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Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS),
bulbar involvement significantly impacts psychosocial, emotional, and physical
health. A validated objective marker is however lacking to characterize and
phenotype bulbar involvement, positing a major barrier to early detection,
progress monitoring, and tailored care. This study aimed to bridge this gap by
constructing a multiplex functional mandibular muscle network to provide a
novel objective measurement tool of bulbar involvement.

Methods: A noninvasive  electrophysiological  technique—surface
electromyography—was combined with graph network analysis to extract
48 features measuring the regulatory mechanisms, connectivity, integration,
segregation, assortativity, and lateralization of the functional muscle network
during a speech task. These features were clustered into 10 interpretable latent
factors. To evaluate the utility of the muscle network as a bulbar measurement
tool, a heterogenous ALS cohort, consisting of eight individuals with overt
clinical bulbar symptoms and seven without, along with 10 neurologically
healthy controls, was employed to train and validate statistical and machine
learning algorithms to assess the disease effects on the network features and the
relation of the network performance to the current clinical diagnostic standard
and behavioral patterns of bulbar involvement.

Results: Significant disease effects were found on most network features. The
most robust effects were manifested by reduced and more variable myoelectric
activities, and reduced functional connectivity and integration of the muscle
network. The 10 latent factors (1) demonstrated acceptably high efficacy
for detecting bulbar neuromuscular changes across all clinically confirmed
symptomatic cases and clinically silent prodromal cases (area under the curve
=0.89-0.91; F1 score = 0.85-0.87; precision = 0.84-0.86; recall = 0.87-0.88);
and (2) selectively correlated with clinically meaningful behavioral patterns
(conditional R? = 0.45-0.81).

Conclusion: The functional muscle network shows promise for an objective
quantifiable measurement tool to improve early detection and profiling of
bulbar involvement across the prodromal and symptomatic stages. This tool has
various strengths, including the use of a clinically readily available noninvasive
instrument, fully automated data processing and analytics, and generation
of interpretable objective outcome measures (i.e.,, latent factors), together
rendering it highly scalable in routine clinical practice for assessing and
monitoring of bulbar involvement.

KEYWORDS

graph neural networks, masticatory muscles, speech disorders, neurodegenerative
diseases, amyotrophic lateral sclerosis, surface electromyography, quantitative
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1 Introduction

Neurodegenerative  diseases are progressive, currently
incurable conditions affecting millions of people worldwide,
with an increasing prevalence owing in part to the extensions
in lifespan (Gitler et al, 2017). As multisystem disorders,
neurogenerative diseases progressively affect multiple domains
of function, including communication (speech and language),
cognition (memory and executive function), swallowing, mobility,
amongst others. The clinical manifestations and progression
of neurodegenerative diseases are highly heterogenous across
individuals, and the relation of such clinical heterogeneity to the
underlying pathophysiology remains poorly understood. This
knowledge gap posits a major barrier to the development of
effective therapeutic treatments. Currently, the mainstay of the
management of neurodegenerative diseases focuses on controlling
symptoms, slowing functional declines, preserving quality of
life, and prolonging survival, through both pharmacological and
nonpharmacological interventions (Church, 2021; Norris et al,
2020). To optimize the outcomes of these interventions, a patient-
centered approach has been advocated, emphasizing delivering
the right intervention to the right person at the right time (Miller
et al, 2018; Olszewska and Lang, 2023). This approach, also
known as precision or personalized medicine in a broader context
(Pokorska-Bocci et al., 2014), requires a better understanding of
the pathophysiological processes and phenotypes that underlie the
clinical heterogeneity to improve intervention tailoring based on
individual characteristics.

To better understand the pathophysiological mechanisms of
neurodegenerative diseases, a network-based perspective has been
posited to link three aspects of neurodegeneration: (1) the variable
spreading patterns of pathogenic processes, (2) the degeneration of
distributed neural networks, and (3) their integrative influence on
clinical manifestations (Vogel et al., 2023). The major contribution
of this perspective is that it identifies an intermediate phenotype
(i.e., neural networks) to account for the clinical heterogeneity of
neurodegenerative diseases. Moreover, it also paves the way for
investigating the highly heterogeneous clinical manifestations and
progression of neurodegenerative diseases using a well-developed,
powerful mathematical tool—network analysis (Newman, 2003).
This analysis maps distributed networks as nodes (e.g., neural
structures) and edges (e.g., anatomical or functional connections
between neural structures), and characterize nodal and edgewise
properties of the network using graph-based descriptors (Rubinov
and Sporns, 2010). Such descriptors provide a window into the
rules governing the behaviors (e.g., regulatory mechanisms of nodal
activities) and structural organization (e.g., connectivity between
nodes) of the network. By establishing individualized and dynamic
profiles of nodal and edgewise features, this network approach
may offer an effective means to characterize and quantify the
neurodegenerative processes at an individual level to improve
personalized diagnosis and management.

So far network analysis has been primarily applied to study
the degeneration of brain networks related to dementia syndromes,
such as in Alzheimers disease (Oxtoby et al, 2017; Vogel
et al, 2023). The other functional domains remain relatively
underexplored. Notably, bulbar motor function (i.e., speech and
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swallowing), which is vital to daily functioning, psychosocial,
emotional, and physical health, has been rarely studied from the
network perspective. Speech and swallowing disorders constitute
key components of neurodegeneration in various conditions such
as amyotrophic lateral sclerosis (ALS). Compared with other
functional domains (e.g., mobility), there is a paucity of validated
objective quantifiable markers of bulbar involvement (Pattee et al.,
2019; Yunusova et al, 2019). This gap significantly hampers
the early detection, progress monitoring, and tailored care of
speech and swallowing disorders in neurodegenerative diseases and
further undermines the efforts for therapeutic treatment discovery
due to the lack of an efficacious means to evaluate treatment
effects on bulbar motor function in clinical trials. Therefore, the
need for objective quantifiable bulbar markers is well recognized
(Chiaramonte et al., 2019; Green et al., 2018; Tondo and De
Marchi, 2022). To fill this need, network analysis presents a huge
potential in providing an efficient computational tool to quantify
the performance of the bulbar motor system.

The purpose of this study is to exploit the potential of
network analysis for objective bulbar marker development, by
constructing a multiplex functional mandibular muscle network
during speech to characterize bulbar involvement in ALS across
the prodromal and symptomatic stages. Bulbar involvement is a
hallmark feature of ALS, affecting the majority of patients during
the course of ALS progression regardless of disease onset (e.g.,
bulbar/spinal) (Green et al., 2013; Yorkston et al., 1993). According
to a patient-based subjective experience report, loss of useful
speech secondary to bulbar involvement has been identified as
the most devastating consequence of ALS, significantly impacting
social participation, emotional health, and quality of life (Hecht
et al., 2002). Although the current clinical standards for bulbar
assessment focus on symptoms and functional outcomes, it is
well established in the research literature that subclinical bulbar
involvement starts long before the onset of clinical symptoms and
functional declines in ALS (Rong et al., 2015a, 2016). Developing
objective markers to capture such subclinical bulbar involvement
across the prodromal and symptomatic stages can therefore provide
important mechanistic insights for phenotyping the heterogeneous
bulbar presentations and progression trajectories in ALS to
improve personalized care.

While most existing network models are built upon brain
imaging data, this study innovatively applied network analysis to
electrophysiological data acquired by a clinically readily available,
noninvasive instrumental technique—surface electromyography
(sEMG). This methodological choice was contingent on three
considerations. First, different from other neurodegenerative
diseases such as Alzheimer’s disease and Parkinson’s disease, which
primarily involve brain structures and pathways, ALS attacks
various types of neurons in the cerebrum, brainstem, and spinal
cord, as well as in the pathways connecting these central nervous
system (CNS) structures with each other and with the muscles
in the peripheral nervous system (PNS). A brain network model
can only capture pathological changes in the CNS, but not in
the PNS or in the interface between CNS and PNS. In contrast,
the performance of a functional muscle network reflects the
integrative functioning of all upstream CNS and PNS structures
and pathways. Such a muscle network model can thus provide a
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more complete picture of the neuropathological mechanisms of
ALS compared to a brain network model. Second, with immediate
anatomical attachment to the effectors (e.g., speech articulators),
the performance of a functional muscle network is directly
associated with the behaviors of these effectors, which constitute an
important part of oral mechanism exam in standard clinical bulbar
assessment (Duffy, 2013; Yunusova et al., 2019). In this sense, the
muscle network can offer explanatory insights into the complex,
poorly understood clinical-neuropathological relationship in ALS,
by providing an interface to link the clinically relevant behavioral
patterns with the neuropathological underpinnings. Third, from a
practical standpoint, the instrumental technique for constructing
a functional muscle network (i.e., SEMG) is more accessible
and less expensive compared with the neuroimaging techniques
required for constructing a brain network. Lastly, the selected
mandibular muscle groups for network construction have been
demonstrated by previous studies to show measurable changes as
early as during the prodromal stage of bulbar involvement in ALS
(Rong and Jawdat, 2021; Rong and Pattee, 2021, 2022; Rong and
Rasmussen, 2024). Taken together, these practical and empirical
considerations support the potential of a SEMG-based functional
mandibular muscle network for a clinically scalable objective bulbar
assessment tool.

To construct the proposed multiplex functional mandibular
muscle network, we developed a fully automated data processing
and analytic approach to characterize the network performance
using graph-based measures. We hypothesized that these measures
would (1) effectively detect and profile bulbar involvement across
the prodromal and symptomatic stages in ALS and (2) associate
with clinically relevant behavioral patterns of the effector (i.e., jaw).

2 Materials and methods

This study was part of an ongoing larger-scope project. The
protocol of this project was approved by the Institutional Review
Board of the university medical center. Written informed consent
was obtained from all participants. All study procedures were
non-invasive and minimal risk. No adverse events were reported.

2.1 Participants

Fifteen individuals with ALS (nine men/six women; age: 38—
77 years), including eight with overt clinical bulbar symptoms
and seven without, and 10 neurologically healthy controls (three
men/seven women; age: 38-81 years) participated in this study. The
inclusionary criteria included: (1) being diagnosed with definite
or probable ALS as per the revised El Escorial Criteria (Brooks
et al., 2000) for participants with ALS or reporting no known
neurological diseases or injury for healthy controls; (2) speaking
American English as the first and primary language; (3) passing
hearing screening at 1,000, 2,000, and 4,000 Hz at 30 dB in the
better ear; (4) possessing adequate cognitive function to follow
instructions and perform experimental tasks as per by standard
cognitive screening procedures.
with  ALS
multidisciplinary ALS clinic of the university medical center.

Participants were recruited from the
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As per standard clinical examination procedures (e.g., oral
mechanism exam, clinician-based screening/evaluation, patient-
reported outcomes), eight of the participants presented with
overt clinical bulbar symptoms, providing samples representative
of the symptomatic stage of bulbar involvement. The other
seven participants exhibited no overt clinical bulbar symptoms.
According to a prior longitudinal study (Rong et al., 2015a), the
likelihood that these participants, who were on average 453 days
post-diagnosis, had experienced subclinical bulbar involvement at
the time of enrolling into this study was high despite the absence
of clinical symptoms. Thus, these participants were regarded as
samples representing the prodromal stage of bulbar involvement.
Together, the inclusion of both prodromal and symptomatic
cases offered a comprehensive sample set representative of the
whole spectrum of bulbar involvement in ALS to address the
research aims.

To evaluate the severity of the overall and bulbar functional
disabilities, all participants with ALS completed the ALS Functional
Rating Scale-Revised (ALSFRS-R) (Cedarbaum et al, 1999).
ALSFRS-R is the most widely accepted means of monitoring
disabilities in ALS clinical practice and clinical trials. It consists
of 12 questions that assess four domains of function, including
gross motor, fine motor, bulbar, and respiratory functions, with
each question being rated on a scale of 0 to 4 points (4 being
normal; 0 being the highest level of disability). Based on the
participant’s responses, the total score for all 12 questions and the
bulbar subscore for the three questions related to bulbar items
(i.e., speech, salivation, swallowing) were calculated to index the
overall and bulbar functional disabilities, respectively. The clinical,
functional, and demographic characteristics of the participants are
provided in Supplementary Table S1, and a statistical summary of
these characteristics is displayed in Table 1.

2.2 Experimental task, setup, and data
collection

To construct the proposed functional muscle network, the
myoelectric activities of three bilateral pairs of jaw muscles—
anterior temporalis (TEMP), masseter (MAS), anterior belly of
digastric (ABD)—were recorded by a wireless sSEMG system
(BIOPAC) during a speech task. The selection of target muscles was
primarily based on accessibility consideration. The morphological
characteristics of anterior temporalis, masseter, and anterior belly
of digastric muscles make them easily accessible and reliably
measurable by surface electrodes, as demonstrated by a body of
experimental work by our research team and others (Koole et al.,
1991; Moore et al., 1988; Rong and Pattee, 2021).

Regarding task selection, speech production, as a fine oromotor
behavior, requires rapid contractions and complex coordination of
a variety of bulbar muscles. Speech tasks such as oral reading and
narrative have been consistently demonstrated by prior studies to
be sensitive for detecting subtle bulbar involvement (e.g., during the
prodromal stage) in ALS (Rong and Heidrick, 2022, 2024; Rong and
Pattee, 2022). In this study, we selected an oral reading task, where
participants read a standard phonetically balanced reading passage,
namely Rainbow Passage, at their habitual rate and loudness. This
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TABLE 1 Summary of demographic, clinical, and functional
characteristics of participants.

Statistics for
between-group
comparison

Control
(N =10)

Participant

characteristics

Demographic

Women (n %) 40.00% 70.00% x*=113, p= 029
Age, years (M; SD) 60.73; 12.66 66.80; 13.02 F(1,23) = 0.54,
p =047
Clinical
Disease onset (1 %) Bulbar: 33.33% | N/A N/A
Spinal: 66.67%
Stage of bulbar Prodromal: N/A N/A
involvement (n %) 46.67%
Symptomatic:
53.33%
Days since diagnosis 382.93;416.72 | N/A N/A
(M; SD)
Functional
ALSFRS-R: total score | 37.33; 6.55 N/A N/A
(M; SD)
ALSFRS-R: bulbar 9.60; 2.87 N/A N/A
sub-score (M; SD)

ALS, amyotrophic lateral sclerosis; control, healthy controls; ALSFRS-R, ALS Functional
Rating Scale-Revised.

passage consists of 19 sentences with a total of 329 words, which
cover the entire phonetic inventory with the frequency of each
phoneme matching their distribution in English. Oral reading of
the Rainbow Passage has proven by prior work to elicit robust
activations of mandibular muscles in both neurologically healthy
and impaired speakers (Rong and Jawdat, 2021; Rong and Pattee,
2022). The theoretical and empirical evidence base provides the
rationale for our task selection to enhance both the robustness and
generalizability of the results of this study.

To maximize reproducibility and minimize artifacts (e.g.,
crosstalk), we followed the best practice guidelines for surface
electrode selection, setup, and recording (Castroflorio et al,
2008; Merletti and Muceli, 2019; Stepp Cara, 2012). First, the
target areas of skin were prepared using an alcohol swab to
increase skin conductance. Following skin preparation, self-
adhesive bipolar Ag/AgCl electrodes with 11 mm diameter size and
the closest inter-electrode distance possible (e.g., about 20 mm)
were attached to the skin over the belly of each target muscle,
parallel to fiber orientation. To enhance the reproducibility of
this procedure, craniofacial anatomical landmarks were used
to guide the placement of electrodes along the cantho-gonial
line for masseter, vertically at the coronal suture for anterior
temporalis, and submentally along the posterior-inferior direction
for anterior belly of digastric. Ground electrodes were attached
to the participant’s shoulder. Electrode placement was verified by
calibration gestures such as jaw oscillation and clenching to ensure
data validity. The analog signals acquired by the surface electrodes
were pre-amplified by 2,000 and band-passed filtered at 5-500 Hz
by the wearable BioNormadix modules, digitized at 2,000 Hz by the
MP160 module, and finally recorded by the Acknowledge software.
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To examine the relation of the proposed functional mandibular
muscle network to behavioral patterns of the jaw, jaw motion
was recorded in three dimensions by an electromagnetic tracking
system (Wave, Northern Digital Inc.). During the recording,
participants were seated next to a field generator to the right; a
small wired sensor was attached to the center of lower chin, and
a reference sensor was attached to the center of forehead for head
movement correction. Jaw motion was captured by the sensor
on the lower chin relative to the forehead and was recorded at
100 Hz by the WaveFront software. Additionally, the midsagittal
contour of the hard palate was traced by a manufacturer-supplied
probe, from the posterior edge at the intersection between the hard
and soft palate to the anterior edge at the location of the lower
central incisor. This palatal trace served as an anatomical reference
to characterize the motion pattern of the jaw in the subsequent
kinematic analysis.

In addition to the sSEMG and kinematic recordings, speech was
audio-recorded by a head-mounted microphone (DPA dfine 4188)
placed ~5 cm away from the left lip corner. The audio signal was
preprocessed by the Behringer Xenyx 802 sound conditioner and
recorded at 22,050 Hz by the WaveFront software, simultaneously
with the kinematic signal. The audio recording served as a
reference to assist with sSEMG and kinematic data segmentation and
interpretation. Figure 1 provides an overview of the experimental
paradigm along with the procedures for signal processing and
analysis, as elaborated below.

2.3 sEMG data processing

SsEMG is known to be susceptible to various sources of electrical
and mechanical artifacts (e.g., motion at the skin-electrode
interface, crosstalk, power line noise). To enhance the signal-to-
noise ratio of the sSEMG data, we used a multistep signal processing
approach to minimize these artifacts, following the recommended
guidelines in the sEMG literature (De Luca et al., 2010; Rong and
Pattee, 2022; Stepp Cara, 2012). First, to minimize the effect of
crosstalk, we adopted a blind source separation (BSS) algorithm
from Kilner et al. (2002) to remove potential contamination of
nearby muscles from each sEMG channel. BSS is a statistical
signal processing technique to reconstruct the original unobserved
signals (e.g., sources reflecting true myoelectric activities) based on
the decomposition of the measured signals (i.e., surface-detected
signals) (Talib et al., 2019). BSS has been successfully applied to
reduce crosstalk from facial SEMG recordings in previous research
(Sato and Kochiyama, 2023) and is therefore adopted by this
study to serve the same purpose. After crosstalk removal, all
SsEMG channels were notch-filtered at 60 Hz and high-pass filtered
at 20Hz to further remove power line noise and low-frequency
movement artifacts, respectively. Lastly, DC offsets were removed
from each channel.

2.4 sEMG data analytics

Based on the processed sSEMG signals, a weighted multiplex

functional mandibular muscle network was constructed.
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This network consisted of six nodes, each representing a
muscle; the weights of the edge between nodes reflected the
functional connection between each pair of muscles in different
frequency bands (see details below). To characterize the structural
organization and behaviors of the network in relation to bulbar
neuromuscular pathology in ALS, a fit-for-purpose data analytic
program was developed and implemented in MATLAB (R2023a)
to extract a variety of nodal and edgewise features from the sSEMG
signals for each sentence of the Rainbow Passage [total N = (25
participants x 19 sentences) — 2 errors = 473]. An overview of
these network features is provided in Table 2, and the pipeline for
feature extraction is outlined in Figure 2, with methodological
details described below.

2.4.1 Nodal features

Nodal features were extracted from each SEMG channel
to characterize the regulatory mechanisms for modulating the
myoelectric activity of each jaw muscle. To this end, each sSEMG
signal was first transformed into a local standard deviation series
using Equation 1:

2

Zj(?—l) crn Ui Uj)

L-1 M

‘/j:

where [U]] = [Uy, Uy, ..
[‘/]] = [Vl: V2> ce.
deviation series, and L is the length of interval for standard

., Un] is the original sSEMG signal,
, Vi) is the transformed local standard

deviation calculation, which was set to 50ms (i.e., L = 100), in
line with our prior study (Rong et al., 2024). These local standard
deviation series were then transformed to visibility graphs. This
transformation treated each data point in the series as a node and
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determined the connection between nodes based on Equation 2:
v, -V
y = Ve
y—z

Vv, — Vy
y—Xx

2

where V is an arbitrary node between two given nodes Vy and V..
If all nodes between V, and V), meet the criterion in Equation 2, Vy
and V) are regarded as being connected. A node corresponding to
a local peak in the series (i.e., a state of high-level activation) tends
to have high connectivity with its neighboring nodes (i.e., high
visibility). This notion relates the structure of the visibility graph
with the dynamics of myoelectric activities, allowing the descriptors
of the graph to inform the regulatory mechanisms for modulating
myoelectric activities.

To characterize the structure of the visibility graph, two
descriptors—density and spectral radius ratio—were derived.
Density represents the overall node connectivity of the graph,
which is defined as the ratio of the total number of the graph’s edges
to the largest possible number of edges, as per Equation 3:

2xm

MM — 1) )

density =
where M and m are the total number of nodes and edges of the
graph, respectively. Spectral radius ratio represents the variation
of node connectivity, which is defined as the ratio of the principal
eigenvalue of the adjacency matrix of the graph to the mean node
degree (Meghanathan, 2014).

Together, density and spectral radius ratio provided
quantitative means to assess the overall level and variability
of myoelectric activities. Given the well documented changes in
motor unit recruitment and firing patterns in ALS (de Carvalho
et al., 2014, 2012), myoelectric activities tend to be reduced and
become more irregular, as observed in prior research (Rong and

Pattee, 2022). Density and spectral radius ratio were intended to
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TABLE 2 Overview of network features.

Type Feature

Nodal density RTEMP
density_LTEMP
density_ RMAS
density_ LMAS
density_ RABD

density_LABD

Notation

Density

10.3389/fnins.2024.1491997

Targeted functional underpinnings ‘

Level of muscle activity

specradRatio_RTEMP
specradRatio_LTEMP
specradRatio_ RMAS
specradRatio_LMAS
specradRatio_RABD
specradRatio_LABD

Spectral radius ratio

Variability of muscle activity

Edgewise nodstr_theta.alpha
nodstr_beta

nodstr_gamma

Mean nodal strength

Overall functional connectivity of multiplex muscle
network

ac_theta.alpha
ac_beta
ac_gamma

Assortativity coeflicient

Selective functional connectivity of multiplex muscle
network

ge_theta.alpha
ge_beta
ge_gamma

Global efficiency

Functional integration of multiplex muscle network

wcc_RTEMP_theta.alpha
wcc_LTEMP_theta.alpha
wcc_RMAS_theta.alpha
wcc_LMAS_theta.alpha
wcc_RABD_theta.alpha
wcc_LABD_theta.alpha

wcc_RTEMP_beta
wce_LTEMP_beta
wce_ RMAS_beta
wce_LMAS_beta
wce_RABD_beta
wce_LABD_beta

wce_RTEMP_gamma
wce_LTEMP_gamma
wce_RMAS_gamma
wce_LMAS_gamma
wce_RABD_gamma
wcc_LABD_gamma

Weighted clustering
coefficient

Functional segregation of multiplex muscle network

lat_TEMP_MAS_theta.alpha
lat_TEMP_ABD_theta.alpha
lat_MAS_ABD_theta.alpha

lat_TEMP_MAS_beta
lat_TEMP_ABD_beta
lat_MAS_ABD_beta

lat_TEMP_MAS_gamma
lat_TEMP_ABD_gamma
lat_MAS_ABD_gamma

Laterality index

Functional lateralization of multiplex muscle
network

target and quantify these changes related to the nodal properties of
the muscle network.

2.4.2 Edgewise features

Edgewise features were calculated based on intermuscular
coherence in three frequency bands—theta/alpha (4-12 Hz), beta
(12-30 Hz), and low gamma (30-60 Hz). By definition, coherence
is a measure of temporal correlation between two signals in
the frequency domain (Laine and Valero-Cuevas, 2017; Reyes
et al, 2017). It is well known that neural oscillations in
different frequency bands are related to distinct neural drives for
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modulating muscle functions. Specifically, beta and low-gamma
oscillations originate directly from the motor cortical network,
which have been associated with submaximal tonic contractions
and attentionally more demanding, stronger tonic and phasic
contractions, respectively (Boonstra et al., 2015; Brown, 2000; Laine
et al., 2015). Theta/alpha oscillations have been linked to diverse
subcortical and cortical sources (e.g., brainstem, sensory cortex)
outside of the motor cortical network, contributing to indirect
motor control (e.g., sensorimotor integration and adaptation)
(MacKay, 1997; Maezawa, 2017; Suppa et al., 2016). Therefore,
measurements of intermuscular coherence in these bands can
provide a window into the multiplex functional connection
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FIGURE 2

Pipeline for constructing the multiplex functional mandibular muscle network. The network consists of six nodes corresponding to six mandibular
muscles: right temporalis (RTEMP), left temporalis (LTEMP), right masseter (RMAS), left masseter (LMAS), right anterior belly of digastric (RABD), left
anterior belly of digastric (LABD). Each pair of nodes are connected by an edge, with the weight of the edge (denoted by line width) reflecting the
strength of functional connection between muscles (measured by intermuscular coherence) in three frequency bands (theta/alpha, beta, low
gamma). Step [: Nodal feature extraction. Using the RABD node as an example for demonstration, the surface electromyography signal for the node
is first converted to a local standard deviation series, which is then transformed to a visibility graph. Based on this graph, two visibility
descriptors—density and spectral radius ratio—are derived to measure the overall level and variability of nodal activity, respectively. Step [: Edgewise
feature extraction. Using the edge between the RABD and RMAS nodes as an example, the magnitude-squared coherence spectrum is calculated;
after verifying significance, the mean coherence within the target frequency bands (highlighted by different colors) is computed. Using these
coherence values as edge weights, a set of network measures, including mean nodal strength, assortativity coefficient, global efficiency, weighted
clustering coefficient, and laterality, are derived to characterize the edgewise features of the muscle network.
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between muscles related to different neural sources. The feasibility
of measuring intermuscular coherence in these bands from sEMG
signals has been established in the literature in both neurologically
healthy and impaired individuals (Carlsen et al., 2023; Fisher et al.,
2012; Flood et al., 2019; Issa et al., 2017; Laine and Valero-Cuevas,
2017; Rong and Pattee, 2021).

To calculate intermuscular coherence, all SEMG signals were
full wave rectified to maximize the timing information about
muscle activation (Halliday et al., 1995). The rectified signals were
then reconstructed by identifying and concatenating stationary 1-
s epochs around the bursts for each channel. Magnitude-squared
coherence spectrum was calculated based on the reconstructed
signals for each pair of muscles, using Equation 4:

1S,y (DI

S5, @

2
|ny| =

where |ny|2 is magnitude-squared coherence spectrum, Syy(f) is
the cross-spectrum between two muscles, and Sy (f) and Syy(f) are
the auto-spectra for each muscle. This analysis was implemented
by a 4,096-point Fast Fourier Transform applied over a sliding
1,024-point Hamming window with 75% overlap, following the
recommendations by Terry and Griffin (2008).
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For each coherence level

corresponding to the upper 95% confidence limit under the

spectrum, a significance
hypothesis of independence between muscles was calculated as:
S =1—0.05/4=D, where L is the adjusted number of overlapped
segments in coherence calculation (Halliday et al., 1995; Terry and
Griffin, 2008). Weak, non-significant coherence usually implies
a spurious connection between muscles; such a connection could
obscure the topology of strong, significant connections in the
muscle network (Rubinov and Sporns, 2010). Therefore, the
significance level was applied as a threshold to rule out spurious
connections. Within each target band (theta/alpha, beta, gamma), if
there was a lack of peaks above the significance level, the coherence
for the band was set to zero; otherwise, the mean coherence
within the band was calculated. Finally, all coherence values were
transformed to Fisher z-scores for variance stabilization (Halliday
etal., 1995).

Following the procedures above, a total of 45 coherence
metrics (15 edges x 3 bands) were extracted for the multiplex
functional muscle network. Using these metrics as the weights
of the networK’s edges, graph network analysis was applied to
derive a set of graph descriptors to characterize the edgewise
properties of the network. These descriptors included mean nodal
strength, assortativity coefficient, global efficiency, and weighted
clustering coefficients.
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Mean nodal strength is the average sum of edge weights across
nodes, which reflects the overall functional connectivity of the
network. There is a mounting body of evidence showing impaired
functional connection between muscles in individuals with ALS,
especially in the beta band (Fisher et al., 2012; Issa et al., 2017; Rong
and Pattee, 2021). Mean nodal strength was intended to detect and
quantify such impairments of functional connection in ALS.

Assortativity coefficient measures the correlation of the
(weighted) degrees of all nodes between two opposite sides of an
edge, providing an insight into selective functional connectivity
of the network. In general, an assortatively mixed network (i.e.,
characterized by mutually interconnected high-degree hubs) tends
to have a positive coeflicient, whereas a disassortative network
usually has a negative coefficient. Prior studies have reported
selective vulnerability of functional connection between different
muscle groups in individuals with ALS (Rong and Jawdat,
2021; Rong and Pattee, 2021). Such selective vulnerability may
differentially affect the connectivity between different nodes and in
turn influence the assortativity of the muscle network.

Global efficiency is the average inverse shortest path length
between all pairs of nodes, which provides a global index
of functional integration of the network. Weighted clustering
coefficient represents the connectivity of each node to its
neighboring nodes, which can be interpreted as a measure of
functional segregation/specialization, that is, the ability to perform
specialized functions by segregated muscle groups within the
network. A complex, high-performing biological system should
be both functionally integrated and specialized (Tononi et al,
1998). This notion, applied to the functional muscle network
in this study, implies that the activity of functionally segregated
muscle groups (e.g., agonists vs. antagonists) should be integrated,
in order to generate complex, coherent, and adaptive behaviors
during speech. Yet, prior work has reported overall less complex,
less coherent, and more irregular speech behaviors in individuals
with ALS (Rong, 2021). These changes could be attributed to
impaired functional integration and/or segregation of the speech
motor system due to neurodegeneration. Along this line, global
efficiency and weighted clustering coeflicient were employed to
provide complementary insights into functional integration and
segregation of the muscle network.

Besides the standard graph descriptors above, another set of
edgewise features was extracted to characterize the laterality of the
multiplex functional muscle network. Here laterality was indexed
by the difference between the weight of a specified edge on the
right side and its counterpart on the left side, normalized by the
sum of all edge weights in the network. This index was calculated
for three types of edges, which connected temporalis with
masseter, temporalis with digastric, and masseter with digastric,
respectively. These indices evaluated the functional lateralization of
one agonist (temporalis-masseter) and two antagonist (temporalis-
digastric, masseter-digastric) muscle groups within each target
band. While the majority of bulbar muscles are bilaterally
innervated, a contralateral dominance has been reported in beta-
band corticomuscular coherence in previous studies, suggesting
that a larger proportion of corticobulbar projection comes from
the contralateral hemisphere (Maezawa, 2017; Maezawa et al,
2014). For individuals with ALS, a recent evolutionary perspective
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of neurodegeneration has associated evolutionary hemisphere
specialization with preferential involvement (Henderson et al,
2019). It posits that ALS tends to preferentially involve cerebral
structures and pathways that have evolved recently in human
evolution, including those in the dominant left hemisphere serving
later evolved functions such as speech (Henderson et al., 2019).
Together, the interplay between the disease-related asymmetrical
cerebral involvement and contralateral dominance of corticobulbar
projection may result in a decrease in right-to-left functional
lateralization of the muscles. The laterality index was intended to
capture such a change in functional lateralization.

2.5 Kinematic data processing and analysis

The 3D jaw sensor data were low-pass filtered at 15Hz by a
second-order, zero-lag Butterworth filter to remove high-frequency
movement artifacts. The Euclidian distance between the jaw sensor
and the lower central incisor (i.e., anterior edge of the palatal trace)
was calculated at each sampled time point, generating a data series
representing the global movement pattern of the jaw.

This data series was submitted to a custom-developed analysis
to extract three metrics: acceleration time, mean acceleration, and
stiffness. Acceleration time and mean acceleration are temporal
and spatial descriptors of the acceleration profile. Scientifically,
according to Newton’s second law, force is the product of mass and
acceleration. As such, descriptors of the jaw acceleration profile can
provide insights into the force exerted by the jaw muscles on the
mandible. Clinically, the slowness of orofacial movement is one
of the most prevalent signs of bulbar involvement in ALS (Green
et al,, 2013; Yorkston et al., 1993); such a sign can manifest in
the acceleration profile as increased acceleration time and reduced
mean acceleration, as demonstrated by prior research (Bandini
et al.,, 2018; Rong and Heidrick, 2021). Linking these acceleration
descriptors with the network measures can inform the relation of
the proposed functional muscle network to the force generation
capacity of the mandibular system.

From the perspective of dynamical systems, the generation
of the desired force/acceleration for a specific task requires the
neuromuscular system to modulate the dynamic properties of the
effectors based on task demands. Along this line, several theoretical
models have been established to characterize dynamic speech
behaviors with a spring-mass second-order dynamical system.
These models, including the original task dynamic model proposed
by Saltzman and Munhall (1989) and various extended versions
(Parrell and Lammert, 2019; Simko and Cummins, 2010), posit that
force/acceleration is associated with two dynamic parameters—
stiffness and damping. Given that these two parameters are not
mutually exclusive (i.e., damping is associated with stiffness and
mass), we focused on stiffness in this study. The functional
significance of stiffness is well established in the motor speech
literature. Increased stiffness is associated with various mechanical
advantages for generating rapid movement and/or maintaining
stability against perturbation to ensure movement precision
(Humphrey and Reed, 1983; Moore, 1993; Moore et al., 1988). As
such, linking stiffness with the network measures can inform the
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relation of the functional muscle network to the dynamic control
mechanism of the mandibular system.

To obtain these kinematic/dynamic metrics, the first and
second derivatives of the jaw Euclidian distance data series
were calculated, resulting in two new data series representing
velocity and acceleration traces, respectively. Acceleration time was
calculated as the average duration from the onset (i.e., velocity = 0)
to the peak velocity of movement across all jaw opening and closing
cycles during the speech stimulus. Mean acceleration was calculated
as the average acceleration across the accelerating phase of all jaw
opening and closing cycles. Unlike the acceleration descriptors,
stiffness was not directly measurable from the kinematic recording
but can be estimated by empirical means. In this study, stiffness was
estimated by the ratio of maximum speed to maximum distance of
motion (Berry, 2011).

2.6 Statistical and computational analyses

All analyses were conducted in the R statistical computing
program (R Core Team, 2022). For statistical analysis, the
significance level was set to p < 0.05 for main effects and was
adjusted using the Bonferroni method for post-hoc tests.

2.6.1 Data reduction
Table 2,
were extracted, which combined characterized the structural

As shown in a total of 48 network features
organization and behaviors of the multiplex functional muscle
network. To reduce the dimensionality of the feature set, a data
reduction technique was applied. This procedure aimed to prevent
overfitting of the subsequent machine learning (ML) analyses due
to the dilemma between a large number of variables and a small
set of training samples, as commonly encountered in health data
applications (Berisha et al., 2021). To this end, maximum likelihood
factor analysis (factanal) with oblimin rotation was applied to the
feature set to cluster the features that shared common variance
into a lower-dimensional set of latent factors, where the number
of factors was determined by parallel analysis (fa.parallel; Revelle,
2020). The fit of the factorization model was verified by chi-
square goodness of fit test. After the verification, the scores of all
factors were calculated using the tenBerge method. These scores
represented the neuromuscular performance of the participants in
the new multidimensional factor space.

2.6.2 Utility of the multiplex functional muscle
network for detecting and profiling bulbar
involvement in ALS

To determine the utility of the multiplex functional muscle
network for detecting and profiling bulbar involvement in ALS,
we first evaluated the disease effect on all network features using
linear mixed effects (LME) models. For nodal features, the LME
models were constructed with group (i.e., ALS vs. healthy control),
node (i.e., six muscles), and group-by-node interaction as the fixed
effects and a subject-dependent intercept as the random effect. Post-
hoc between-group comparisons were conducted by node based on
estimated marginal means (emmeans; Lenth, 2020). For edgewise
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features, the LME models were constructed with group, band (i.e.,
theta/alpha, beta, gamma), and group-by-band interaction as the
fixed effects and a subject-dependent intercept as the random effect.
Post-hoc between-group comparisons were conducted by band
based on estimated marginal means.

In the second step, we further evaluated the efficacy of the
factor scores as derived above for classification between the ALS
and healthy control samples, using supervised ML algorithms.
Three ML algorithms were employed, including random forest
(RF), support vector machine (SVM) with the radial basis function
kernel, and k-nearest neighbors (KNN), to allow for comparison
of classification performance. RF is an ensemble ML algorithm
that uses a combination of decision trees to solve classification
or regression problems (Breiman, 2001). SVM is a flexible ML
algorithm that allows raw data to be mapped into linear or
nonlinear space using different kernels (Drucker et al., 1997). KNN
relies on the similarity of data points (i.e., “nearest neighbors”)
to assign labels (for classification) or values (for regression)
(Taunk et al., 2019). All classification models were cross-validated
through five-fold cross-validation repeated 10 times, and model
performance was evaluated by precision (i.e., ratio of true positives
to total predicted positives), recall (i.e., ratio of true positives to total
actual positives), and F1 score (i.e., harmonic mean of precision and
recall, defined as F1 = 2 x %ﬁ;ﬁﬂ). Moreover, the Receiver
Operating Characteristic (ROC) curve and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>