (0.856, 8.078) 0.091

S-shaped MCA 2.902 (0.968, 8.704) 0.057

END, early neurological deterioration; BAD, branch atheromatous disease; AIS, acute ischemic stroke; LSA, lenticulostriate artery; MCA, middle cerebral artery.

FIGURE 7

Nomogram for predicting END in BAD-related ischemic stroke in LSA territory. The nomogram consists of five predictors, each of which is given a 
preliminary score (0–100). The total score is obtained by summing all the preliminary score of each of the three predictors. SBP, systolic blood 
pressure; CBS, conglomerated beads shape; MCA, middle cerebral artery; PAS, parental arterial stenosis; LSA, lenticulostriate artery.
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whereas all parameters related to infarct size showed no association 
with END. Previously, the conglomerated beads sign has been 
associated with stroke progression in patients with penetrating artery 
disease (Ryu et al., 2012; Yang et al., 2023b). Conglomerated bead-
like lesions often indicate pathology at the trunk of perforating 

arteries or occlusion of perforating artery branches by parent artery 
plaques, resulting in downstream multifocal blockages and the 
appearance of multiple scattered adjacent lesions (Yang et al., 2023b; 
Yu and Tan, 2015). We speculate the mechanism of END is related to 
subsequent lesion coalescence leading to further enlargement of the 

FIGURE 8

Calibration plot for predicting END in BAD-related ischemic stroke in LSA territory in the training set (A) and the validation set (B). END, early 
neurological deterioration; BAD, branch atheromatous disease; LSA, lenticulostriate artery.

FIGURE 9

Decision curve analysis (DCA) of the nomogram predicting END in BAD-related ischemic stroke in LSA territory in the training set (A) and the validation 
set (B). The x-axis demonstrates the threshold probability. The y-axis indicates the net benefit. The black line displays all patients are negative and have 
no treatment, the net benefit is zero. The gray line means all patients will develop END. The blue line indicates the net benefit of the nomogram. END, 
early neurological deterioration; BAD, branch atheromatous disease; LSA, lenticulostriate artery.
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stroke area. This phenomenon bears resemblance to the island sign 
or satellite sign observed during early hematoma expansion in 
patients with cerebral hemorrhage (Lv et al., 2021; Li et al., 2017). For 
stroke patients exhibiting the conglomerated beads sign, follow-up 
head MRI can help confirm this hypothesis. We did not find any 
correlation between the size of brain infarcts on admission DWI and 
early END. We  believe that the initial infarct area size correlates 
primarily with the baseline NIHSS score, whereas the expansion of 
the infarct area is linked to END (Terasawa et  al., 2008; Yamada 
et al., 2004).

BAD can cause cerebral infarction through two main mechanisms: 
occlusion at the origin of the penetrating artery due to an 
atherosclerotic plaque at the junction of the parent artery, or the 
presence of a microatheroma in the proximal segment of the 
penetrating artery (Pan et al., 2023; Petrone et al., 2016). The presence 
of atherosclerotic plaques in the parent vessel has been linked to 
progressive stroke (Wang et al., 2019). In this study, we observed that 
the morphology of the MCA was associated with the incidence of 
END. Specifically, a tortuous MCA is more prone to END. Previous 
researches have established a positive correlation between the 
tortuosity of the basilar and internal carotid arteries and plaque 
formation (Deng et  al., 2021; Ren et  al., 2023). Consequently, 
we hypothesize that S-shaped MCAs, being the most tortuous among 
the four MCA shapes, similarly increase plaque formation, potentially 
obstructing the origin of the penetrating artery and thereby elevating 
the risk of progressive stroke. Furthermore, we found that U-shaped 
MCAs were more likely to be  associated with END compared to 
inverted U-shaped MCAs. We posit that U-shaped MCAs tend to 
develop plaques more frequently on their superior aspects, likely due 
to slower blood flow along the inner curve that facilitates lipid 
deposition (Kim et al., 2015). Anatomically, the LSA branches from 
the superior aspect of the MCA (Yan et al., 2023; Jiang et al., 2020), 
increasing the likelihood of plaques obstructing perforating arteries 
in U-shaped MCAs.

Consistent with previous studies, we found that ischemic stroke 
patients with MCA stenosis were at a higher risk of experiencing 
END (Zhang J. et  al., 2024; Xie et  al., 2021). Large artery 
atherosclerotic stroke with over 50% stenosis carries a higher risk of 
developing END compared to other ischemic stroke subtypes due to 
persistent perfusion deficits in the infarct area (Park et al., 2020). In 
our study, parent arteries with mild stenosis are also more likely to 
be associated with END compared to those without stenosis. This is 
because mild stenosis often indicates underlying atherosclerotic 
plaque (Nah et al., 2010; Men et al., 2024), thereby increasing the 
risk of obstruction at the openings of the perforating arteries.

Based on our findings, we speculate that plaque in the parent 
artery plays a significant role in the development of early 
neurological deterioration in lenticulostriate atheromatous disease-
related infarction. In Chinese ischemic stroke sub classification 
(CISS) (Chen et al., 2012), occlusion of penetrating artery origins 
due to parent artery plaques is categorized as large artery 
atherosclerotic stroke, whereas pathology affecting the penetrating 
artery itself is classified as penetrating artery disease-related stroke. 
The potential role of parent artery plaques in progressive cerebral 
infarction indirectly supports the rationale behind the 
CISS classification.

To the best of our knowledge, this is the first clinical predictive 
model for END in lenticulostriate atheromatous disease-related 

infarction. Unlike previous studies that have focused on single 
subcortical infarctions (Yang et  al., 2023a; Luo et  al., 2024), 
we specifically target BAD-related subcortical infarctions, which are 
associated with higher disability and progression rates (Li S. et al., 
2024), thus enhancing the clinical applicability of our model. Given 
the close relationship between BAD and parent artery (Ha et al., 
2022; Huang et  al., 2024), we  incorporated the morphological 
features of the MCA and the degree of MCA stenosis into our 
model. This allows the model parameters to be interpreted in the 
context of the underlying pathophysiological mechanisms of 
END. However, this study has some limitations. Firstly, this 
retrospective study was conducted at a single center, potentially 
introducing biases and limiting the statistical robustness of the 
findings. Secondly, LASSO regression was applied for feature 
selection, which may overlook non-linear relationships and 
multicollinearity among variables. Future research could focus on 
developing models using different variable selection methods and 
comparing their reliability to evaluate the robustness of each 
approach. Thirdly, our study did not incorporate inflammatory 
markers such as CRP, which limits investigation into the influence 
of inflammatory response on the progression of cerebral infarction. 
Lastly, our study did not include high-resolution MRI to analyze 
plaque locations and the morphology of lenticulostriate arteries. 
However, high-resolution MRI is predominantly used in research 
settings and has not seen widespread adoption in clinical practice. 
Therefore, our model retains strong practical applicability in 
clinical settings.

Conclusion

In conclusion, the newly developed nomogram incorporating 
systolic pressure, stroke history, conglomerated beads sign, parent 
artery stenosis, and MCA shape provides a predictive tool 
for assessing the risk of early neurological deterioration in 
branch atheromatous disease affecting the lenticulostriate 
artery territory.
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