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Mild cognitive impairment in Parkinson’s disease (PD-MCI) as an independent

risk factor for dementia in Parkinson’s disease has prognostic value in predicting

dementia in PD patients. It was found that the calculation of cognitive function

decision-making could better evaluate the cognitive function of PD-MCI.

Therefore, this study explored deficits in decision-making cognitive function in

PD-MCI population, and mined novel digital biomarkers for recognizing early

cognitive decline in PD-MCI through an independently designed maze decision-

making digital assessment paradigm. This study included 30 healthy controls

37 PD with normal cognition (PD-NC) and 40 PD-MCI patients. Through

difference comparison and stepwise regression analysis, two digital decision-

making biomarkers, total decision time and performance average acceleration,

were screened, and their joint area under curve for the ability to discriminate

between PD-MCI and PD-NC was 0.909, and for the ability to discriminate

between PD-MCI and NC was 0.942. In addition, it was found that maze digital

decision-making biomarkers had greater early warning efficacy in men than in

women. Unlike traditional methods, this study used digital dynamic assessment

to reveal possible decision-making cognitive deficits in the PD-MCI populations,

which provides new ideas for effective screening for PD-MCI.
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1 Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s disease. It causes a
progressive clinical course characterized by premotor, nonmotor,
and motor symptoms by affecting dopaminergic neurons in the
substantia nigra of the midbrain (Weintraub et al., 2022). Non-
motor symptoms can occur in the premotor phase of PD. The
non-motor symptoms of PD have received increasing attention
from scholars, and among these non-motor symptoms, cognitive
dysfunction, especially mild cognitive impairment (MCI), has
gradually become a hot topic of current research. PD-MCI is
a transitional stage between PD with normal cognitive function
and PD dementia. One study found that 19–62% of patients
with PD-MCI progressed to PD dementia (PDD) by the time
they were followed up 2–5 years after diagnosis (Wood et al.,
2016). Another 5-year cohort follow-up study from the Norwegian
Movement Disorder Center demonstrated that the conversion rate
to PD dementia in patients with PD-MCI picked up to be 39–
50% (Pedersen et al., 2017). Additionally, one study demonstrated
that the odds of patients with PD-MCI progressing to dementia
each year were 6–15% (Monastero et al., 2018). PD-MCI, as
an early stage of PD dementia, is an independent risk factor
for progression to PD dementia (Baiano et al., 2020). PD-MCI,
whether it persists or reverts to normal cognition, has prognostic
value in predicting dementia in PD (Pedersen et al., 2017).
Therefore, exploratory studies focusing on PD-MCI populations
are clinically important in studying the development of PD
disease.

Currently, methods for early identification of PD-MCI based on
cognitive function assessment include clinical neuropsychological
testing and biomarker detection. Given the diversity of cognitive
impairment patterns in patients with PD-MCI, which primarily
involves impaired cognitive function in executive, visuospatial,
attention, and memory. Therefore, neuropsychological testing
requires multiple single-domain or global cognitive function
screening scales for assessment, but this process is subjective, time-
consuming, and of low sensitivity. In recent years, neuroimaging
techniques such as magnetic resonance imaging and positron
emission computed tomography have evolved into powerful
complementary tools for diagnosing PD-MCI (Devignes et al.,
2022); However, neuroimaging techniques are not only costly
and poorly reproducible, but also need to be performed in
specialized medical institutions. Therefore, diagnostic methods
based on neuroimaging analysis are still unable to meet the
demand for broad early identification of PD-MCI. Given the
current limited methods for early identification of PD-MCI and
the global shortage of neurologists (Burton, 2018), there is an
urgent need to find new ideas for early identification of PD-
MCI.

Decision-making serves as a window into cognition (Shadlen
and Kiani, 2013). Recently, several studies have also confirmed
that decision-making tasks can well characterize cognitive deficits
and revealed that decision-making deficits are the result of
abnormalities in connectivity across multiple brain regions
(Stern, 2022; Thiebaut de Schotten and Forkel, 2022; Jian
et al., 2024; Kuan et al., 2024). Decision-making is a high-
level cognitive process of evaluating and choosing between

alternatives that involves deliberate deliberation, planning, and
strategizing, which is well characterized as computationally and
interpretatively tractable. Research has found that decision-
making processes often involve the participation of multiple
cognitive functions (Schiebener et al., 2014; Bruine de Bruin
et al., 2007). A review concluded that decision-making is a
complex mental function that is influenced by multiple cognitive
and behavioral processes such as visuospatial, executive, and
memory (Gleichgerrcht et al., 2010). For example, in a maze
path decision task, where subjects are required to make a
path prediction through visual search or selective attention,
executive abilities, visuospatial memory abilities are involved
(Thomas et al., 2014; Parrini et al., 2024; Lee and Kaang,
2010). In ambiguous and risky decision-making tasks, stronger
executive inhibitory control and working memory are often
involved in processing information and inhibiting irrelevant
responses (Colautti et al., 2022). Thus, decision-making serves as
a window into cognition and may better characterize cognitive
decline.

Currently, several studies provide early detection of MCI based
on decision-making tasks. One study based on a virtual spatial
navigation task reflected the presence of deficits in decision-making
ability for path planning in early risk carriers of AD (Bierbrauer
et al., 2020); a meta-analysis showed that spatial navigation
decision-making ability was well assessed in the MCI population
using a maze test (Plácido et al., 2022); and results of a recent meta-
analysis showed that patients with MCI have mild or moderate
impairments in decision-making abilities related to financial
management, medical adherence, specific cognitive performance,
hazardous conditions, and especially uncertain living situations
(Alfeo et al., 2024). Cognitive impairment in PD patients is mainly
related to executive function, visuospatial function, attention, and
memory. In recent years, studies have also found that declines in
decision-making abilities are also often observed in people with
PD. One study found that PD populations have difficulty utilizing
previously learned information to guide their decisions during
perceptual decision-making (Perugini et al., 2016), and another
study revealed that PD populations exhibit impaired integration
of memory and sensory information during perceptual decision-
making (Perugini et al., 2018). In addition, in the early cognitive
impairment stage of PD, studies have found that decision-making
ability is already impaired in PD-MCI patients and is further
impaired as these patients develop dementia (Martin et al., 2008).
Another study characterizing early cognitive changes in Parkinson’s
disease highlights the fact that Parkinson’s disease produces very
specific and early cognitive changes in complex cognitive control,
decision-making, and learning processes (Claassen and Wylie,
2012). For example, one study recruited a large number of early,
nondemented PD patients for the Iowa Gambling Task Decision
Making Study, which found that decision-making deficits were
present in early, nondemented PD patients compared to normal
control (NC) subjects (Kobayakawa et al., 2008). Thus, studying
decision-making tasks in PD-MCI populations may provide a
better exploration of cognitive deficits in PD-MCI populations,
and may also hopefully lead to the early identification of PD-MCI
populations.

Digital biomarkers have shown good potential in the field
of PD-MCI population screening research. It characterizes and
quantifies the early characteristics of the PD-MCI population

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1495975
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1495975 January 2, 2025 Time: 15:43 # 3

Huang et al. 10.3389/fnins.2024.1495975

through a variety of smart devices for rapid screening identification
of the PD-MCI population (Brien et al., 2023; Lolekha et al.,
2021; Liu et al., 2021). The maze test is a versatile cognitive
functioning assessment tool that comprehensively evaluates an
individual’s cognitive functioning, such as executive, visuospatial,
and memory abilities, involved in maze-path decision-making
tasks. Pre-existing maze tasks have been extensively tested in the
field of PD screening, and some studies have also applied digital
maze tasks to patients with cognitive impairment in PD. For
example, one study recorded relevant cognitive digital biomarkers
in PD patients through the Kiel motor maze to explore human
spatial behavioral characteristics in the maze (Zeng et al., 2003).
Another study was based on a self-developed maze-based puzzle
game to assess cognitive and motor functions in neurodegenerative
disorders, such as PD (Nef et al., 2020). In addition, a digital
virtual water maze test was designed in a study to identify PD-
MCI through extracted digital biomarkers related to heading error,
path length, and latency to locate the target (Schneider et al.,
2017). Thus, digital assessment based on maze tasks may be a new
way to quickly and intelligently identify of cognitive deficits in
decision-making in PD-MCI.

In summary, this study proposed to explore the decision-
making cognitive deficits in the PD-MCI population and
independently designed a novel method of decision-making
dynamic digital assessment, which can capture the decision-making
information of the natural and dynamic characteristics of the visual
environment of PD-MCI patients and characterize the decision-
making cognitive deficits in the PD-MCI population at a fine-
grained level by using the maze decision-making digital assessment
paradigm. Through preliminary clinical validation, the AUC of
the screening efficacy of the method was 0.909 for PD-MCI
and PD-NC, and 0.942 for PD-MCI and NC, further supporting
that cognitive function deficits in decision-making are expected
to be quantified as a novel digital biomarker of early cognitive
decline in PD-MCI.

2 Materials and methods

2.1 Paradigms of human-computer
interaction and the design of digital
biomarkers

2.1.1 Experimental paradigm design hardware and
software conditions

The hardware required for this experiment consists of an Intel
computer (NUC11PAHi5), a touchable monitor (length, width
and height of 392 × 250 × 10 mm, screen size of 17.3 inches,
resolution of 3840 × 2160 pixels). The software system involved
in this experiment is a human-computer interaction system. The
front-end interface of the system is built through Electron and
Vue3, the maze decision-making digital evaluation paradigm is
built through Unity3D and integrated into the HCI system, the
sampling frequency of the fingertip interaction data is about 50 Hz,
the back-end system is built through python, and the fingertip
interaction database is built through Mysql database. The paradigm
mechanism diagram is shown in Figure 1A.

2.1.2 Experimental paradigm design and principle
interpretation

In the maze path decision-making task, subjects need to make
path judgments through visual search or selective attention, which
involves a variety of cognitive abilities such as planning, execution,
and visuo-spatial (Thomas et al., 2014; Parrini et al., 2024; Lee
and Kaang, 2010). Although the maze task has been extensively
tested on PD patients, digitization of the maze task and the
quantification of the maze task process at a fine-grained level
throughout the entire process and its use in exploring cognitive
dysfunction, there is a gap in relevant research. We collected
human-computer interaction data that could reflect the planning
process and performance process of the subjects through a human-
computer interaction system, and thus assessed the cognitive
functioning of the subjects in decision-making during the paradigm
assessment.

The design of the Parkinson’s disease maze decision-making
digital evaluation paradigm is as follows: In this study, we refer
to the maze generation website1 created by John Lauro and other
researchers at the University of Michigan as the maze layout
generator, and we also refer to the relevant studies that have
used the maze test to assess the cognitive status of middle-aged
and elderly people with neurodegenerative diseases, and select the
corresponding parameters to be input into the maze generator (Nef
et al., 2020). Based on previous studies and daily life observations
(Li et al., 2022), the majority of the subjects were right-handed,
so the maze was chosen to run from the lower right entrance
to the upper left exit so that the subject’s vision would not be
affected during the operation. As a common tool for testing
cognitive ability, spatial memory, and learning ability, mazes have
appropriate design criteria (McClendon, 2001). In this study, based
on the design principles of mazes (Bellot et al., 2021), the maze
scenario of the Parkinson’s disease maze decision-making digital
evaluation paradigm is shown in Figure 1B.

The goal and rules of the paradigm are that subjects need to
use their right index finger to draw the shortest maze path from the
starting point of the green square in the lower-right corner to the
end point of the red square in the upper-left corner of the white
grid (the area that can be touched by the finger when drawing
maze paths) as soon as possible in the shortest possible time on
the screen of the display screen, the shortest maze path can be
seen in Figure 1C, and try not to touch the gray wall (the area
that can be avoided when drawing maze paths with the finger).
If you touch the gray wall, a red rectangle will appear to indicate
the exact location of the gray wall. If the subject draws the path
to solve the puzzle within 210 s, i.e., from the starting point of
the green square in the lower right corner to the end point of the
red square in the upper left corner, the experiment is regarded as a
success. If the subject fails to draw the puzzle path within 210 s,
the paradigm will end automatically and the experiment will be
considered a failure. At the same time, in order to facilitate subjects
to familiarize themselves with the paradigm objectives, we also set
up a training level, which was designed after the Parkinson’s disease
maze decision-making digital evaluation paradigm, including the
color of the overall scene, the starting point and the end point of
the markers, etc., but the difficulty of the training level will be lower

1 http://hereandabove.com/maze/mazeorig.form.html
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FIGURE 1

Paradigm introduction.

than that of the formal evaluation level, which is reflected in the
shortest paths in the training level are easier to find than that of the
formal evaluation level and there are no more than one The shortest
paths in the training level were easier to find than in the formal
evaluation level, and there were no multiple forks in the road to
interfere with subjects, as shown in Figure 1D.

2.1.3 Definition and quantitative analysis of digital
decision-making biomarkers

We extracted digital decision-making biomarkers via python
(version 3.10.14) based on the above objectivized assessment
data. In order to quantify subjects’ decision-making ability
at a fine-grained level, we categorized the digital decision-
making biomarkers into two dimensions: decision-making
global digital biomarkers and decision-making process digital
biomarkers, where the digital biomarkers for process decision-
making were categorized into decision-making planning process
digital biomarkers and decision-making performance process
digital biomarkers.

Digital decision-making biomarkers are holistic evaluations of
subjects in the maze decision-making digital evaluation paradigm,
including subjects’ Total Decision Time and Decision Process
Time, both of which characterize subjects’ overall performance in
completing the paradigm.

Decision-making process digital biomarkers are process
evaluations of specific decision-making behaviors of subjects
during the maze decision-making digital assessment paradigm,
which can be subdivided into decision-making planning process
digital biomarkers and decision-making performance process
digital biomarkers.

The decision-making planning process digital biomarkers are
used to record the subjects’ planning and thinking about the maze

solution paths before or during the execution process through
the fingertip interaction technology, including the subjects’ Initial
planning time and Performance pause time, which is used to
characterize the subjects’ observation of the overall scene of the
maze and the planning and thinking of choosing the shortest
solution paths during the paradigm evaluation process. The
planning and thinking of the shortest path to solve the maze
was characterized.

The decision-making performance process digital biomarkers
are recorded by the fingertip interaction technology to record the
subjects’ execution after planning, including Performance path
length, Performance error path length, Number of performance
errors, Performance average speed, Performance speed variability,
Initial performance acceleration, and Performance average
acceleration. The Performance path length is used to characterize
the length of the puzzle path drawn by the subject, the Performance
error path length is used to characterize the length of the path
drawn by the subject for the wrong puzzle, the Number of
performance errors is used to characterize the situation in which
the subject touches the wall, the Performance average speed is
used to characterize the situation in which the drawing speed
is used during the process of the subject’s drawing the puzzle
path, the execution speed variability is used to characterize the
situation in which the drawing speed is used in the process of
the subject’s drawing the puzzle path. The Initial performance
acceleration and Performance average acceleration are used to
characterize the variation of the drawing speed during the drawing
of the puzzle path.

To facilitate the subsequent digital biomarker mining analysis,
we provide a detailed conceptual definition of the various digital
biomarkers in the paradigm:

(1) The group of digital biomarkers for global decision-making
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TABLE 1 Decision-making global digital biomarkers.

Serial
number

Digital
biomarker

Abbreviation Unit

a Total
decision-making
time

TDT second, s

b Decision-making
process time

DPT second, s

An overview of the digital biomarker for global decision-
making is shown in Table 1. A graphical representation of the digital
biomarker for global decision-making is shown in Figure 2.

a. Total decision time (TDT): Calculate the time interval from
the time the subject entered the paradigm to the time he/she
finished drawing the puzzle path with his/her finger, i.e., the total
time taken to complete the paradigm (seconds, s).

b. Decision process time (DPT): Calculate the time interval
from the start of the green square in the lower right corner to
the end of the red square in the upper left corner to complete the
maze path drawing with the finger of the subject in the paradigm
evaluation process (seconds, s).

(2) The group of digital biomarkers for process decision-
making

¬ Decision-making planning process digital biomarkers
An overview of the decision-making planning process digital

biomarkers is shown in Table 2. A graphical representation of the

decision-making planning process digital biomarkers is shown in
Figure 2.

c. Initial planning time (ILT): calculates the time interval
between when the subject enters the paradigm and when he/she
first touches the starting point of the green square in the lower right
corner with his/her finger (seconds, s).

d. Performance pause time (PPT): calculates the cumulative
time that the subject’s finger stays still while drawing the puzzle path
during the paradigm evaluation (seconds, s).

 Decision-making performance process digital biomarkers
An overview of the decision-making performance process

digital biomarkers is shown in Table 3. A graphical representation
of the decision-making performance process digital biomarkers is
shown in Figure 2.

e. Performance path length (PPL): calculates the total length
of the path drawn by the subject to solve the maze during the
paradigm evaluation (pixels, px).

f. Performance error path length (PEPL): calculates the
length of the path drawn by the subject’s finger on the
white grid of the non-shortest path during the paradigm
evaluation (pixels, px).

g. Number of performance errors (NPE): calculates the number
of times that the subject’s finger touched the gray wall while drawing
the puzzle path during the paradigm evaluation (times).

h. Performance average speed (PAS): calculates the average
drawing speed of the subject’s finger during the paradigm
evaluation (pixels/second, px/s).

FIGURE 2

Illustration of digital biomarker for global decision-making, decision-making planning process digital biomarkers and decision-making performance
process digital biomarkers.
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i. Performance speed variability (PSV): calculates the speed
variation of the finger drawing the puzzle path, i.e., the speed
coefficient of variation, of the subject during the paradigm
evaluation (pixels/second, px/s).

j. Initial performance acceleration (IPA): calculates the
acceleration value at the first three drawn path sampling points of
the subject during the paradigm evaluation (pixels/second, px/s).

k. Performance average acceleration (PAA): calculates the
average acceleration value of the finger-drawn puzzle paths
of the subjects during the paradigm evaluation (pixels/second
squared, px/s2).

The relevant extraction algorithms for the above digital
decision-making biomarkers are as follows:

We know the subjects’ Total decision-making time (TDT)
(TDT < 210 s) and Initial planning time (ILT), and the Decision-
making process time (DPT) is calculated as:

DPT = TDT−ILT (1)

The execution trajectory coordinate point sampling frequency
(SF) is 44 Hz (i.e., 0.022 s is collected once), the number of
execution trajectory coordinate samples during the paradigm
evaluation process is I (I = DPT × SF), the execution trajectory
coordinate point corresponding to the ith sampling point is (Xi, Yi)
(0 < i≤ I, i∈N), and the time interval between any two neighboring
execution trajectory coordinate points is ti, which is calculated as
follows:

ti =
1
SF
(
0 < i ≤ I−1,i ∈ N ∗

)
(2)

We compute the Performance pause time (PPT) by
determining whether the neighboring execution trajectory
coordinate points are the same, which is computed as:

judge (i) =

{
1 (Xi+1 = XiandYi+1 = Yi)

0 (Xi+1 6= Xior Yi+1 6= Yi)
(3)

PPT =
∑i = I−1

i = 1 judge (i)
SF

(
0 < i ≤ I−1,i ∈ N

∗
)

(4)

In Equation (3), judge (i) is used to determine whether the
neighboring decision-making performance trajectory coordinate
points are the same.

The distance between two neighboring sampling execution
trajectory coordinate points is Di,

Di =

√
(Xi+1−Xi)

2
+(Yi+1−Yi)

2
(

0 < i ≤ I−1,i ∈ N
∗
)

(5)

In Equation (5), Xi+1 is the horizontal coordinate of the (i+1)th

execution trajectory coordinate point, and Yi+1 is the vertical
coordinate of the (i+1)th execution trajectory coordinate point.

The Performance path length (PPL) is the cumulative sum of
the distances Di of the neighboring execution trajectory coordinate
points for each time of the maze, which is calculated by the formula:

PPL =
i = I−1∑
i = 1

Di

(
0 < i ≤ I−1,i ∈ N

∗
)

(6)

TABLE 2 Decision-making planning process digital biomarkers.

Serial
number

Digital
biomarker

Abbreviation Unit

c Initial planning
time

ILT second, s

d Performance
pause time

PPT second, s

TABLE 3 Decision-making performance process digital biomarkers.

Serial
number

Digital
biomarker

Abbreviation Unit

e Performance path
length

PPL pixel, px

f Performance error
path length

PEPL pixel, px

g Number of
performance
errors

NPE times

h Performance
average speed

PAS px/s

i Performance speed
variability

PSV /

j Initial
performance
acceleration

IPA px/s2

k Performance
average
acceleration

PAA px/s2

Since the shortest path of the maze (the optimal decision-
making performance path out of the maze) has uniqueness, the
shortest path region of the maze is set as ϕ. The execution trajectory
coordinate points collected in the region outside the region ϕ are
the error trajectory coordinate points (EXi, EYi), and the distance
between two neighboring error trajectory samples is set as EDi,
which is computed by the formula:

EDi =
√

(EXi+1−EXi)
2
+(EY i+1−EYi)

2(
1 ≤ i ≤ I−1,i ∈ N

∗
)

(7)

The Performance error path length (PEPL) is computed as

PEPL =
i = I−1∑
i = 1

EDi

(
1 ≤ i ≤ I−1,i ∈ N

∗
)

(8)

The Performance average speed (PAS) is calculated as:

PAS =
PPL
TDT

(9)

We calculate the velocity Vi between every two neighboring
execution trajectory coordinate points, and thus the Performance
speed variability (PSV), the Initial performance acceleration (IPA),
and the Performance average acceleration (PAA), respectively, with
the formula:
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Vi =
Di

ti

(
0 < i ≤ I−1,i ∈ N

∗
)

(10)

σV =

√∑I−1
i = 1 Vi−PAS 2

n
(11)

PSV = σV/PAS (12)

IPA =
|V1−V2|

t1+t2
(13)

PAA =
i = I−1∑
i = 1

|Vi−Vi+1|

ti+ti+1
(14)

In Equation (11), σV is the standard deviation of the
execution speed.

2.1.4 Experimental rule design
Prior to the official start of the Parkinson’s Disease maze

decision-making digital evaluation paradigm, subjects will undergo
a training level to familiarize themselves with the paradigm process
and manipulation methods. During the training level, each subject
can repeat the process as many times as he/she wants and there is no
time limit. In the Parkinson’s disease maze decision-making digital
evaluation paradigm, subjects were required to use their right index
finger to complete the maze path drawing, but each subject could
only do it once, and the maze scenes were all the same, so before
the Parkinson’s disease maze decision-making digital evaluation
paradigm formally began, subjects were allowed to perform the
training level several times, and it was repeated to confirm that
the subjects were able to complete the experiments, and if the
subject’s experiments were unsuccessful, the data related to the
subject would not be analyzed in the subsequent analyses. Subjects’
relevant data will be analyzed. Meanwhile, all subjects included in
this experiment were right-handed, and the affected sides of PD-
MCI patients were all on the right side, to avoid interference of
experimental results with hand habits.

2.2 Experimental setup

2.2.1 Recruitment of subjects
117 subjects were recruited in this study, of which 8 were not

included in the trial because they did not meet the inclusion criteria.
109 subjects were included in the trial, including 41 PD-MCI
patients, 37 PD-NC patients and 31 age-matched healthy controls
(HC), who were included in the PD-MCI group, PD-NC group
and the HC group, respectively. All subjects were recruited through
the Department of Neurology and the Department of Nuclear
Medicine of the First Medical Center of the PLA General Hospital
and diagnosed by neurologists. All experimental procedures were
in accordance with the Declaration of Helsinki and approved by
the Medical Ethics Committee of the PLA General Hospital (Ethics
Number: S2022-770-02). Subjects were given written informed
consent. The specific inclusion criteria are as follows:

Inclusion criteria for PD-MCI: (1) Primary PD was diagnosed
according to the brain bank of the PD Association in London, UK
(Hughes et al., 1992); (2) Slow cognitive decline reported by the
patient information providers or observed by the clinicians; (3)
Cognitive decline reflected in formal neuropsychological tests or
overall cognitive performance scales; (4) Cognitive decline will not
result in dependence on the abilities to live and work, although
there may be minor impairments in performing difficult tasks; (5)
Patient was able to cooperate in completing the maze decision-
making digital evaluation paradigm, right-handed; (6) Patient was
aged 45–80 years, regardless of gender; (7) Signing an informed
consent form.

Exclusion Criteria for PD-MCI: (1) PD dementia diagnosed
according to the guidelines proposed by the working group of
the MDS; (2) Cognitive dysfunction caused by delirium, cerebral
infarction, cerebral hemorrhage, subarachnoid hemorrhage, severe
depression, metabolic disorders, medication side effects, or
head trauma; (3) Other PD-related co-morbidities considered
by the clinician to have a significant impact on cognitive
testing (e.g., movement disorders or severe anxiety, depression,
daytime excessive somnolence, or psychosis); (4) PD-MCI with
cognitive impairments that prevent them from completing
paradigmatic tasks.

Inclusion criteria for PD-NC: (1) Primary PD was diagnosed
according to the brain bank of the PD Association in London,
UK (Hughes et al., 1992); (2) Cognitive decline not reported by
the patient information provider or observed by the clinician;
(3) Cognitive decline not reflected in formal neuropsychological
tests or overall cognitive scales; (4) Patient was aged 45–80 years,
regardless of gender; (5) Signing an informed consent form.

Exclusion criteria for PD-NC: (1) Those who underwent
surgical implantation of electrodes to give deep brain stimulation
therapy; (2) Concomitant diseases with other central nervous
system damage (e.g., metabolic encephalopathy, immune
encephalopathy, cranio-cerebral trauma, etc.); (3) exclude
superimposed Parkinson’s disease syndrome (e.g., multi-systemic
atrophy, progressive supranuclear palsy, corticobasal ganglionic
degeneration, etc.) and secondary Parkinson’s syndrome (if there is
ischemic cerebrovascular disease, encephalitis, poisoning, tumor,
trauma, heredity, etc.); (4) Exclude primary or organic mental
illnesses such as schizophrenia, depression, excessive daytime
somnolence, sleep attacks, etc.; (5) Those with alcohol dependence
or drug addiction.

Inclusion criteria for healthy controls: (1) No complaints and
objective evidence of neurological disease (normal neurological
clinical examination); (2) No history of REM sleep disorder; (3)
Age, gender, and literacy level consistent with PD-MCI; (4) Patient’s
ability to cooperate in the examination and paradigm task, right-
handed; (5) Signing an informed consent form.

During the formal experiment, one subject in the PD group
refused to participate due to exacerbation and one subject in the
HC group withdrew for other reasons. The final valid sample
size was 107 individuals, including 40 PD-MCI in the PD-MCI
group, 37 PD-NC in PD-NC group, and 30 age-matched healthy
controls in the HC group. To ensure the consistency of all data,
in this study, the PD-MCI and PD-NC underwent the above
paradigm evaluation without taking levodopa-based medications
in the morning of the same day. Meanwhile, the MDS Unified-
Parkinson Disease Rating Scale (MDS-UPDRS) scores, MMSE
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scores and MoCA scores were administered to 107 subjects by
neurological assessors before the paradigm evaluation.

2.2.2 Experimental procedure
All subjects conducted the experiment in a quiet room to

exclude noisy environmental factors from interfering with subjects’
task performance. We placed a comfortable and stable chair 90 cm
in front of the interactive display. The distance between the subject
and the interactive display was approximately 40 cm, ensuring that
subjects could both see the screen and easily draw the puzzle path
on the screen with their fingers. Visual distractions or manipulation
inconveniences were ruled out as interfering with subjects’ task
performance. Subjects were first given a training session, and once
they were fully familiar with the instructions and objectives, they
were given the Parkinson’s Disease maze decision-making digital
evaluation paradigm, in which subjects were required to use the
index finger of their right hand to draw the shortest maze path as
quickly as possible on a white grid (the area that can be touched by
the finger when drawing the maze path), from the start of the green
square in the lower-right corner to the end of the red square in the
upper-left corner, without touching the gray square, and without
touching the gray square. Try not to touch the gray wall (the area
that is not touchable when drawing the maze path with your finger),
the paradigm time limit is 210 s.

2.3 Statistical analysis

All statistical analyses were performed using the SPSS 26.0
software package for general data analysis. Measures conforming
to normal distribution were expressed as x ± s, and measures
conforming to skewed distribution were expressed as M(IQR).
When multiple sample group comparisons were involved, if the
sample data all conformed to normal distribution and the variance
was homogeneous, one-way ANOVA was used, and when there was
a difference, the comparison groups were compared one by one by
using the LSD method; if the sample data of the multiple groups
did not all conform to normal distribution, the Kruskal-Wallis
test was used and when there was a difference, the Bonferroni
method was used to compare the comparison groups one by one.
Qualitative information was expressed as a rate (%) and differences
between groups were compared by the chi-square test. Next, binary
logistic stepwise regression was applied to screen digital decision-
making biomarkers. Finally, we used a binary logistic regression
model to draw the receiver operating characteristic (ROC) curve
and adopted the area under the curve (AUC) to evaluate the
effectiveness of a single decision-making digital biomarker and
a combination of multiple digital decision-making biomarkers in
PD-MCI warning. P< 0.05 were considered statistically significant.

3 Results

3.1 Demographic and clinical
characteristics

A total of 107 subjects aged 45–85 years, including 30 normal
elderly, 37 PD-NC patients, and 40 PD-MCI patients, were enrolled

in this study, and they were included in the HC group, the PD-
NC group, and the PD-MCI group, respectively. We analyzed
the difference in baseline information of the three groups, and
the results of the difference analysis of the three groups of
subjects in terms of age, gender, years of education, MMSE
scale, MoCA scale, and MDS-UPDRS-III scale are shown in
Table 4.

3.2 Analysis of digital biomarkers

We compared the digital decision-making biomarkers in
the HC group, the PD-NC group, and the PD-MCI group.
We found that a total of 8 digital decision-making biomarkers
were significantly different between groups (p < 0.05). In PD-
MCI and PD-NC groups, Total decision-making time (TDT),
Decision-making process time (DPT), Performance path length
(PPL), Performance pause time (PPT), Performance error path
length (PEPL) in PD-MCI was larger than that in PD-NC
group, and Performance average speed (PAS), Performance
average acceleration (PAA) in PD-MCI was smaller than
that in PD-NC group; In PD-MCI and HC groups, Total
decision time (TDT), Decision-making process time (DPT)
was greater in the PD-MCI group than in the HC group,
and Performance average speed (PAS), Performance average
acceleration (PAA), Performance speed variability (PSV)was
less in the PD-MCI than in the HC group; In PD-NC and
HC groups, Performance pause time (PPT), Performance
error path length (PEPL) was smaller in the PD-NC group
than in the HC group. The results of the specific digital
decision-making biomarkers variability analysis were shown
in Table 5.

3.3 ROC curves for identifying PD-MCI
from all subjects

We plotted the ROC curves for HC and PD-NC groups, HC and
PD-MCI groups, PD-NC and PD-MCI groups, respectively, based
on the differential results of the digital biomarkers of decision-
making in each of these groups.

In HC and PD-NC groups, the AUC for Performance pause
time (PPT) was 0.699, the AUC for Performance error path length
(PEPL) was 0.642, and the AUC for the combination of 2 digital
biomarkers was 0.731. The ROC curve, area under the curve, and
95% confidence interval were shown in Figure 3.

In HC and PD-MCI groups, the AUC for Total decision-
making time (TDT) was 0.783, the AUC for Decision-making
process time (DPT) was 0.798, the AUC for Performance
average speed (PAS) was 0.818,the AUC for Performance speed
variability (PSV) was 0.746,the AUC for Performance average
acceleration (PAA) was 0.933. The AUC for the combination of
the 5 digital biomarkers was 0.949. However, considering the
small sample size included in this study, too many indicator
dimensions may be overfitting, so we used stepwise regression
to downscale the digital biomarkers, after downsizing, Total
decision-making time (TDT) and Performance speed variability
(PSV) were retained, and the AUC for the combination of
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TABLE 4 Distribution of demographic and clinical characteristics of the HC, PD-NC and PD-MCI groups.

HC n = 30 PD-NC
n = 37

PD-MCI
n = 40

HC VS.
PD-NC1

HC VS.
PD-MCI1

PD-NC VS.
PD-MCI

HC VS.
PD-NC VS.

PD-MCI

p-value

Age, years 66.40± 10.25 63.70± 6.99 66.50 (10.25) >0.05 >0.05 >0.05 0.268

Sex (female/ male) 20/10 16/21 18/22 >0.05 >0.05 >0.05 0.118

Years of education 9.23± 3.43 12.00 (6.00) 11.50 (5.50) >0.05 >0.05 >0.05 0.120

MMSE score 26.50 (4.00) 28.00 (1.50) 25.00 (2.00) 0.084 <0.001** <0.001** <0.001**

MoCA score 24.50 (2.25) 25.00 (1.50) 22.00 (3.00) 0.317 <0.001** <0.001** <0.001**

UPDRS-III score 4.00 (2.25) 15.00 (4.00) 18.50 (11.00) <0.001** <0.001** 0.130 <0.001**

**indicates a significant difference between the two groups, at p < 0.01.

TABLE 5 Intergroup variability of digital decision-making biomarkers of the HC, PD-NC and PD-MCI groups.

HC n = 30 PD-NC
n = 37

PD-MCI
n = 40

HC VS.
PD-NC

HC VS.
PD-MCI

PD-NC VS.
PD-MCI

HC VS.
PD-NC VS.

PD-MCI

p-value

Decision-making global digital biomarkers

TDT, s 31.16± 13.47 24.40 (9.99) 42.54 (20.51) 0.570 <0.001** <0.001** <0.001**

DPT, s 26.71 (20.59) 22.85 (20.59) 41.45 (18.79) 1.000 <0.001** <0.001** <0.001**

Decision-making planning process digital biomarkers

ILT, s 0.03 (0.02) 0.02 (0.02) 0.02 (0.02) >0.05 >0.05 >0.05 0.573

PPT, s 0.97 (3.04) 0.24 (0.72) 2.29 (2.16) 0.008** 0.053 <0.001** <0.001**

Decision-making performance process digital biomarkers

PPL, px 6788.59 (1887.11) 6638.70 (608.15) 6927.17
(1148.83)

0.106 1.000 0.008** 0.008**

PEPL, px 0.00 (1074.82) 0.00 (0.00) 0.00 (514.79) 0.026* 1.000 0.033* 0.011*

NPE, times 2.50 (6.00) 1.00 (6.00) 1.00 (5.00) >0.05 >0.05 >0.05 0.264

PAS, px/s 279.48 (176.79) 286.38 (137.11) 172.08 (76.59) 1.000 <0.001** <0.001** <0.001**

PSV 368.65 (330.63) 304.18 (158.69) 235.90 (143.23) 0.080 0.001** 0.503 0.002**

IPA, px/s2 0 (1896.86) 778.19 (4540.36) 308.43 (1877.84) >0.05 >0.05 >0.05 0.105

PAA, px/s2 8222.62 (4537.96) 7943.96 (4969.35) 4144.64
(1416.88)

1.000 <0.001** <0.001** <0.001**

*Indicates a significant difference between the two groups, at 0.01 < p < 0.05; **indicates a significant difference between the two groups, at p < 0.01.

the 2 digital biomarkers was 0.942. The ROC curve, area
under the curve, and 95% confidence interval were shown in
Figure 4.

In PD-MCI and PD-NC groups, the AUC for Performance
pause time (PPT) was 0.889, the AUC for Performance average
acceleration (PAA) was 0.870, the AUC for Total decision-
making time (TDT) was 0.865, the AUC for Decision-making
process time (DPT) was 0.851,the AUC for Performance average
speed (PAS) was 0.807,the AUC for Performance path length
(PPL) was 0.710,the AUC for Performance error path length
was 0.638. The AUC for the combination of above 7 digital
biomarkers was 0.919. However, considering the small sample
size included in this study, too many indicator dimensions might
be overfitting, so we used stepwise regression to downscale
the digital biomarkers, and after downscaling, Performance
average acceleration (PAA) and Total decision-making time
(TDT) were retained, and the AUC for the combination
of 2 digital biomarkers was 0.909. The ROC curve, area
under the curve, and 95% confidence interval were shown in
Figure 5.

3.4 ROC curves for recognizing PD-MCI
in subjects of different genders

We compared the digital decision-making biomarkers in the
HC, PD-NC, and PD-MCI groups in different genders. We found
that a total of six decision-digital biomarkers were significantly
different (p < 0.05) between the HC group, the PD-NC group,
and the PD-MCI group, and the results of the analysis of specific
baseline information were shown in Tables 6, 7, and digital
decision-making biomarkers differences were shown in Tables 8, 9.

We then plotted ROC curves for digital decision-making
biomarkers with differentiation for PD-MCI, PD-NC, and HC
groups in different genders. Between HC1 and PD-MCI1
groups in male subjects, the AUC for Total decision-making
time (TDT) was 0.855, the AUC for Decision-making process
time (DPT) was 0.818,the AUC for Performance pause time
(PPT) was 0.832,the AUC for Performance average speed
(PAS) was0.782,the AUC for Performance average acceleration
(PAA)was 0.982. Between PD-NC1 and PD-MCI1 groups in male
subjects, the AUC for Total decision-making time (TDT) was
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FIGURE 3

ROC curves, area under the curve, and 95% confidence intervals for differentiating the HC and PD-NC groups. (a) Single digital biomarkers; (b)
Multiple digital biomarkers combined.

0.909,the AUC for Decision-making process time (DPT) was
0.890,the AUC for Performance Pause Time (PPT) was 0.942,the
AUC for Performance path length (PPL) was 0.751,the AUC
for Performance average speed (PAS) was 0.831,the AUC for
Performance average acceleration (PAA) was0.933. The details were
shown in Table 10.

Between HC0 and PD-MCI0 groups in female subjects, the
AUC for Total decision-making time (TDT) was 0.736,the AUC
for Decision-making process time (DPT) was 0.797,the AUC
for Performance average speed (PAS) was 0.850,the AUC for
Performance average acceleration (PAA) was 0.889. Between PD-
NC0 and PD-MCI0 groups in female subjects, the AUC for Total
decision time (TDT) was 0.816,the AUC for Decision-making

process time (DPT) was 0.816,the AUC for Performance pause time
(PPT) was 0.819,the AUC for Performance average speed (PAS)
was 0.781,the AUC for Performance average acceleration (PAA) was
0.778. The details were shown in Table 11.

4 Discussion

In this study, we proposed a novel method to evaluate the
cognitive deficits in decision-making of PD-MCI, which is suitable
for application in community scenarios, and is characterized
by short time-consumption, high sensitivity, and low cost. The
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TABLE 6 Distribution of demographic and clinical characteristics of the HC1, PD-NC1 and PD-MCI1 groups.

HC1 n = 10 PD-NC1
n = 21

PD-MCI1
n = 22

HC1 VS.
PD-NC1

HC1 VS.
PD-MCI1

PD-NC1
VS.

PD-MCI1

HC1 VS.
PD-NC1

VS.
PD-MCI1

p-value

Age, years 66.20± 9.57 63.00± 6.28 64.91± 8.15 >0.05 >0.05 >0.05 0.522

Years of
education

8.50 (4.25) 12.00 (6.00) 11.50 (4.50) >0.05 >0.05 >0.05 0.222

MMSE score 27.50 (3.00) 28.00 (1.00) 25.00 (2.00) 1.000 0.001** <0.001** <0.001**

MoCA score 25.00 (2.00) 25.00 (2.00) 22.00 (2.25) 0.001** <0.001** 0.084 <0.001**

MDS-UPDRS-
III
score

4.00 (3.25) 15.00 (4.50) 19.00 (11.50) 1.000 0.001** <0.001** <0.001**

**indicates a significant difference between the two groups, at p < 0.01.

TABLE 7 Distribution of demographic and clinical characteristics of the HC0, PD-NC0 and PD-MCI0 groups.

HC0 n = 20 PD-NC0
n = 16

PD-MCI0
n = 18

HC0 VS.
PD-NC0

HC0 VS.
PD-MCI0

PD-NC0
VS.

PD-MCI0

HC0 VS.
PD-NC0

VS.
PD-MCI0

p-value

Age, years 66.50± 11.81 64.63± 7.94 65.39± 6.51 >0.05 >0.05 >0.05 0.839

Years of
education

9.25± 3.89 10.81± 3.89 9.67± 4.52 >0.05 >0.05 >0.05 0.517

MMSE score 26.00 (3.75) 28.00 (2.00) 25.00 (2.25) 0.087 0.045* <0.001** <0.001**

MoCA score 24.00 (2.75) 25.00 (1.00) 21.50 (4.00) 0.265 0.023* <0.001** <0.001**

MDS-UPDRS-
III
score

4.00 (3.00) 15.00 (6.00) 18.50 (12.50) <0.001** <0.001** 1.000 <0.001**

*Indicates a significant difference between the two groups, at 0.01 < p < 0.05; **indicates a significant difference between the two groups, at p < 0.01.

TABLE 8 Intergroup variability of digital decision-making biomarkers in HC1, PD-NC1 and PD-MCI1 groups.

HC1 n = 10 PD-NC1
n = 21

PD-MCI1
n = 22

HC1 VS.
PD-NC1

HC1 VS.
PD-MCI1

PD-NC1 VS.
PD-MCI1

p-value

Decision-making global digital biomarkers

TDT, s 26.40 (19.41) 24.40 (8.65) 46.92 (21.32) 1.000 0.004** <0.001**

DPT, s 27.02± (11.40) 23.07± (9.63) 42.98± (13.81) 1.000 0.003** <0.001**

Decision-making planning process digital biomarkers

ILT, s 0.03 (0.02) 0.02 (1.96) 0.02 (0.02) >0.05 >0.05 >0.05

PPT, s 0.66 (1.81) 0.17 (0.86) 2.44 (2.14) 0.604 0.016* <0.001**

Decision-making performance process digital biomarkers

PPL, px 6581.48 (1680.10) 6660.20 (593.88) 7113.45 (1204.59) 1.000 0.378 0.016*

PEPL, px 0.00 (680.50) 0.00 (0.00) 0.00 (352.63) 0.306 1.000 0.056

NPE, times 4.00 (7.25) 2.00 (7.00) 1.50 (5.00) >0.05 >0.05 >0.05

PAS, px/s 332.11 (206.49) 309.07 (179.51) 172.08 (88.56) 1.000 0.025* 0.001**

PSV 360.07 (175.77) 261.40 (210.31) 209.00 (139.08) >0.05 >0.05 >0.05

IPA, px/s2 0.00 (881.60) 1149.35 (6737.62) 175.41 (1224.55) 0.059 1.000 0.144

PAA, px/s2 8565.21 (4328.25) 8432.18 (4167.29) 3953.88 (1375.38) 1.000 <0.001** <0.001**

PAA, px/s2 8565.21 (4328.25) 8432.18 (4167.29) 3953.88 (1375.38) 1.000 <0.001** <0.001**

*Indicates a significant difference between the two groups, at 0.01 < p < 0.05; **indicates a significant difference between the two groups, at p < 0.01.
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FIGURE 4

ROC curves, area under the curve, and 95% confidence intervals for differentiating the HC and PD-MCI groups. (a) Single digital biomarkers; (b)
Multiple digital biomarkers combined.

method is based on an independently designed maze decision-
making digital evaluation paradigm, which characterizes and
quantifies the cognitive deficits of decision in PD-MCI population
at a fine-grained level. We extracted digital decision-making
biomarkers that were differentiated between the PD-MCI, PD-
NC and HC groups, respectively. Due to the limited sample size
and in order to avoid overfitting, we used stepwise regression to
downscale the above digital biomarkers of decision making with
variability between groups. The final 2 digital decision-making

biomarkers Performance average acceleration (PAA) and Total
decision-making time (TDT), were retained in the PD-MCI group
versus the PD-NC group, and in the PD-MCI group versus the NC
group, and their combined screening efficacy AUC was 0.909 and
0.942 respectively.

The diversity of cognitive impairment patterns in PD-MCI
patients requires a comprehensive assessment with multiple single-
domain screening scales, but this process is highly subjective,
time-consuming, and of low accuracy. It has been found that
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FIGURE 5

ROC curves, area under the curve, and 95% confidence intervals for differentiating the PD-NC and PD-MCI groups. (a) Single digital biomarkers; (b)
Multiple digital biomarkers combined.

decision-making, as a window to cognition (Shadlen and Kiani,
2013), is the result of a combination of multiple cognitive abilities
with computable and interpretable properties. The maze decision-
making paradigm designed in this study, in which subjects need
to make a path prediction through visual search or selective
attention, involves multiple cognitive functions such as visuo-
spatial, executive, and attention. Therefore, it is important to
characterize the cognitive decline of PD-MCI based on decision-
making tasks for identification and monitoring.

First, the results of this study confirmed that there was
no statistical difference in the MDS-UPDRS-III part scores

between the PD-MCI group and the PD-NC group; however,
the Performance average acceleration (PAA) and the Performance
average speed (PAS) of the PD-MCI group were smaller than
those of the PD-NC group, and the total decision-making
time (TDT), the Decision-making process time (DPT), and the
Performance pause time (PPT) were larger than that of the PD-
NC group; similarly, it was confirmed that the Performance average
acceleration (PAA) and the Performance average speed (PAS) of
the PD-MCI group were smaller than that of the HC group, and
that the Total decision-making time (TDT) and Decision-making
process time (DPT) of the PD-MCI group were larger than that
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TABLE 9 Intergroup variability of digital decision-making biomarkers in HC0, PD-NC0 and PD-MCI0 groups.

HC0 n = 20 PD-NC0
n = 16

PD-MCI0
n = 18

HC0 VS.
PD-NC0

HC0 VS.
PD-MCI0

PD-NC0 VS.
PD-MCI0

p-value

Decision-making global digital biomarkers

TDT, s 29.71 (24.89) 24.81 (17.00) 40.71 (21.15) 1.000 0.045* 0.004**

DPT, s 27.82 (21.87) 24.80 (17.00) 40.68 (21.16) 1.000 0.004** 0.006**

Decision-making planning process digital biomarkers

ILT, s 0.03 (0.03) 0.02 (0.01) 0.02 (0.02) >0.05 >0.05 >0.05

PPT, s 1.89 (3.91) 0.37 (0.68) 1.93 (2.22) 0.076 1.000 0.012*

Decision-making performance process digital biomarkers

PPL, px 7243.75 (2092.82) 6595.54 (647.54) 6731.69 (1075.29) >0.05 >0.05 >0.05

PEPL, px 0.00 (1169.30) 0.00 (0.00) 0.00 (898.34) >0.05 >0.05 >0.05

NPE, times 2.00 (3.75) 1.00 (5.50) 1.00 (5.50) >0.05 >0.05 >0.05

PAS, px/s 258.26 (170.03) 266.44 (152.79) 170.53 (58.14) 1.000 0.001** 0.012*

PSV 451.25 (594.12) 330.93 (132.60) 254.65 (140.56) >0.05 >0.05 >0.05

IPA, px/s2 43.93 (2590.04) 462.54 (2450.77) 1267.97 (2643.40) >0.05 >0.05 >0.05

PAA, px/s2 7977.72 (4924.50) 5840.77 (5250.32) 4222.45 (1543.66) 0.630 <0.001** 0.020*

*Indicates a significant difference between the two groups, at 0.01 < p < 0.05; **indicates a significant difference between the two groups, at p < 0.01.

TABLE 10 ROC data for HC1, PD-NC1 and PD-MCI1 groups.

HC1 VS. PD-MCI1 PD-NC1 VS. PD-MCI1

AUC (95% CI) p-value AUC (95% CI) p-value

TDT, s 0.855 (0.713–0.996) 0.002 0.909 (0.823–0.995) <0.001

DPT, s 0.818 (0.658–0.978) 0.004 0.890 (0.793–0.986) <0.001

PPT, s 0.832 (0.665–0.999) 0.003 0.942 (0.878–1.000) <0.001

PPL, px / 0.751 (0.602–0.900) 0.005

PAS, px/s 0.782 (0.596–0.967) 0.012 0.831 (0.702–0.960) <0.001

PAA, px/s2 0.982 (0.946–1.000) <0.001 0.933 (0.845–1.000) <0.001

TABLE 11 ROC data for HC0, PD-NC0 and PD-MCI0 groups.

HC0 VS. PD-MCI0 PD-NC0 VS. PD-MCI0

AUC (95% CI) p-value AUC (95% CI) p-value

TDT, s 0.736 (0.576–0.896) 0.013 0.816 (0.663–0.969) 0.002

DPT, s 0.797 (0.656–0.939) 0.002 0.816 (0.663–0.969) 0.002

PPT, s / 0.819 (0.658–0.981) 0.002

PAS, px/s 0.850 (0.727–0.973) <0.001 0.781 (0.619–0.944) 0.005

PAA, px/s2 0.889 (0.784–0.994) <0.001 0.778 (0.620–0.935) 0.006

of the HC group, and the above results were basically in line
with the conclusions of the previous studies (Galtier et al., 2019;
Schalkamp et al., 2023). However, compared to the previous studies,
in the present study, the speed, time, and other metrics were
extracted in the cognitive task state, not purely the movement data
in daily life. Executive speed, acceleration, and time are important
in responding to the cognitive function of decision-making.
They reflect the individual’s information processing efficiency and
strategy selection in the decision-making process and reveal the
temporal dynamics of the decision-making process. By considering

these metrics together, a deeper understanding of the behavioral
performance and decision-making process of PD-MCI individuals
in the face of complex decision-making tasks can be achieved.
Therefore, the digital decision-making biomarkers collected in this
study can well respond to the cognitive functions of the PD-MCI
population.

Previous studies have also shown that patients with PD-
MCI have deficits in executive functioning and decision-making
cognitive functioning compared with normal controls or PD-NC
(Martin et al., 2013; Pan et al., 2022). Decision-making, as a
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TABLE 12 Selected studies of digital maze tasks applied to PD in recent years.

Researcher Method Limitation

Schneider et al., 2017 In this study, a digitized virtual water maze test was designed to
extract metrics including heading error, path length, and latency to
locate the target.

(1) The small PD-MCI sample size of 12; (2) the spatial learning of all
included PD patients was severely impaired, and the paradigm failed
to differentiate between patients with normal PD cognition and those
with impaired PD-MCI cognition; and (3) the limited number of
dimensions for which the metrics were extracted.

Virmani et al., 2023 This maze game simulates gait by moving a frog through a maze
environment using bipedal gait-like bimanual movements,
extracting gait stride length, stride time, stride width, and stride
speed to quantify how well subjects performed on the task.

(1) 27 PD patients were included and most of them had motor
impairments; (2) the maze complexity was low and the
standardization was limited; and (3) The extracted metrics were
mainly based on the gait characteristics of PD and the metrics were
of limited dimensions.

Nef et al., 2020 The NL maze game, which requires participants to complete the
maze in the shortest possible time with the fewest number of steps,
is used to assess changes in visuomotor, visual structural, and
executive functions in neurodegenerative diseases.

(1) Primarily assessed cognitive and motor function in aging and
neurodegenerative diseases and with only four PDs; and (2) the
paradigm was designed with a single difficulty level design and
limited response to the individual’s level of cognitive ability.

Zeng et al., 2003 The Kiel Motion Maze automatically records different types of
spatial memory errors, distances and rotation angles, decision times
and reaction times for each move.

(1) The sample size of PD non-demented patients was only 16 and
did not specifically identify their cognitive functional status; (2) The
design was more complex and time-consuming, taking half an hour
to complete in some patients.

Leplow et al., 2002 A search motor task combining basic features of the radial arm
maze and morris water maze paradigms was used. Participants had
to find and memorize 5 of 20 hidden locations in a fully controlled
environment to explore spatial behavior in mildly impaired PD.

(1) The small sample size of 14 PDs included did not specifically
identify their cognitive functional status; and (2) The procedure was
relatively complex and poorly adapted for aging.

window to cognition, is the result of a combination of cognitive
abilities. In the field of brain science research, the frontal cortex is
recognized as the main brain structure associated with decision-
making abilities, especially the dorsolateral prefrontal cortex,
and the ventral lateral prefrontal cortex, which are involved in
cognitive processes such as cognitive flexibility, working memory,
acquisition, and stimulus-reward (Friedman and Robbins, 2022;
Zhang et al., 2022). In recent years it has been recognized that
decision-making is not only dependent on the frontal cortex, but
is also closely related to several other executive neural network
brain regions that are closely linked to the frontal cortex. For
example, the frontal cortex is closely connected to brain regions
such as the striatum (Brockett et al., 2022), hippocampus (Shintaki
et al., 2024), and hypothalamus (Chen et al., 2024), and these
connections are critical for the regulation of auditory memory
and goal-directed behavior. In addition, navigational ability refers
to an individual’s decision-making ability to orient, localize, and
plan a path through an environment. The neural basis for flexible
navigation has long been focused on hippocampal formation, but
recent evidence suggests that subregions of prefrontal cortex are
critical for many aspects of navigation, especially in complex or
dynamic environments (Patai and Spiers, 2021). Among these, the
dorsolateral prefrontal cortex and the ventral lateral prefrontal
cortex act as inhibitors and replanners in tortuous paths such
as mazes; the dorsolateral anterior cingulate cortex is associated
with planning and spontaneous internal route changes; and the
orbitofrontal cortex integrates environmental representations with
action values to provide a holistic decision map of possible
decisions (Shadlen and Kiani, 2013). It has been demonstrated
that prefrontal damage exists in PD-MCI patients (Hirano, 2021;
Zarifkar et al., 2021). Therefore, the PD-MCI group may have
deficits in decision-making cognitive functioning due to damage to

the prefrontal cortex, and consequently abnormal digital decision-
making biomarkers, during the maze decision-making digital
assessment paradigm.

Notably, we found that most of the digital decision-
making biomarkers, such as Performance average speed (PAS),
Performance average acceleration (PAA), and Total decision-
making time (TDT), in the population of the PD-NC group did
not differ from that of the HC group. These results are inconsistent
with previous studies that concluded that the speed or acceleration
of PD was greater than that of normal controls (Galtier et al.,
2019; Schalkamp et al., 2023). The reason for this may be that the
previous research paradigm was mostly a single motor task that did
not require complex decision-making and thinking, whereas the
assessment paradigm in our study was a complex decision-making
task with a lot of constraints on rules that were more cognitive
in nature. The paradigm in our study was a complex decision-
making task with more rule constraints and more cognitive
functions were examined. Therefore, the paradigm in this study was
designed to characterize the cognitive functions of decision-making
in PD-MCI.

In addition, considering gender as an important variable in
PD-MCI, this study explored the variability of decision digital
biomarker screening to distinguish PD-MCI, PD-NC, and HC
among different genders. Among the different genders, there were
no statistically differentiated decision digital biomarkers in PD-
NC and HC, but there were statistically differentiated decision
digital biomarkers in PD-MCI and PD-NC, and PD-MCI and
HC. Previous studies have suggested that a possible source of
variability in cognitive traits in PD is the effect of estrogen on
dopaminergic neurons and pathways in the brain (Miller and
Cronin-Golomb, 2010). The results of the present study showed
that the decision process time (DPT), the Performance average
speed (PAS), and the ability to discriminate between PD-MCI
and PD-NC were comparable across genders but that the Total
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decision-making time (TDT), the Performance average acceleration
(PAA) and the Performance pause time (PPT) were significantly
higher in males than in females, suggesting that deficits in decision-
making executive function may be more pronounced in males
relative to females with PD-MCI; analyzing the reasons for this,
it may be related to the fact that estrogen has a neuroprotective
effect on the brain’s dopaminergic pathway (Liu and Dluzen, 2007).
Also across genders, the Decision-making process time (DPT), the
Performance average speed (PAS), and the ability to discriminate
between PD-MCI and HC were comparable, but the Total decision-
making time (TDT), Performance average acceleration (PAA) were
significantly higher in men than in women. However, given the
small sample size after grouping, the above results need a larger
sample size to give validation.

Second, many previous studies have also used the maze digital
assessment paradigm for screening and identification of PD.
However, there is a gap in studies related to the digital maze
task and the quantification of the whole process of the maze task
process at a fine-grained level and its use to explore cognitive
dysfunction in patients with PD-MCI. Some of the studies on the
application of digital maze tasks to PD in recent years are shown
in Table 12. Compared with previous studies, the maze paradigm
of the present study differed in the following ways: (1) In terms
of participant recruitment: compared to the PD patients included
in the above studies, the PD patients included in this study were
those who were clear about whether or not they were accompanied
by cognitive impairment, with relatively little heterogeneity, and
differentiated between PD-NC and PD-MCI, and between PD-
MCI and HC patients, with a specificity and sensitivity of up to
0.9, which provided a high early warning efficacy; (2) In terms
of maze design: This study refers to the maze generation website
(see text footnote 1) created by John Lauro and other researchers
at the University of Michigan as the maze layout generator, and
also refers to the relevant studies on the assessment of cognitive
status of middle-aged and elderly people with neurodegenerative
disorders using the maze test (Nef et al., 2020). Based on previous
studies and daily life observations (Li et al., 2022), the majority
of subjects were right-handed, so a maze from the lower-right
entrance to the upper-left exit was selected so as not to interfere
with the subject’s vision during operation. As a common tool for
testing cognitive ability, spatial memory, and learning ability, mazes
have corresponding design criteria (McClendon, 2001). According
to the design principles of the perfect maze (Bellot et al., 2021), ¬

the correct path accounts for more than half of the total path length
of the maze;  there is a forward dead end (i.e., the same direction
as the correct direction); ® turns can be seen in 40% of the correct
paths; ¯ there are decision points (T-junctions and intersections)
in 2% of the correct paths; and ° there are average decision
points (T-type intersections and crossroads) in 2% of the correct
paths. and intersections); ± on average, each forward dead end has
40% of turns (corners) and 1% of decision points (T-intersections
and intersections). Therefore, the difficulty of the maze paradigm
designed in this study is more reasonable and standardized. (3)
In terms of digital biomarkers (indicators) extraction: this study
quantifies the decision-making behaviors of participants in the
process of paradigm evaluation at a fine-grained level, which
is more comprehensive compared to the indicator dimensions
extracted in the above studies. In this study, two dimensions of
decision-making global digital biomarkers and decision-making

process digital biomarkers were extracted, in which the decision-
making process digital biomarkers were divided into decision-
making planning process digital biomarkers and decision execution
process digital biomarkers. In summary, the innovation of this
study is based on cognitive computational neuroscience, designing
a digital maze paradigm with a high degree of standardization,
quantifying the decision-making behaviors of PD-MCI patients
throughout the entire process of the task, and extracting digital
decision-making biomarkers that can characterize cognitive deficits
in PD-MCI patients, which will provide a new way of thinking
about large-scale screening in the community.

Finally, there are some limitations to this study. (1) Only 107
subjects were included in this study, which is a small sample size,
all from one medical center, and the results of the study may not
reflect the general population of PD-MCI. In the future, we will
increase the sample size by collecting data through the cooperation
of multiple hospitals to improve the accuracy of the study results.
(2) Although digital biomarkers characterized and quantified by
the maze decision-making digital evaluation paradigm show good
screening efficacy, more research is needed to gain insights into the
physiological, pathological, or anatomical characterization of these
digital biomarkers, and in particular, to explore the functional brain
connectivity or brain network mechanisms behind these digital
biomarkers based on fMRI. (3) Due to the limitations of the study
conditions, we only conducted a cross-sectional study and included
only PD-MCI, PD-NC, and HC; in the future, we will try to include
some diseases that are likely to be confused with PD-MCI, such as
patients with MCI due to AD, and conduct a longitudinal study to
further improve the validity and reliability of this paradigm.

5 Conclusion

In summary, we explored the cognitive deficits in decision-
making in the PD-MCI population by using an independently
designed maze decision-making digital assessment paradigm, and
mined novel digital biomarkers for identifying early cognitive
decline in PD-MCI. The method was clinically validated with
a screening efficacy AUC of 0.909 for PD-MCI and PD-NC,
and 0.942 for PD-MCI and NC, as well as the advantages of
rapidity, inexpensiveness, and high level of objectivization, which
provide new ideas for the study of the mechanism of PD decision-
making deficits and the rapid digital assessment of cognitive
impairment in PD.
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