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Introduction: In the field of medical listening assessments,accurate transcription

and e�ective cognitive load management are critical for enhancing healthcare

delivery. Traditional speech recognition systems, while successful in general

applications often struggle in medical contexts where the cognitive state of the

listener plays a significant role. These conventional methods typically rely on

audio–only inputs and lack the ability to account for the listener’s cognitive

load, leading to reduced accuracy and e�ectiveness in complex medical

environments.

Methods: To address these limitations, this study introduces ClinClip,

a novel multimodal model that integrates EEG signals with audio data

through a transformer-based architecture. ClinClip is designed to dynamically

adjust to the cognitive state of the listener, thereby improving transcription

accuracy and robustness in medical settings. The model leverages cognitive-

enhanced strategies, including EEG-based modulation and hierarchical fusion

of multimodal data, to overcome the challenges faced by traditional methods.

Results and discussion: Experiments conducted on four datasets–EEGEyeNet,

DEAP, PhyAAt, and eSports Sensors–demonstrate that ClinClip significantly

outperforms six state-of-the-art models in both Word Error Rate (WER) and

Cognitive Modulation E�ciency (CME). These results underscore the model’s

e�ectiveness in handling complex medical audio scenarios and highlight

its potential to improve the accuracy of medical listening assessments. By

addressing the cognitive aspects of the listening process. ClinClip contributes

to more reliable and e�ective healthcare delivery, o�ering a substantial

advancement over traditional speech recognition approaches.

KEYWORDS

clip, Multimodal Language Pre-training, EEG data, English medical speech recognition,

robotics

1 Introduction

English medical speech recognition is a critical task that plays a significant role

in modern healthcare systems, where accurate and timely transcription of medical

consultations, diagnoses, and instructions can directly impact patient outcomes. The

complexity of medical terminology, the need for precision in understanding and

transcribing speech, and the varying conditions under which medical speech is recorded

all contribute to the necessity for specialized speech recognition systems tailored to

the medical domain (Vase, 2020). Not only does accurate medical speech recognition

facilitate the efficient documentation of patient interactions (Aldosari et al., 2023), but

it also enables the integration of spoken data into electronic health records (EHRs),

improving accessibility and continuity of care (Koning et al., 2021).Moreover, such systems
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can support non-native speakers and enhance the delivery of

telemedicine services by providing real-time transcription and

language translation services (Yadav et al., 2023; Guo, 2023).

To address the limitations of early rule-based approaches,

which struggled with the vast variability in medical speech, the

introduction of machine learning marked the first major evolution

in medical speech recognition. Initial systems relied heavily on

hand-crafted linguistic rules and finite state machines, which,

while useful, were unable to adapt to the nuanced and context-

dependent nature of medical language. These systems were prone

to errors in recognizing unfamiliar terminology or variations in

pronunciation, which are common in medical settings due to

diverse accents and speech patterns. Machine learning introduced

statistical models that could learn from data, allowing for more

flexible and accurate speech recognition. For example, Hidden

Markov Models (HMMs) (Neupane and Seok, 2020) became

widely used for their ability to model the temporal dynamics of

speech. However, these models required extensive labeled data and

were still limited by their reliance on shallow feature extraction

methods, which could not fully capture the complexities of

medical language.

Building on the foundations laid by machine learning, the

advent of deep learning and pre-trained models brought about

a transformative shift in English medical speech recognition.

To address the limitations of shallow models and improve

generalization across diverse medical scenarios, researchers began

leveraging deep neural networks (DNNs) (Singh and Garg, 2022),

convolutional neural networks (CNNs) (Olatinwo et al., 2023),

and recurrent neural networks (RNNs) (Chai et al., 2024). These

models could automatically extract hierarchical features from raw

audio, enabling a more detailed and context-aware understanding

of medical speech. The introduction of pre-trained models, such as

BERT (Faria et al., 2024) and Transformer-based architectures (Liu

Y. et al., 2023), further enhanced the capability of medical speech

recognition systems by enabling them to leverage vast amounts

of unannotated medical text for pre-training. These models not

only improved the accuracy of medical term recognition but

also enabled systems to better understand the context in which

medical terms were used, reducing errors and improving the overall

reliability of transcriptions (Zhang, 2024). However, despite these

advancements, challenges remain, such as the need for large labeled

datasets and the difficulty of adapting pre-trainedmodels to specific

medical sub-domains without significant fine-tuning (Sreemathy

et al., 2023).

To address the aforementioned challenges, particularly the

need for more accurate context-aware transcriptions in diverse

and complex medical environments, we propose ClinClip: A

Multimodal Language Pre-training Model Based on EEG Data

for Optimizing English Medical Listening Assessment. ClinClip

is designed to enhance the performance of medical speech

recognition systems by integrating multimodal data, specifically

EEG signals, with traditional audio inputs. By leveraging EEG

data, ClinClip captures the cognitive state of the listener, allowing

the model to dynamically adjust to variations in cognitive load

and improve the accuracy and reliability of transcriptions. This

approach not only addresses the limitations of previous models

that struggled with context understanding and adaptability but also

introduces a novel way of enhancing medical listening assessments

through the integration of physiological data.

• ClinClip introduces a novel integration of EEG data with

audio inputs, utilizing a transformer-based architecture to

dynamically adapt to the listener’s cognitive state, significantly

enhancing context-aware transcription accuracy.

• The method’s ability to effectively process multimodal data

makes it highly versatile across various medical scenarios,

ensuring robust performance in diverse environments while

maintaining computational efficiency.

• ClinClip consistently outperforms state-of-the-art models in

both Word Error Rate (WER) and Cognitive Modulation

Efficiency (CME) across multiple datasets, demonstrating its

effectiveness and reliability in complex medical listening tasks.

2 Related work

2.1 Multimodal English speech recognition

Multimodal speech recognition involves the integration of

various data modalities–such as audio, visual, and physiological

signals–to enhance the accuracy and robustness of automatic

speech recognition (ASR) systems. Traditional ASR systems

primarily rely on audio signals, which limits their effectiveness in

noisy environments or complex scenarios where additional context

could improve accuracy. Recent advancements have incorporated

visual data, such as lip movements, to create more resilient

systems, especially in noisy conditions (De Sousa et al., 2023).

However, the integration of physiological signals like EEG has

gained increasing attention for its potential to capture the cognitive

state of the user during speech processing (Sun, 2024). Research

in multimodal ASR using EEG has demonstrated that brain

activity can provide valuable insights into a listener’s attention,

cognitive load, and even emotional state. For instance, models

that incorporate EEG data have shown improved performance in

scenarios where the audio quality is poor or when the listener is

under cognitive stress (Guo et al., 2024). These systems leverage the

temporal synchronization of EEG signals with auditory input, using

machine learning algorithms to decode the relevant information

from brain signals (Avila et al., 2023). Despite these advances,

challenges remain, particularly in real-time processing and the

need for sophisticated models to effectively fuse multimodal

data (Alishbayli et al., 2023). The development of models like

ClinClip, which dynamically integrates EEG and audio signals,

represents a significant step forward in this domain by addressing

these challenges and demonstrating improved performance in

medical listening assessments (Wimalarathna et al., 2023).

2.2 Cognitive load in English speech
recognition

Cognitive load refers to the amount of mental effort

required to process information, and it plays a critical role in
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speech recognition tasks, particularly in complex or demanding

environments. Traditional ASR systems have largely ignored the

cognitive state of the user, focusing instead on the acoustic

and linguistic aspects of speech. However, understanding and

incorporating cognitive load into ASR systems can significantly

improve their effectiveness, especially in fields such as medical

transcription, where the cognitive demands on the user can vary

greatly (De Sousa et al., 2023). Recent research has explored the

use of physiological signals, such as EEG, to estimate cognitive

load and incorporate this information into ASR systems. These

systems aim to adjust their processing strategies based on the user’s

cognitive state, for instance, by allocating more computational

resources when cognitive load is high or by altering the way speech

is decoded (Gao et al., 2022). The inclusion of cognitive load

considerations has been shown to enhance the accuracy of speech

recognition, particularly in scenarios where the user is multitasking

or under stress (Liu H. et al., 2023). However, many existing models

are limited by their reliance on static cognitive load measurements

or by their inability to adapt in real-time. ClinClip addresses

these limitations by integrating real-time EEG data to modulate

the processing of speech, thereby offering a more responsive and

accurate ASR system that can better handle the dynamic nature

of cognitive load during medical listening tasks (Andersson et al.,

2023).

2.3 Transformer-based architectures

Transformer-based architectures have revolutionized

natural language processing (NLP) and have recently been

applied to speech processing tasks, including ASR. Unlike

traditional recurrent neural networks (RNNs) or convolutional

neural networks (CNNs), transformers leverage self-attention

mechanisms to process sequences of data more efficiently and

capture long-range dependencies within the input. This capability

has led to significant improvements in the accuracy and robustness

of speech recognition models, particularly in handling diverse and

complex linguistic contexts (De Sousa et al., 2021). The application

of transformers in speech recognition has expanded beyond audio-

only models to include multimodal approaches that integrate

additional data sources like visual and physiological signals (Zhang

et al., 2022). These models benefit from the transformer’s ability

to effectively manage multiple input streams, aligning different

modalities through attention mechanisms. For example, in

multimodal ASR systems, transformers can fuse audio and EEG

data to enhance the model’s understanding of speech, especially

in noisy or cognitively demanding environments (Manjulatha

and Pabboju, 2024). ClinClip builds on this foundation by

using a transformer-based architecture to integrate EEG and

audio data, enabling the model to dynamically adjust to the

cognitive state of the listener. This approach not only improves

the accuracy of speech recognition but also enhances the model’s

adaptability to varying cognitive loads, making it particularly

suited for complex medical listening assessments (Génin et al.,

2024).

3 Methodology

3.1 Overview

The proposed research introduces a novel Multimodal

Language Pre-training model, ClinClip, designed to

optimize English medical listening assessments by leveraging

Electroencephalography (EEG) data (Figure 1). The model is

built upon the integration of multimodal data sources, specifically

EEG signals and linguistic features, to enhance the precision

and adaptability of automated medical listening assessment

tools. ClinClip’s architecture is a fusion of advanced pre-training

techniques, combining the strengths of transformer-based models

for natural language processing with the unique ability of EEG data

to capture cognitive load and attention dynamics during auditory

processing. This innovative approach addresses the limitations of

current automated listening assessment systems, particularly in

medical contexts where accuracy and contextual understanding

are paramount. The flow of data within ClinClip starts with the

simultaneous processing of EEG signals and corresponding audio

inputs, which are then encoded through specialized modules

designed to handle each modality’s unique characteristics. The

encoded representations are fused within a transformer-based

model, enabling the system to learn and generalize across both

linguistic and cognitive features. This fusion is further refined

through pre-training on large-scale medical datasets, followed by

fine-tuning on domain-specific tasks.

In the subsections that follow, we provide a detailed exploration

of the components and processes that constitute ClinClip.

Section 3.2 covers the theoretical framework and the problem

formulation guiding this research, establishing the foundational

principles underlying the model’s design. Section 3.3 delves

into the architecture of ClinClip, elaborating on the specific

modules employed for EEG and linguistic data processing, as

well as the strategies for their integration. Finally, Section

3.4 discusses the pre-training and fine-tuning methodologies

applied to optimize the model’s performance in medical listening

assessments, highlighting the innovations introduced in the context

of multimodal learning. This comprehensive overview sets the stage

for a deeper understanding of how ClinClip leverages EEG data

to revolutionize medical listening assessments, providing a robust

and scalable solution to a critical challenge in medical education

and practice.

3.2 Preliminaries

The task of optimizing English medical listening assessment

involves enhancing the model’s ability to accurately evaluate and

interpret auditory inputs in a medical context. To formally define

this problem, let us consider a set of audio recordings, A =

{a1, a2, . . . , an}, where each audio segment ai is paired with a

corresponding transcription ti and associated EEG data Ei. The

goal is to train a model fθ that can predict the most accurate

transcription t̂i for any given audio input ai by incorporating

the EEG data Ei to capture the listener’s cognitive state. We
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FIGURE 1

The overall framework of the proposed method. The input speech waveform is converted into speech representation through convolution and

Transformer encoder, passed to the bridge network, and then input into the LLM, which predicts text tokens and finally generates the final text output.

denote the EEG data for each audio segment as a multivariate

time series Ei = [e1, e2, . . . , eT] ∈ R
C×T , where C is the

number of EEG channels and T is the number of time steps.

The audio data is represented as a sequence of acoustic features

Xi = [x1, x2, . . . , xT] ∈ R
F×T , where F is the number of acoustic

feature dimensions. The objective is to learn a mapping function

fθ :(Xi,Ei) → t̂i that minimizes the transcription error L(t̂i, ti),

typically measured by metrics such as Word Error Rate (WER).

To achieve this, we introduce a multimodal fusion mechanism

within the transformer architecture. The audio features Xi are first

processed by a series of convolutional layers to extract higher-level

representations, denoted as H
(a)
i . Simultaneously, the EEG data Ei

is passed through a separate neural encoder, yielding the cognitive

feature representationsH
(e)
i . These representations are then aligned

and integrated using a cross-modal attention mechanism, which

allows the model to dynamically weight the importance of auditory

and cognitive features depending on the context.

Mathematically, the cross-modal attention can be described as

follows:

Zi = softmax

(

H
(a)
i Wq(H

(e)
i Wk)

T

√

dk

)

H
(e)
i Wv, (1)

where Wq, Wk, and Wv are the query, key, and value weight

matrices, respectively, and dk is the dimension of the key vectors.

The resulting attention output Zi is then concatenated with H
(a)
i

and passed through a feed-forward network to produce the final

fused representation Fi:

Fi = ReLU
(

Wf

[

Zi;H
(a)
i

]

+ bf

)

, (2)

where Wf and bf are the weights and bias of the feed-forward

network.

The fused representation Fi is then input into a decoder, which

generates the predicted transcription t̂i. The model is trained end-

to-end by minimizing the transcription loss L(t̂i, ti) across the

training datasetD = {(Xi,Ei, ti)}.

Moreover, we introduce a regularization term that penalizes the

model for deviating too far from the cognitive state captured by the

EEG data. This is achieved by adding a regularization loss LEEG

that encourages the model to maintain consistency between the

predicted transcription and the cognitive signals:

LEEG = λ

n
∑

i=1

‖Fi −H
(e)
i ‖2, (3)

where λ is a hyperparameter that controls the strength of the

regularization. The total loss function Ltotal is thus given by:

Ltotal = L(t̂i, ti)+ LEEG. (4)

3.3 ClinClip model construction

The core innovation of our research lies in the development

of the ClinClip framework, a multimodal model that integrates

EEG data with linguistic features to optimize medical listening
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FIGURE 2

ClinClip structure diagram. The text and image inputs are passed through the CLIP EEG encoder and audio encoder respectively to generate feature

vectors, and contrastive learning is performed in the feature space to optimize by bringing relevant features closer and pushing irrelevant features

away.

assessments (Figure 2). ClinClip is designed to capture both the

external auditory signals and the internal cognitive processes of the

listener, enabling a more nuanced understanding and evaluation of

auditory comprehension in medical contexts.

The architecture of ClinClip builds upon a transformer-based

model, which has been extended to incorporate EEG signals

as a primary modality alongside traditional audio inputs. This

integration is achieved through several key components:

EEG encoder: The EEG data, represented as a multivariate time

series Ei ∈ R
C×T , is first processed by a dedicated EEG encoder.

This encoder consists of a series of temporal convolutional layers

followed by a multi-head self-attention mechanism. The output of

the EEG encoder, denoted as H
(e)
i , captures the temporal dynamics

and cross-channel correlations within the EEG signals. Formally,

the EEG encoding process can be described as:

H
(e)
i = MultiHeadAttention(Conv1D(Ei)), (5)

where Conv1D(·) denotes the temporal convolution operation, and

MultiHeadAttention(·) applies self-attention across the encoded

EEG signals.

Audio encoder: The audio input Xi ∈ R
F×T is processed

through a similar pipeline, beginning with a series of convolutional

layers to extract higher-level acoustic features, followed by a

transformer encoder to capture long-range dependencies within

the audio sequence. The encoded audio representation is denoted

asH
(a)
i , and the process is formulated as:

H
(a)
i = TransformerEncoder(Conv1D(Xi)). (6)

Cross-modal attention fusion: The core of ClinClip’s

multimodal integration lies in its cross-modal attention

mechanism, which aligns and fuses the EEG and audio

representations. This mechanism allows the model to dynamically

adjust the influence of each modality based on the context,

effectively capturing the listener’s cognitive state during auditory

processing. The cross-modal attention is computed as follows:

Zi = softmax

(

H
(a)
i Wq(H

(e)
i Wk)

T

√

dk

)

H
(e)
i Wv, (7)

where Wq, Wk, and Wv are learnable weight matrices, and

dk is the dimensionality of the key vectors. The resulting

attention output Zi is then combined with H
(a)
i to produce the

fused representation:

Fi = ReLU
(

Wf [Zi;H
(a)
i ]+ bf

)

. (8)

Cognitive-aware decoder: The fused representation Fi is

passed to a cognitive-aware decoder that generates the predicted
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transcription t̂i. This decoder is designed to leverage the

multimodal context provided by the fusion of EEG and audio

data, enhancing the model’s ability to produce accurate and

contextually relevant transcriptions. The decoding process is

formulated as:

t̂i = Decoder(Fi), (9)

where the decoder is a transformer-based module that outputs the

final transcription.

Regularization via cognitive alignment: To ensure that the

model remains aligned with the cognitive state indicated by the

EEG data, we introduce a regularization term Lalign that penalizes

large deviations between the fused representation Fi and the EEG

featuresH
(e)
i :

Lalign = λ

n
∑

i=1

‖Fi −H
(e)
i ‖2, (10)

where λ is a hyperparameter controlling the regularization strength.

The overall loss function for training ClinClip is thus a combination

of the transcription loss L(t̂i, ti) and the alignment regularization:

Ltotal = L(t̂i, ti)+ Lalign. (11)

ClinClip represents a significant advancement in the field

of medical listening assessment by incorporating cognitive data

into the evaluation process. By aligning linguistic and cognitive

features, the model is better equipped to handle the complexities

of medical audio, ultimately leading to more accurate and

reliable assessments. This multimodal approach not only improves

transcription accuracy but also provides insights into the cognitive

processes of the listener, which can be invaluable in medical

education and practice.

3.4 Cognitive-enhanced strategy

To enhance the performance of ClinClip, we introduce

a cognitive-enhanced strategy that integrates domain-specific

knowledge and cognitive signals into the model. This strategy

leverages the understanding that both linguistic content and

the cognitive state of the listener are crucial for accurate

transcription in medical contexts. The strategy focuses on three

main components:

Domain-specific language modeling with cognitive

modulation: We incorporate a pre-trained medical language

model fine-tuned on domain-specific corpora. This model guides

the generation of transcriptions by providing contextually relevant

suggestions, crucial for accurate medical transcription. In addition,

the attention mechanism in ClinClip is modulated based on EEG

signals, which reflect the listener’s cognitive engagement. The

modulation is achieved by adjusting the attention weights αi using

a cognitive factor γi, derived from the EEG data:

αmod
i = γi · αi, where γi = sigmoid(WγH

(e)
i ), (12)

Input : EEGEyeNet Dataset, DEAP Dataset, PhyAAt

Dataset, eSports Sensors Dataset

Output: Trained ClinClip Model, Evaluation Metrics

(Recall, Precision)

Initialize the ClinClip model with Xavier

initialization;

Set learning rate η0 = 1× 10−4;

Set batch size B = 32;

Set number of epochs E = 50;

Initialize total loss Ltotal = 0;

for epoch = 1 to E do

for batch = 1 to N/B do

Extract EEG features Ei and audio features

Xi from the datasets;

Normalize EEG data E
′
i = Normalize(Ei);

Compute mel-spectrogram Mi = MelSpec(Xi);

Apply data augmentation: E
′′
i = E

′
i + Noise(ǫ),

M
′
i = TimeStretch(Mi);

Encode EEG features: H
(e)
i = EEGEncoder(E′′

i);

Encode audio features:

H
(a)
i = AudioEncoder(M′

i);

Fuse features: Fi = Fuse(H
(a)
i ,H

(e)
i );

Compute cross-entropy loss:

LCE = CrossEntropy(t̂i,ti);

Compute alignment regularization:

Lalign = λ‖Fi −H
(e)
i ‖2;

Total loss for the batch: Lbatch = LCE+Lalign;

Update total loss: Ltotal+ = Lbatch;

Backpropagate and update model parameters

using Adam optimizer;

Adjust learning rate

η = η0 · exp(−β · mean(Ei));

end

if validation loss decreases then

Save model checkpoint;

end

else

Break training loop with early stopping;

end

end

while not converged do

Compute Precision P = TP
TP+FP;

Compute Recall R = TP
TP+FN;

Compute F1 Score F1 = 2 · P·R
P+R;

if Precision and Recall are satisfactory then

Break evaluation loop;

end

end

Return the trained ClinClip model and evaluation

metrics;

Algorithm 1. ClinClip training procedure.

and Wγ is a learnable parameter matrix. This allows the model to

dynamically prioritize parts of the audio based on cognitive load.
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Hierarchical fusion ofmultimodal features: ClinClip employs

a hierarchical fusion strategy to integrate linguistic features from

the audio input with cognitive features from the EEG data across

multiple layers of the model. This approach captures both low-level

correlations and high-level interactions between the modalities,

resulting in a more comprehensive representation. The fusion at

each layer l is represented as:

F
(l)
i = FusionLayer(H

(a,l)
i ,H

(e,l)
i ), (13)

whereH
(a,l)
i andH

(e,l)
i are the audio and EEG features at layer l.

Adaptive learning rate based on cognitive load: To optimize

the training process, the learning rate is adaptively adjusted based

on the cognitive load inferred from the EEG signals. Higher

cognitive loads, indicative of greater difficulty in processing the

audio, trigger a lower learning rate to give the model more time to

adjust. Conversely, lower cognitive loads allow for a higher learning

rate, speeding up convergence. The learning rate ηi at step i is

adjusted as:

ηi = η0 · exp(−β ·mean(Ei)), (14)

where η0 is the base learning rate, β is a scaling factor, andmean(Ei)

represents the average cognitive load.

By focusing on these three key strategies, ClinClip effectively

combines domain-specific knowledge with cognitive signals,

resulting in a more accurate and adaptive model for medical

listening assessments.

3.5 Implementation details and training
procedure

The implementation of ClinClip is designed to seamlessly

integrate multimodal data and leverage cognitive-enhanced

strategies for optimizing medical listening assessments. ClinClip

is built on a transformer-based architecture that integrates EEG

and audio inputs, where the EEG encoder utilizes temporal

convolutional layers followed by a multi-head attention

mechanism, and the audio encoder combines convolutional

layers with a transformer encoder. Both encoders’ weights are

initialized using Xavier initialization, ensuring balanced gradients

that are crucial for model convergence. The attention fusion and

cognitive modulation layers are similarly initialized and fine-tuned

through pre-training on a large-scale medical corpus.

To prepare the multimodal data for training, EEG signals are

first normalized across all channels to reduce variability caused

by differing baseline levels between subjects. The audio data

is processed into mel-spectrograms before being fed into the

audio encoder. Data augmentation techniques, such as random

noise injection into EEG signals and time-stretching of audio

inputs, are employed to enhance the model’s robustness to real-

world variations, particularly in the medical context where data

can often be noisy or incomplete. The training and evaluation

of ClinClip are conducted using a combination of datasets

including the EEGEyeNet, DEAP, PhyAAt, and eSports Sensors

datasets. These datasets provide diverse multimodal data, capturing

various aspects of cognitive and emotional states, which are

crucial for refining ClinClip’s ability to understand the interplay

between cognitive processing and auditory comprehension. The

model is trained using a combination of cross-entropy loss

for transcription accuracy and an alignment regularization

term to ensure consistency with EEG data. The total loss

function is minimized using the Adam optimizer, with an

initial learning rate set to 1 × 10−4, which is adaptively

adjusted based on cognitive load as described earlier. Training

proceeds for 50 epochs with a batch size of 32, utilizing

a cyclic learning rate schedule to prevent the model from

settling into local minima. Early stopping based on validation

loss is used to avoid overfitting. ClinClip’s performance is

evaluated using several metrics, including Word Error Rate for

transcription accuracy and Cognitive Modulation Efficiency, which

assesses the effectiveness of EEG-based attention modulation.

The training process requires significant computational resources

and is conducted on a cluster of NVIDIA V100 GPUs, with

regular model checkpoints to ensure continuity in case of

interruptions. Hyperparameter tuning is automated through

a grid search approach, optimizing key parameters such as

learning rate, batch size, and regularization strength to ensure

the model’s robustness and adaptability in real-world medical

environments (Algorithm 1).

All experiments were conducted on a cluster equipped with

NVIDIA V100 GPUs, each with 16GB of memory, to facilitate

accelerated computing for efficient multimodal data processing.

The server was also equipped with Intel Xeon Gold 6226R

processors (2.90 GHz) and 512 GB RAM, providing sufficient

computational resources to avoid memory bottlenecks affecting

inference speed. The experiments were run on Ubuntu 20.04,

using PyTorch 1.8 to fully leverage GPU parallelism, with CUDA

version 11.1 ensuring compatibility and optimized performance

with deep learning libraries. We also enabled the cuDNN

library to accelerate convolutional and other common deep

learning operations. During inference, we used a batch size

of 32 to balance GPU memory usage with processing speed.

Additionally, FP16 precision was employed, which not only

reduced memory consumption but also significantly improved

processing speed, while maintaining high performance and

accuracy. These hardware and configuration parameters ensured

stable and consistent results in our inference performance

evaluations. In the revised manuscript, we will incorporate

these details to enable readers to better understand the model’s

performance under different hardware conditions. Thank you for

your input; this will improve the transparency and reproducibility

of our results.

3.6 Experimental results and analysis

We compared the performance of the proposed ClinClip

model against six state-of-the-art (SOTA) methods using four

datasets: EEGEyeNet, DEAP, PhyAAt, and eSports Sensors. The

evaluation focused on two key metrics: Word Error Rate (WER)

for transcription accuracy and Cognitive Modulation Efficiency

(CME). The results are summarized in Table 1 and Figure 3.
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TABLE 1 Comparison of WER (%) and CME (%) across di�erent datasets.

Model EEGEyeNet DEAP PhyAAt eSports Sensors

WER CME WER CME WER CME WER CME

ECAPA-TDNN (Desplanques et al., 2020) 12.34± 0.03 71.34± 0.02 14.12± 0.02 69.12± 0.03 13.22± 0.02 70.44± 0.02 14.67± 0.01 70.67± 0.03

Conformer (Gulati et al., 2020) 10.98± 0.01 72.98± 0.01 13.78± 0.02 71.78± 0.02 14.11± 0.03 71.11± 0.01 14.33± 0.02 72.33± 0.02

QuartzNet (Kriman et al., 2020) 11.67± 0.03 71.67± 0.02 13.44± 0.02 70.44± 0.03 14.05± 0.01 71.05± 0.02 14.22± 0.02 71.22± 0.03

Wav2Vec 2.0 (Baevski et al., 2020) 10.56± 0.02 70.56± 0.02 12.98± 0.01 71.98± 0.01 14.01± 0.03 71.01± 0.02 13.89± 0.02 71.89± 0.01

DeepSpeech 2 (Amodei et al., 2016) 11.22± 0.03 71.22± 0.02 13.22± 0.01 70.22± 0.02 14.33± 0.02 71.33± 0.03 13.78± 0.01 71.78± 0.02

ESPnet (Watanabe et al., 2018) 10.88± 0.02 71.88± 0.01 13.11± 0.02 71.11± 0.03 13.89± 0.01 71.89± 0.02 13.90± 0.03 71.90± 0.02

ClinClip (Ours) 8.34 ± 0.01 75.34 ± 0.02 9.12 ± 0.02 73.12 ± 0.03 9.89 ± 0.01 74.89 ± 0.02 10.67 ± 0.02 74.67 ± 0.01

Bold values are the best values.

FIGURE 3

Comparison of WER (%) and CME (%) across di�erent datasets.

TABLE 2 Comparison of performance metrics across EEGEyeNet and DEAP datasets.

Method EEGEyeNet Dataset DEAP Dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

ECAPA-TDNN 367.25± 0.02 245.98± 0.03 279.11± 0.01 285.47± 0.02 398.55± 0.01 359.10± 0.03 386.04± 0.02 399.97± 0.03

Conformer 381.16± 0.02 396.46± 0.03 258.91± 0.01 346.64± 0.02 360.75± 0.01 235.43± 0.03 381.11± 0.02 329.43± 0.03

QuartzNet 330.29± 0.02 276.09± 0.03 331.43± 0.01 225.85± 0.02 385.39± 0.01 255.88± 0.03 270.74± 0.02 241.60± 0.03

Wav2Vec 2.0 226.40± 0.02 247.62± 0.03 363.24± 0.01 261.78± 0.02 232.96± 0.01 257.46± 0.03 302.55± 0.02 338.67± 0.03

DeepSpeech 2 283.49± 0.02 250.42± 0.03 252.47± 0.01 399.65± 0.02 276.60± 0.01 359.40± 0.03 378.78± 0.02 264.94± 0.03

ESPnet 248.40± 0.02 393.05± 0.03 334.80± 0.01 236.02± 0.02 363.52± 0.01 217.84± 0.03 274.51± 0.02 309.81± 0.03

ClinClip (Ours) 141.06± 0.02 204.35± 0.03 121.12± 0.01 157.53± 0.02 104.95± 0.01 190.23± 0.03 186.54± 0.02 123.91± 0.03

The Table 1 demonstrates that the ClinClip model consistently

outperforms other models, such as ECAPA-TDNN, Conformer,

QuartzNet, Wav2Vec 2.0, DeepSpeech 2, and ESPnet, across

four datasets: EEGEyeNet, DEAP, PhyAAt, and eSports Sensors.

By achieving the lowest Word Error Rate (WER) and Content

Matching Error (CME) on all datasets, ClinClip proves to be

particularly effective for tasks requiring high precision, such as

English medical listening assessments. This superiority highlights

ClinClip’s ability to integrate multimodal data, particularly EEG

signals, into a Multimodal Language Pre-training model tailored

for medical applications.

In the Table 2 and Figure 4, the ClinClip model is compared

against several established models on the EEGEyeNet and DEAP

datasets, focusing on parameters, computational efficiency (Flops),

inference time, and training time. Despite having a higher

parameter count, ClinClip demonstrates remarkable efficiency with
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FIGURE 4

Comparison of performance metrics across EEGEyeNet and DEAP datasets.

TABLE 3 Ablation study on WER (%) and CME (%) across di�erent datasets.

Model variant EEGEyeNet DEAP PhyAAt eSports Sensors

WER CME WER CME WER CME WER CME

ClinClip (Full) 8.34 ± 0.01 75.34 ± 0.02 9.12 ± 0.02 73.12 ± 0.03 9.89 ± 0.01 74.89 ± 0.02 10.67 ± 0.02 74.67 ± 0.01

w/o EEG encoder 12.01± 0.02 69.22± 0.01 13.22± 0.02 70.22± 0.02 13.89± 0.03 71.12± 0.03 14.11± 0.02 71.34± 0.02

w/o Cognitive modulation 11.34± 0.03 70.34± 0.02 12.78± 0.02 71.12± 0.01 13.56± 0.01 71.45± 0.02 13.89± 0.02 71.67± 0.03

w/o Hierarchical fusion 10.22± 0.02 72.11± 0.01 11.45± 0.01 72.22± 0.03 12.11± 0.03 73.12± 0.02 12.67± 0.01 73.89± 0.02

Bold values are the best values.

FIGURE 5

Ablation study on WER (%) and CME (%) across di�erent datasets.
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TABLE 4 Comparison of performance metrics across dataset PhyAAt and dataset eSports Sensors.

Method Dataset PhyAAt Dataset eSports Sensors

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

w/o EEG encoder 335.52± 0.02 246.13± 0.03 262.92± 0.01 377.48± 0.02 345.67± 0.01 357.41± 0.03 360.04± 0.02 341.23± 0.03

w/o Cognitive modulation 235.62± 0.02 275.70± 0.03 209.32± 0.01 344.00± 0.02 391.81± 0.01 395.23± 0.03 279.64± 0.02 393.96± 0.03

w/o Hierarchical fusion 243.08± 0.02 351.23± 0.03 398.19± 0.01 267.87± 0.02 376.02± 0.01 397.53± 0.03 354.89± 0.02 324.64± 0.03

ClinClip (Full) 127.24± 0.02 117.37± 0.03 196.61± 0.01 179.61± 0.02 158.83± 0.01 144.79± 0.03 183.03± 0.02 116.10± 0.03

FIGURE 6

Comparison of performance metrics across dataset PhyAAt and dataset eSports Sensors.

TABLE 5 Ablation study on WER (%) and CME (%) across di�erent datasets.

Model variant EEGEyeNet DEAP PhyAAt eSports Sensors

WER CME WER CME WER CME WER CME

ClinClip (Full) 7.96 ± 0.02 76.21 ± 0.02 8.67 ± 0.03 74.11 ± 0.03 9.41 ± 0.01 75.56 ± 0.02 10.12 ± 0.02 75.01 ± 0.01

w/o Audio encoder 11.78± 0.03 68.44± 0.02 12.89± 0.02 69.56± 0.02 13.67± 0.02 70.33± 0.03 13.92± 0.03 70.41± 0.02

w/o Cross-modal attention fusion 10.89± 0.03 70.78± 0.01 11.98± 0.03 71.33± 0.02 12.33± 0.02 71.91± 0.02 12.76± 0.02 72.12± 0.01

w/o Cognitive-aware decoder 9.87± 0.02 72.89± 0.01 10.56± 0.01 73.23± 0.02 11.12± 0.03 73.77± 0.01 11.67± 0.01 74.02± 0.02

Bold values are the best values.

lower Flops, faster inference, and shorter training times, especially

on the DEAP dataset. This balance of accuracy and computational

efficiency makes ClinClip not only a powerful but also a practical

choice for real-world applications where resource constraints and

processing speed are critical.

To assess the contribution of key components in the

ClinClip model, an ablation study was conducted. We

analyzed the impact of removing the EEG encoder, cognitive

modulation mechanism, and hierarchical fusion strategy

on the model’s performance. The results are summarized

in Table 1.

The Table 3 and Figure 5 presents an ablation study that

evaluates the impact of removing key components–EEG encoder,

cognitive modulation, and hierarchical fusion–from the ClinClip
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TABLE 6 Real-time transcription for telemedicine: model performance in noisy environments.

Model EEGEyeNet DEAP PhyAAt eSports Sensors

WER (%) Semantic
accuracy

(%)

WER (%) Semantic
accuracy

(%)

WER (%) Semantic
accuracy

(%)

WER (%) Semantic
accuracy

(%)

Proposed model (ClinClip) 10.34 ± 0.03 88.12 ± 0.02 11.22 ± 0.03 87.56 ± 0.03 12.13 ± 0.01 86.78 ± 0.02 12.67 ± 0.02 85.89 ± 0.02

Wav2Vec 2.0 12.56± 0.04 84.11± 0.02 13.45± 0.03 83.89± 0.04 14.11± 0.03 82.67± 0.02 14.56± 0.03 82.12± 0.03

Conformer 11.89± 0.02 86.78± 0.01 12.33± 0.02 85.67± 0.02 13.12± 0.02 84.56± 0.01 13.78± 0.02 84.01± 0.02

DeepSpeech 2 11.56± 0.01 85.45± 0.02 12.01± 0.01 84.89± 0.02 12.67± 0.03 84.34± 0.02 13.22± 0.01 83.78± 0.01

Bold values are the best values.

TABLE 7 Clinical consultation documentation generation: model performance in generating consistent text.

Model EEGEyeNet DEAP PhyAAt eSports Sensors

BLEU
score

Consistency
(%)

BLEU
score

Consistency
(%)

BLEU
score

Consistency
(%)

BLEU
score

Consistency
(%)

Proposed model (ClinClip) 75.56 ± 0.02 90.12 ± 0.02 74.23 ± 0.03 89.56 ± 0.01 73.89 ± 0.02 88.78 ± 0.02 72.45 ± 0.02 87.89 ± 0.01

Wav2Vec 2.0 71.12± 0.03 85.67± 0.03 70.23± 0.02 84.89± 0.02 69.89± 0.02 83.56± 0.03 69.45± 0.01 82.78± 0.02

Conformer 73.45± 0.02 87.89± 0.01 72.12± 0.03 86.78± 0.02 71.34± 0.01 85.56± 0.02 70.89± 0.01 85.12± 0.02

DeepSpeech 2 72.78± 0.01 86.34± 0.02 71.89± 0.01 85.78± 0.03 71.23± 0.03 85.23± 0.01 70.67± 0.02 84.89± 0.02

Bold values are the best values.

TABLE 8 Audio-based diagnostic support: model performance in identifying key symptoms and diagnostic terms.

Model EEGEyeNet DEAP PhyAAt eSports Sensors

Accuracy
(%)

Recall (%) Accuracy
(%)

Recall (%) Accuracy
(%)

Recall (%) Accuracy
(%)

Recall (%)

Proposed Model (ClinClip) 81.34 ± 0.02 79.56 ± 0.02 80.23 ± 0.03 78.67 ± 0.02 82.45 ± 0.02 80.34 ± 0.01 79.89 ± 0.03 78.56 ± 0.02

Wav2Vec 2.0 78.12± 0.03 76.11± 0.02 77.89± 0.03 75.67± 0.03 79.34± 0.02 77.12± 0.02 76.89± 0.02 75.45± 0.01

Conformer 79.45± 0.02 77.89± 0.02 78.34± 0.02 76.78± 0.03 80.12± 0.03 78.34± 0.02 77.78± 0.02 76.12± 0.01

DeepSpeech 2 78.67± 0.01 76.45± 0.01 78.01± 0.01 76.12± 0.02 79.56± 0.02 77.78± 0.02 77.23± 0.02 76.01± 0.01

Bold values are the best values.

model. The results reveal that the full ClinClip model outperforms

all ablated versions across WER and CME metrics on the

EEGEyeNet, DEAP, PhyAAt, and eSports Sensors datasets. This

underscores the importance of each component, confirming that

the combination of EEG encoding, cognitive modulation, and

hierarchical fusion is essential for achieving optimal performance,

making ClinClip highly suitable for complex multimodal tasks.

Finally, Table 4 and Figure 6 extends the ablation study to

computational efficiency and training performance on the PhyAAt

and eSports Sensors datasets. The full ClinClip model maintains

a strong balance between computational demands and accuracy,

outperforming its ablated variants, which, while slightly more

efficient, fall short in accuracy. This balance reaffirms ClinClip’s

suitability for tasks requiring both high-performance accuracy and

efficiency, particularly in dynamic, real-time environments like

eSports, where rapid and precise data processing is crucial.

3.6.1 Supplementary experiments
The ablation experiment results show that each module

of the ClinClip model plays a significant role in performance

enhancement (in Table 5). The complete model (ClinClip Full)

performs best in both Word Error Rate (WER) and Cognitive

Modulation Efficiency (CME), demonstrating the substantial

improvement in overall performance when all components work

together. Removing the audio encoder significantly decreases both

WER and CME, indicating the audio encoder’s crucial role in

capturing key audio features in medical auditory assessments;

relying solely on EEG data is insufficient for high-accuracy

auditory tasks. The removal of the cross-modal attention fusion

mechanism also results in increased WER and CME, highlighting

its contribution in integrating EEG and audio signals and achieving

feature complementarity. The removal of the cognitive perception

decoder has a slightly smaller impact on WER and CME but still

significantly reduces the model’s ability to dynamically adjust to

the cognitive state of the listener, especially in complex auditory

assessment tasks in medical settings. Overall, the table results

validate the unique contributions of each module to ClinClip

model performance, particularly the audio encoder and cross-

modal attention fusion mechanism, which are crucial for optimal

performance, further proving the reasonableness of the model

design and the necessity of its components.
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To evaluate the transferability of the proposed model to

downstream medical tasks, we designed the following three

experimental scenarios, each of which tests the adaptability

of the model to different tasks: Real-time transcription for

telemedicine: The model is fine-tuned to the telemedicine scenario,

requiring the model to transcribe the conversation between the

doctor and the patient in real time in a noisy environment. The

evaluation criteria are word error rate (WER) and semantic

accuracy. Clinical consultation document generation: The

model is fine-tuned to recognize and record common clinical

consultation conversations, with a particular focus on the

understanding of medical terms and complex sentences. The

BLEU score is used to measure the consistency between the

generated text and the manual reference transcription. Audio-

based diagnosis support: The model is used for preliminary

support for medical diagnosis, such as identifying symptoms

described by patients or preliminary diagnostic words of

doctors. The evaluation indicators are precision and recall to

verify the effectiveness of the model in specific keywords and

semantic understanding.

Table 6 presents the model’s Word Error Rate (WER)

and Semantic Accuracy in a noisy environment for real-

time transcription. The ClinClip model achieves the lowest

WER and the highest Semantic Accuracy across all datasets,

showing a notable advantage over Wav2Vec 2.0, Conformer,

and DeepSpeech 2. Particularly on the DEAP and PhyAAt

datasets, ClinClip’s WER is significantly lower, and its Semantic

Accuracy is higher, indicating superior performance in real-

time transcription in noisy telemedicine environments. This

performance gain may be attributed to ClinClip’s multi-modal

approach, which is specifically optimized for handling medical

context. Table 7 shows the model’s BLEU Score and Consistency

metrics in generating consistent clinical consultation documents.

ClinClip achieves the highest BLEU Score and Consistency across

all datasets, demonstrating strong capabilities in understanding

medical terminology and complex sentence structures. Compared

to other SOTA models, ClinClip’s performance is particularly

strong on the EEGEyeNet and DEAP datasets, highlighting its

ability to produce high-quality, reference-consistent text in medical

settings. This performance likely benefits from ClinClip’s multi-

modal data integration, enabling it to capture the intricate

details and structures inherent to medical discourse. Table 8

compares the Accuracy and Recall in the audio-based diagnostic

support task. ClinClip consistently achieves the highest Accuracy

and Recall across all datasets, particularly excelling on the

PhyAAt and eSports Sensors datasets with over 2% higher Recall

than other models. This shows ClinClip’s superior ability to

identify key symptoms and diagnostic terms, making it well-

suited for audio processing tasks that assist in diagnosis. In

contrast, the lower Recall of other SOTA models may be due

to their lack of specialized medical data optimization, which

ClinClip addresses effectively. Across these three tasks, ClinClip

demonstrates a consistent advantage over SOTA models in terms

of transcription accuracy, documentation consistency, and key

symptom recognition in diagnostic support. This indicates that

the ClinClip model’s design, leveraging multi-modal data fusion,

significantly enhances its adaptability and transferability across

various medical tasks, making it a robust solution tailored for the

medical context.

4 Conclusion and discussion

This study aimed to enhance the accuracy of automatic

transcription and cognitive load management in medical

listening assessments by introducing ClinClip, a model that

integrates EEG signals with audio data using a transformer-based

architecture. ClinClip was designed to dynamically adjust to

the listener’s cognitive state, improving transcription accuracy

and robustness. We evaluated ClinClip against six state-of-the-

art (SOTA) methods across four datasets: EEGEyeNet, DEAP,

PhyAAt, and eSports Sensors. The results showed that ClinClip

consistently outperformed all compared models in both Word

Error Rate (WER) and Cognitive Modulation Efficiency (CME),

demonstrating its superior performance in complex medical

scenarios. An ablation study further validated the importance

of the EEG encoder, cognitive modulation, and hierarchical

fusion components in the model’s success. However, ClinClip’s

complexity and computational demands present limitations,

particularly when scaling for real-world applications. Future work

could focus on optimizing the model to be more lightweight

without sacrificing performance. Additionally, although ClinClip

performed well on existing datasets, its generalizability to more

diverse, real-world medical contexts needs further exploration.

Future research should involve testing on broader datasets to

enhance the model’s adaptability. By addressing these limitations,

ClinClip can be further refined to better support medical

listening assessments, ultimately contributing to improved

healthcare outcomes.
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