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Brain-computer interfaces (BCIs) establish a direct communication pathway between 
the brain and external devices and have been widely applied in upper limb rehabilitation 
for hemiplegic patients. However, significant individual variability in motor imagery 
electroencephalogram (MI-EEG) signals leads to poor generalization performance of 
MI-based BCI decoding methods to new patients. This paper proposes a Multi-scale 
Frequency domain Feature-based Dynamic graph Attention Network (MFF-DANet) for 
upper limb MI decoding in hemiplegic patients. MFF-DANet employs convolutional 
kernels of various scales to extract feature information across multiple frequency 
bands, followed by a channel attention-based average pooling operation to retain the 
most critical frequency domain features. Additionally, MFF-DANet integrates a graph 
attention convolutional network to capture spatial topological features across different 
electrode channels, utilizing electrode positions as prior knowledge to construct and 
update the graph adjacency matrix. We validated the performance of MFF-DANet on 
the public PhysioNet dataset, achieving optimal decoding accuracies of 61.6% for 
within-subject case and 52.7% for cross-subject case. t-Distributed Stochastic Neighbor 
Embedding (t-SNE) visualization of the features demonstrates the effectiveness of 
each designed module, and visualization of the adjacency matrix indicates that the 
extracted spatial topological features have physiological interpretability.
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1 Introduction

Brain-computer interfaces (BCIs) establish a direct communication pathway between the 
brain and external devices and have been widely applied in the field of medical rehabilitation 
in recent years (Mane et al., 2020). For hemiplegic patients, BCIs can capture motor intentions 
from their electroencephalogram (EEG) signals, allowing them to control exoskeleton robots 
to perform corresponding rehabilitation movements. This method not only enhances patient 
engagement but also promotes neural plasticity, leading to significantly better rehabilitation 
outcomes compared to conventional methods (Dobkin, 2007). The motor imagery (MI) 
paradigm, known for its ability to generate motor intentions without external stimuli, is 
frequently used with exoskeleton robots to assist hemiplegic patients in upper limb 
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rehabilitation. Consequently, motor imagery-based BCIs (MI-BCIs) 
have become a research focus in recent years (Park et al., 2012; Hwang 
et al., 2009; Ang et al., 2008). The core of MI-BCIs lies in the decoding 
of EEG signals. Designing decoding methods that are both highly 
accurate and robust has become a key area of interest within the 
BCI field.

The development of MI-EEG decoding methods has transitioned 
from traditional machine learning-based methods to deep learning 
techniques (Al-Saegh et al., 2021). In earlier studies, spatial features 
combined with traditional machine learning methods achieved 
promising results in decoding MI-EEG tasks. Chen et  al. (2014) 
utilized the Common Spatial Pattern (CSP) method to extract spatial 
features from EEG signals and employed Linear Discriminant 
Analysis (LDA) to decode upper limb motor imagery tasks, achieving 
a binary classification accuracy of 91.25% on the BCI Competition 
IV-2a dataset (BCICIV2A). Wang et al. (2019) proposed a multiple 
patterns of MI decoding method which was based on CSP method to 
control virtual automatic car. The method extended the traditional 
binary classification of MI to multiple classification, achieving an 
accuracy of 75.0%. Ang et al. (2008) applied filtering algorithms to 
decompose MI-EEG signals into multiple sub-band signals. They then 
used the CSP method along with mutual information entropy to select 
spatial features from each sub-band signal, achieving a binary 
classification accuracy of 90.3% on the BCICIV2A dataset. Based on 
Ang’s work, Wang et al. (2020a) fuse one-versus-the-rest filter-bank 
common spatial pattern (OVR-FBCSP) and brain functional 
connectivity and to improve the robustness of classification, achieving 
a triple classification accuracy of 83.81%.

Due to the ability to automatically extract task-relevant underlying 
features from data, deep learning methods have been rapidly adopted 
for MI-EEG decoding (Yang et al., 2015; Sakhavi et al., 2018; Wang 
et  al., 2020b; Zhao et  al., 2019), yielding impressive decoding 
performance. Yang et al. (2015) arranged the spatial features extracted 
from each sub-band using the CSP method into a two-dimensional 
feature matrix. This matrix was then further processed using 
Convolutional Neural Networks (CNNs) to extract relevant EEG 
features, achieving a four-class classification accuracy of 69.27% on 
the BCICIV2A dataset. Sakhavi et al. (2018) introduced a novel time-
domain representation of EEG signals using the Hilbert transform, 
which was then fed into both temporal and spatial CNNs, achieving a 
four-class classification accuracy of 78.78% on the BCICIV2A dataset. 
Wang et al. (2020b) employed the F-score to select these optimized 
features extracted by FBCSP method, and fed the features to the 
spiking neural networks (SNN) for classification, achieving a four-
class classification accuracy of 81.33% on the BCICIV2A dataset. With 
the advancement of Brain Connectomics, researchers have discovered 
that the high-level brain activities, such as MI, are generated by the 
activation and communication between highly specialized brain 
regions (Bazinet et al., 2023). These topological structural features are 
difficult to capture using CNNs based on Euclidean distances, leading 
to the increasing application of Graph Convolutional Networks 
(GCNs) in MI-EEG feature extraction.

GCNs leverage the input topological structures (also called 
adjacency matrices) to converge with fewer layers and less training, 
and their topological structure can model the connectivity 
characteristics of different brain regions (Andac et  al., 2021), 
enhancing both the performance and interpretability of the MI-EEG 
decoding method. Feng et al. (2021) constructed the adjacency matrix 

using four graph theory features, followed by the application of GCNs 
and CNNs to extract spatiotemporal topological features from 
MI-EEG data, achieving a decoding accuracy of 92.81% for fine motor 
intentions of upper limb movements. Wang et al. (2020c) introduced 
a new attention-based multiscale CNN framework to dynamical GCN 
model. The adjacency matrix is adaptively determined in a data-driven 
way to exploit the intrinsic relationship between channels effectively, 
with a high binary accuracy of 95.65%. Hou et al. (2022) built an 
adjacency matrix from EEG’s absolute Pearson matrix and utilized a 
GCN framework, achieving a four-class classification accuracy of 
96.24% on the High-Gamma upper limb MI dataset.

In previous works, the adjacency matrices were often 
pre-constructed using prior knowledge and remained unchanged 
during training. However, the brain activation patterns and 
frequencies associated with MI vary among different subjects. This 
discrepancy makes it challenging for adjacency matrices built on prior 
knowledge to adapt to new subjects, significantly affecting the 
generalization ability of MI-EEG decoding methods. Zhang and 
Huang (2019) proposed a blind GCN that updates the adjacency 
matrix iteratively during training using a specially designed loss 
function, thereby generating an adjacency matrix that fully adapts to 
the EEG data. This approach can enhance the generalization ability of 
MI-EEG decoding methods to new subjects to some extent. However, 
due to the low signal-to-noise ratio (SNR) of EEG signals and the high 
noise content, the construction and iteration process of the adjacency 
matrix may inadvertently optimize away some critical nodes and 
connections, ultimately affecting method convergence and 
decoding performance.

To address the mentioned issues, this paper proposes a dynamic 
graph attention network based on multi-scale frequency domain 
features (MFF-DANet) for decoding upper limb MI in hemiplegic 
patients. The proposed method includes a multi-scale frequency 
domain feature extraction module, which uses 1-D channel 
convolutions of different scales to extract multi-scale frequency domain 
features. Subsequently, a graph attention convolutional network is 
introduced to extract the spatial topological features between different 
electrode channels. The electrode channel positions are used as prior 
knowledge to construct a graph update layer, ensuring that key nodes 
and connections are preserved during iteration while maintaining 
model interpretability. The final goal is to decode upper limb MI 
intentions. The contributions of this paper are as follows:

A dynamic graph attention network based on multi-scale 
frequency domain features (MFF-DANet) is proposed for MI-EEG 
decoding. It uses temporal convolutional kernels of different scales to 
extract multi-scale frequency domain features, followed by the 
introduction of a dynamic graph attention convolutional network  
to extract spatial topological features between different 
electrode channels.

The designed dynamic graph attention convolutional network 
uses electrode channel positions as prior knowledge to construct a 
graph update layer, ensuring the retention of important nodes during 
the iteration of the adjacency matrix.

The proposed method was validated on the PhysioNet dataset. 
Experimental results show that MFF-DANet outperforms other 
methods in both within-subject and cross-subject scenarios. 
t-Distributed Stochastic Neighbor Embedding (t-SNE) feature 
visualization analysis indicates the effectiveness of the proposed 
modules, and adjacency matrix visualization analysis demonstrates 
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that the extracted spatial topological features have 
physiological interpretability.

2 Methods

This section primarily introduces the proposed dynamic graph 
attention network based on multi-scale frequency domain features. 
Section 2.1 describes the overall framework of MFF-DANet. Sections 
2.2 and 2.3 detail the proposed multi-scale frequency domain feature 
extraction module and the dynamic graph attention convolution 
module, respectively.

2.1 Overview

MFF-DANet primarily consists of two modules: a multi-scale 
frequency domain feature extraction (MFF) module and a dynamic 
graph attention convolution (DGACN) module. The overall 
framework of the model is illustrated in Figure 1. The MFF module 
uses temporal convolutional kernels of different scales to extract 
frequency domain features of EEG data at various scales. These multi-
scale frequency domain features are then weighted and aggregated 
through an average pooling operation based on a channel attention 
mechanism. The DGACN module introduces a graph attention 
convolutional network to extract and integrate the spatial topological 
features of different feature channels. Following this, a graph update 
layer is designed, combining node connection probabilities with the 
feature similarity to achieve dynamic updating of the adjacency 
matrix. This layer incorporates the spatial structure of electrode 
channels as prior knowledge into the initial adjacency matrix, 
ensuring that key node connections related to MI are preserved.

The input to the MFF-DANet framework is a set of EEG data 
segments { }1 2X , , , Nx x x=  , where N  is the number of samples. For 
each segment C T

ix ×∈ , C is the number of EEG electrode channels, 
and T  is the number of time points. { }1 2Y , , , Ny y y=  represents the 
labels of the MI tasks, with { }1,2,3,4iy ∈ .

2.2 Multi-scale frequency domain feature 
extraction module

The MFF module is inspired by the concept of frequency-
domain convolution kernels introduced in EEGNet (Lawhern et al., 
2018). In this module, three convolution kernels of different scales 
are designed to extract feature information from multiple frequency 
bands independently across channels. After obtaining the 
frequency domain features at different scales, an average pooling 
operation based on the channel attention mechanism is introduced 
to fuse the multiple frequency domain features, ensuring the 
retention of the most important frequency domain characteristics. 
Throughout the multi-scale frequency domain feature extraction 
process, the independence between electrode channels is 
maintained. The overall framework of this module is illustrated in 
Figure 2.

For the input × , the MFF module employs three 1D convolutional 
networks with different scales, each consisting of three layers. The 
parameters for the convolutional networks with different scales are set 
as ( )1, , l

j jk D , where ( )1, jk  represents the size of the convolutional 
kernel for the j-th scale ( { }1,2,3j∈ ), and l

jD  denotes the depth of the 
l-th layer of the j -th convolutional kernel ( { }1,2,3l∈ ). Assuming a 
raw EEG signal sampling rate of 160 Hz, a convolution with 40jk =  
can capture frequency information at 4 Hz and above. By setting three 
different kernel sizes in this way, we can simulate three overlapping 
high-frequency bands, effectively enabling multi-scale frequency 
domain feature extraction. Same Padding is applied in each 
convolutional network layer to ensure that the dimensions of the 
learned frequency domain features across different scales remain 
consistent. Additionally, a residual mechanism is introduced, 
connecting the output of the first convolutional network layer to the 
point just before the activation function of the third layer. This 
mechanism facilitates the learning of useful frequency domain 
features by the module. The process is described by Equations 1, 2.

 ( )1l l l l
j j j jH H W bσ −= +

 
(1)

FIGURE 1

The overall framework of MFF-DANet.
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3 3 1
j j jH H H′ = +  (2)

Where 
l
jC T Dl

jH × ×∈  represents the output of the l-th 
convolutional layer at the j -th scale, with 0

jH X=  being the initial 
input. l

jW  denotes the kernel weight matrix of the l-th convolutional 
layer at the j -th scale, and l

jb  is the bias term for the same layer and 
scale. The symbol σ  represents the activation function. The output 
after adding the residual connection is denoted by 

33 jC T D
jH ×′ ×∈ .

The multi-scale frequency domain feature extraction module 
stacks the convolutional outputs 3

jH ′from each scale along the feature 
dimension. Following this, an average pooling operation based on a 
channel attention mechanism is introduced to fuse the multiple 
frequency domain features, thereby retaining the most important 
frequency domain features, as described by Equations 3–5.

 
( )3 3 3

1 2 3, ,convX Concat H H H′ ′ ′=
 

(3)

 ( )( )att convW Softmax MLP X=  (4)

 ( )MFF conv attX AveragePool X W=  (5)

Where ( )3 3 3
1 2 3C T D D D

convX × × + +∈  represents the stacked 
frequency domain features. 1C T

attW × ×∈  denotes the channel 
attention weight matrix, and C T

MFFX ×∈  represents the important 
frequency domain features retained by the MFF module.

2.3 Dynamic graph attention convolution 
module

The DGACN module introduces a graph attention convolutional 
neural network to extract spatial topological features between different 
electrode channels. Following this, a graph update layer is designed, 
combining node connection with the feature similarity to dynamically 
update the adjacency matrix. The graph attention convolutional 
network leverages a shared attention mechanism to focus on 
important electrode channels, making it more suitable for dynamic 
graph structures compared to GCNs that use spectral 
graph convolutions.

The core of the graph attention convolutional network is the 
adjacency matrix, which determines the direction of feature flow 
between different graph nodes. Considering the specificity of brain 
activation patterns during MI, we use electrode channels as nodes and 
the Euclidean distance between channels as the node relationship to 
construct the initial graph adjacency matrix E as prior knowledge. The 
process can be described by Equation 6.

 
( ) ( )

1,
,

E u v
dist u v

=
 

(6)

Where ( ),dist u v  represents the Euclidean distance between 
electrode channels u  and v. The adjacency matrix element 
( ), C CE u v ×∈ corresponds to the relationship between these 

channels within the constructed initial graph adjacency matrix.
Subsequently, we input the initial graph adjacency matrix and the 

important frequency domain features MFFX  into a three-layer multi-
head graph attention convolutional network to extract spatial 

FIGURE 2

The multi-scale frequency domain feature extraction module.
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topological features. Due to the low SNR of EEG signals, variations in 
the physiological and psychological states of subjects can easily lead 
to changes in brain activation patterns, and there is significant 
individual variability in MI-EEG signals. A fixed graph adjacency 
matrix struggles to adapt to this variability, so we designed a graph 
update layer based on the graph attention convolutional network. The 
graph update layer updates the probability of forming edges between 
nodes based on the Euclidean distance between nodes and the 
similarity of their topological features. This allows the graph adjacency 
matrix to be dynamically updated in real-time during model training 
using the data. This process can be described by Equations 7, 8.

 ( ) ( ) ( ), , ,P u v E u v K u v γ= ×  (7)

 

( )
3 3

,
u v

K u v
G G

δ
ξ

ξ
=

− +
 

(8)

Where ( ), C CP u v ×∈  represents the updated adjacency matrix. 
( ),E u v  is the prior information based on Euclidean distance, 

indicating the inverse of the Euclidean distance between nodes u  and 
v. ( ),K u v  represents the topological feature similarity between nodes 
u  and v, where 3

uG  and 3
vG  denote the spatial topological features 

extracted by the third layer of the graph attention convolutional 
network. The parameters γ , δ , and ξ  are hyperparameters used to 
calculate the feature similarity. The graph update layer automatically 
updates the graph adjacency matrix during model training by 
incorporating both prior knowledge and sample MI-EEG data. This 
allows the method to reduce the impact of an initially unsuitable 
topological structure. Additionally, this graph update structure can 
uncover deeper relationships between features within the MI-EEG 
data and reconstruct the graph adjacency matrix, providing a certain 
level of interpretability. In the case of one single subject, the graph 
update layer can prevent false connections in the adjacency matrix 
caused by environmental noise or changes in the subject’s physiological 
or psychological state, thereby preserving the subject-specific 
topological feature. In the case of multiple subjects, the graph update 
layer can learn the shared space connectivity patterns across different 
subjects, which enhances our model’s ability to generalize across 
various subjects.

In the graph attention convolutional network, the graph attention 
mechanism in each layer performs a weighted summation of the 
updated adjacency matrix ( ),P u v  to update the feature representation 
of each node. For each attention head q , the computation of graph 
attention convolution in each layer can be expressed by Equation 9:

 ( )

1,l q q q l
u uv v

v u
G W Gσ α+

∈Ν

 
 =
 
 
∑

 
(9)

Where 1,l q
uG +  represents the spatial topological feature 

representation of node u  in the 1l + -th layer for attention head q , 
and l

vG  is the spatial topological feature representation of node v 
in the l -th layer. qW  is the weight matrix for attention head q , and 

q
uvα  denotes the attention weight between nodes u  and v. The 

output from multiple attention heads can be  fused by 
concatenation to obtain the final spatial topological feature 
representation, as shown in Equation 10.

 ( )1 1,1 1,2 1,, , ,l l l l Q O
u u u uG Concat G G G W+ + + += 

 
(10)

Where Q is the number of attention heads, and OW  is the weight 
matrix for the output transformation.

After obtaining the final spatial topological features for each node, 
MFF-DANet flattens the features of all nodes and then uses a Softmax 
layer to map the features for classification, ultimately determining the 
subject’s motor intention.

3 Experiments

To validate the effectiveness of the proposed method, 
we designed a validation experiment on the public upper limb MI 
dataset, PhysioNet (Gerwin et al., 2004; Goldberger et al., 2000), 
and compared its performance with several mainstream MI-EEG 
decoding methods. This section mainly introduces the PhysioNet 
dataset, the comparison methods, and the model 
parameter settings.

3.1 Dataset description

The public dataset PhysioNet contains over 1,500 64-channel 
MI-EEG recordings from 109 subjects. Each subject performed four 
MI tasks: opening and closing the left fist, opening and closing the 
right fist, opening and closing both fists, and opening and closing both 
feet. Each MI task includes 84 trials, with each trial lasting for 4 s. The 
MI-EEG data in the PhysioNet dataset were recorded using equipment 
with a sampling rate of 160 Hz, and the data were band-pass filtered 
between 1–35  Hz. Due to significant missing data issues in the 
MI-EEG recordings for subjects #88, #89, #92, #100, and #104, these 
subjects’ data were excluded in this paper. Therefore, the PhysioNet 
dataset includes a total of 105 subjects.

3.2 Experimental parameter settings

3.2.1 Data preprocessing
Considering the need for low-latency control in BCIs and to 

increase the sample size of the dataset, a sliding window operation was 
applied to the PhysioNet dataset. Each window has a length of 160 
sampling points with a stride of 20 sampling points (Shi et al., 2024), 
resulting in 25 sliding windows per trial. Each subject performs four 
MI tasks, with 84 trials per task. Each trial’s data is segmented into 25 
data fragments. Therefore, each subject in the PhysioNet dataset 
includes 2,100 valid MI data fragments.

3.2.2 Comparison methods
The traditional machine learning-based EEG decoding method 

used for comparison are the widely utilized Filter Bank Common 
Spatial Pattern (FBCSP) (Ang et al., 2008), with Gaussian kernel-based 
Support Vector Machine (RBSVM) and Random Forest (RF) as 
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classifiers. For deep learning-based EEG decoding methods, 
we selected EEGNet (Lawhern et al., 2018) and MCSNet (Shi et al., 
2021). EEGNet is a compact CNNs framework specifically designed 
for EEG decoding, known for its strong generalization ability and high 
accuracy across various BCI paradigms. MCSNet is a physiological 
signal decoding method designed with a channel collaboration 
mechanism, demonstrating good performance in cross-subject case. 
Additionally, we included EEG-GAT (Demir et al., 2022), a graph 
convolutional neural network framework that uses a multi-head 
attention mechanism to parameterize the adjacency matrix, improving 
the model’s generalization capability for new subjects.

3.2.3 Evaluation method
To thoroughly validate the effectiveness of the proposed method, 

we compared the decoding performance of these methods on the 
PhysioNet dataset under two cases: within-subject and cross-subject. 
Decoding accuracy is used as the performance evaluation metric. In 
within-subject case, all trials from one subject were divided into a 
training set and a test set at an 8:2 ratio, followed by a sliding window 
operation. The decoding accuracy on the test set is recorded as the 
accuracy of the decoding method. In cross-subject case, MI-EEG data 
from 20 randomly selected subjects from the PhysioNet dataset were 
used as the training set, and data from 5 randomly selected subjects 
were used as the test set. In both cases, the division of training and test 
sets was randomly repeated five times to eliminate random effects in 
the experimental results (Shi et al., 2024).

3.2.4 Parameter settings
Based on the description of the PhysioNet dataset, C was set to 64 

and T  was 160. The grid search method was used to find the optimal 
parameters. Finally, 1k , 2k , and 3k were set to 3, 7, and 15, respectively. 

1 2 3 3D D D= = = . γ, δ, and ξ was set to 1, 2, and 0.5, respectively. All 
methods were implemented using Python, with the environment 
configured as Python 3.8.13 and CUDA 11.7. The Adam optimizer 
provided by PyTorch was used during training, with a learning rate set 
at 0.01 and a learning rate decay set at 0.0001. The model was trained 
for 800 epochs. The same initial graph adjacency matrix was used for 

both MFF-DANet and EEG-GAT methods. The PhysioNet system 
follows the 64-channel international 10–10 system, with the distances 
between nodes determined by the electrode coordinates in the MNI 
head model (Valer et al., 2007). Additionally, the graph update layer 
was configured to update the adjacency matrix every 10 training epochs.

4 Results and analysis

In this section, we  primarily present the MI task decoding 
performance of all methods under both within-subject and cross-subject 
cases, followed by an analysis and discussion of the results. Additionally, 
we  utilized t-Distributed Stochastic Neighbor Embedding (t-SNE) 
method and the BrainNet Viewer toolbox to visualize the extracted 
features, aiming to validate the effectiveness of the proposed modules.

4.1 Experimental results in within-subject 
case

The decoding performance of the methods in the within-subject 
case reflects their learning ability with small sample data, specifically 
the capability to extract individualized EEG features for each subject. 
Table 1 presents the MI classification accuracy of each method on 
individual subjects.

From Table  1, it is evident that the proposed MFF-DANet 
method outperforms all comparison methods, achieving an average 
decoding accuracy of 61.6%, which is significantly higher than the 
comparison methods. The performances of FBCSP-SVM and 
FBCSP-RF are relatively close, with average accuracies of 57.4 and 
56.5%, respectively, slightly lower than EEGNet’s 58.8%. MCSNet and 
EEG-GAT show weaker performance, with average accuracies of 47.8 
and 42.2%, respectively. Considering that MFF-DANet, FBCSP, and 
EEGNet all incorporate modules designed to extract EEG features 
from different frequency bands, this highlights the importance of 
frequency domain features in MI-EEG decoding. It also underscores 
the significance and necessity of the MFF module. The methods that 

TABLE 1 Motion intent decoding performance of all methods in within-subject case.

Subject ID FBCSP EEGNet MCSNet EEG-GAT MFF-DANet

SVM RF

S1 68.0% 66.4% 53.7% 51.0% 46.2% 55.4%

S2 58.4% 55.6% 62.0% 57.2% 43.4% 66.3%

S3 56.1% 58.6% 63.1% 48.3% 49.3% 65.1%

S4 56.6% 53.1% 55.0% 51.3% 39.9% 65.1%

S5 49.9% 47.4% 55.1% 25.0% 39.0% 57.1%

S6 56.6% 53.7% 60.1% 54.1% 36.0% 58.6%

S7 56.4% 56.9% 70.7% 43.7% 40.0% 55.7%

S8 58.1% 58.7% 45.0% 47.7% 40.4% 64.3%

S9 54.6% 55.1% 64.9% 55.9% 42.4% 75.0%

S10 59.0% 59.7% 58.4% 43.6% 45.2% 53.4%

Average ACC 57.4% 56.5% 58.8% 47.8% 42.2% 61.6%

Bolded values indicate the decoding method corresponding to the best decoding performance of the current subject.
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achieved the highest accuracy for each subject are highlighted in 
black in Table 1. It is clear that MFF-DANet achieves the highest 
accuracy for almost all subjects, particularly excelling in subjects S2 
(66.3%) and S9 (75.0%). This indicates that MFF-DANet possesses 
superior personalized feature extraction capabilities and stability.

4.2 Experimental results in cross-subject 
case

The decoding performance in cross-subject case reflects the 
method’s generalization ability to new subjects. Table 2 presents the 
motor intention decoding performance of all methods in cross-subject 
case. It is evident that the proposed MFF-DANet achieved the highest 
average decoding accuracy, reaching 52.7%, which is significantly 
better than other methods. Among deep learning-based EEG 
decoding methods, EEGNet achieved an average accuracy of 43.8%, 
MCSNet achieved 45.1%, and EEG-GAT slightly outperformed them 
with an accuracy of 46.6%. Traditional machine learning-based EEG 
decoding methods performed relatively poorly, with average 
accuracies of 37.2 and 38.0%, which are considerably lower than those 
of the deep learning-based methods.

MFF-DANet and EEG-GAT showed a clear advantage in average 
decoding accuracy in cross-subject case, suggesting that GCN are 
better at extracting channel topological relationships that capture 
more common features across subjects, thereby enhancing the 
generalization ability of the methods. Additionally, the comparatively 
poor performance of traditional machine learning-based EEG 
decoding methods in cross-subject case may be due to the difficulty 
of handcrafted features effectively handling inter-individual variability.

4.3 Feature interpretability analysis

In recent years, developing feature interpretable methods for deep 
learning networks has become an active research area and is 
considered a crucial component of robust method validation 
procedures. This ensures that classification performance is driven by 
relevant features rather than noise or artifacts in the data (Anh et al., 
2015; Ribeiro et  al., 2016; Marco et  al., 2017). To validate the 
effectiveness of the proposed modules, we  employed the t-SNE 
method to perform dimensionality reduction and visualization of the 
features extracted by each module. Additionally, we used the BrainNet 
Viewer toolbox (Xia et al., 2013) to visualize the adjacency matrix 
learned by the DGACN module to observe whether the learned 
channel connections have physiological interpretability.

4.3.1 T-SNE feature visualization
Figure  3 shows the feature dimensionality reduction and 

visualization for subject S9 in within-subject case. MI-EEG data were 
input into the optimal model, and t-SNE method was applied to the 

feature maps obtained after the MFF module and the DGACN 
module, respectively. Different colors represent sample data with 
different labels, where 0, 1, 2, and 3 correspond to the four MI tasks: 
opening and closing the left fist, opening and closing the right fist, 
opening and closing both fists, and opening and closing both feet.

As shown in Figure 3, the features extracted by each module of 
MMF-DANet exhibit good separability, indicating that the model can 
capture effective frequency domain and spatial topological features 
from the data during training. Comparing the visualization result on 
the left-side and right-side, it can be observed that the separability of 
sample features is generally moderate after passing through the MFF 
module. However, the spatial topological features obtained after the 
DGACN module show a significant improvement in separability.

4.3.2 Adjacency matrix visualization
We used the BrainNet Viewer toolbox to visualize the connections 

between electrode channels in the adjacency matrix on a standard 
brain template. The MI-EEG data collected by the electrode channels 
are assumed to reflect the physiological electrical activity in the 
cortical areas projected by these electrodes. Using S9 as an example, 
MMF-DANet achieved the highest accuracy of 75% at the 334th 
epoch during training. The adjacency matrix was updated every 10 
epochs, resulting in a total of 33 updates to the adjacency matrix. 
We visualized the adjacency matrices after the 3rd, 9th, 15th, 21st, 
27th, and 33rd updates, as shown in Figure 4.

Observing the changes in the graph structure during the iteration 
process: at the beginning of training, there were significant differences 
in features between the EEG channels, resulting in fewer connections 
between channels after the 3rd update (30th epoch). At this stage, the 
Euclidean distance between electrode channels played a decisive role in 
the adjacency matrix. Subsequent updates revealed a more pronounced 
local clustering phenomenon. For example, connections were observed 
between electrode channels from PZ, P1, P2, P3, and P4 to CPZ, CP1, 
CP2, CP3, CP5, and CP6, as well as between channels from PZ, P1, P2, 
P3, P4, P5, POZ, PO3, PO4, O1, OZ, and O2. Additionally, connections 
were seen between FCZ, FC1, and FC2 to FZ, F1, and F2.

These local connections occurred between channels with relatively 
short Euclidean distances, mainly distributed between the sensorimotor 
area and the superior parietal lobule. These regions are associated with 
spatial orientation functions in the brain and are involved in processing 
visual information and sensory information from the hands. Given that 
the labels in the PhysioNet dataset primarily focus on upper limb MI 
tasks, this indicates that the DGACN module we designed effectively 
extracts channel topological relationships closely related to MI. The 
extracted features thus have physiological interpretability.

5 Conclusion

To address the issue of insufficient generalization ability of 
current MI-EEG decoding methods for new subjects, this paper 

TABLE 2 Motion intent decoding performance of all methods in cross-subject case.

Subject ID FBCSP EEGNet MCSNet EEG-GAT MFF-DANet

SVM RF

Average ACC 37.2% 38.0% 43.8% 45.1% 46.6% 52.7%

Bolded values indicate the decoding method corresponding to the best decoding performance in the cross-subject case.
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proposes an MMF-DANet for decoding upper limb MI in 
hemiplegic patients. Given the variability in MI response frequency 
bands across different subjects, the proposed method utilizes 
convolutional kernels of various scales to extract feature 
information across multiple frequency bands. Subsequently, an 
average pooling operation based on channel attention is introduced 
to fuse these frequency domain features, retaining the most critical 
ones. Additionally, MMF-DANet incorporates a graph attention 
convolutional network to extract spatial topological features from 
different electrode channels. To ensure that the designed adjacency 
matrix closely aligns with the subject’s brain activation patterns 
during MI, electrode channel positions are used as prior knowledge 
to construct a graph adjacency matrix update layer. This approach 
ultimately enhances the decoding of upper limb MI. The proposed 
method was validated on the PhysioNet dataset, and the results 
demonstrate that MMF-DANet achieved the highest decoding 
accuracy in both within-subject and cross-subject cases. It 
effectively extracts personalized features for different subjects as 
well as common topological features shared across all subjects. The 
t-SNE dimensionality reduction visualization of the features 

confirmed the effectiveness of each module, while the visualization 
of the adjacency matrix indicated that the graph adjacency matrix 
update layer effectively captures spatial topological features related 
to MI, providing physiological interpretability.
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FIGURE 3
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