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Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS),

bulbar involvement significantly impacts psychosocial, emotional, and physical

health. A validated objective marker is however lacking to characterize and

phenotype bulbar involvement, positing a major barrier to early detection,

progress monitoring, and tailored care. This study aimed to bridge this gap by

constructing a multiplex functional mandibular muscle network to provide a

novel objective measurement tool of bulbar involvement.

Methods: A noninvasive electrophysiological technique—surface

electromyography—was combined with graph network analysis to extract

48 features measuring the regulatory mechanisms, connectivity, integration,

segregation, assortativity, and lateralization of the functional muscle network

during a speech task. These features were clustered into 10 interpretable latent

factors. To evaluate the utility of the muscle network as a bulbar measurement

tool, a heterogenous ALS cohort, consisting of eight individuals with overt

clinical bulbar symptoms and seven without, along with 10 neurologically

healthy controls, was employed to train and validate statistical and machine

learning algorithms to assess the disease e�ects on the network features and the

relation of the network performance to the current clinical diagnostic standard

and behavioral patterns of bulbar involvement.

Results: Significant disease e�ects were found on most network features. The

most robust e�ects were manifested by reduced and more variable myoelectric

activities, and reduced functional connectivity and integration of the muscle

network. The 10 latent factors (1) demonstrated acceptably high e�cacy

for detecting bulbar neuromuscular changes across all clinically confirmed

symptomatic cases and clinically silent prodromal cases (area under the curve

= 0.89–0.91; F1 score = 0.85–0.87; precision = 0.84–0.86; recall = 0.87–0.88);

and (2) selectively correlated with clinically meaningful behavioral patterns

(conditional R2 = 0.45–0.81).

Conclusion: The functional muscle network shows promise for an objective

quantifiable measurement tool to improve early detection and profiling of

bulbar involvement across the prodromal and symptomatic stages. This tool has

various strengths, including the use of a clinically readily available noninvasive

instrument, fully automated data processing and analytics, and generation

of interpretable objective outcome measures (i.e., latent factors), together

rendering it highly scalable in routine clinical practice for assessing and

monitoring of bulbar involvement.
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1 Introduction

Neurodegenerative diseases are progressive, currently

incurable conditions affecting millions of people worldwide,

with an increasing prevalence owing in part to the extensions

in lifespan (Gitler et al., 2017). As multisystem disorders,

neurogenerative diseases progressively affect multiple domains

of function, including communication (speech and language),

cognition (memory and executive function), swallowing, mobility,

amongst others. The clinical manifestations and progression

of neurodegenerative diseases are highly heterogenous across

individuals, and the relation of such clinical heterogeneity to the

underlying pathophysiology remains poorly understood. This

knowledge gap posits a major barrier to the development of

effective therapeutic treatments. Currently, the mainstay of the

management of neurodegenerative diseases focuses on controlling

symptoms, slowing functional declines, preserving quality of

life, and prolonging survival, through both pharmacological and

nonpharmacological interventions (Church, 2021; Norris et al.,

2020). To optimize the outcomes of these interventions, a patient-

centered approach has been advocated, emphasizing delivering

the right intervention to the right person at the right time (Miller

et al., 2018; Olszewska and Lang, 2023). This approach, also

known as precision or personalized medicine in a broader context

(Pokorska-Bocci et al., 2014), requires a better understanding of

the pathophysiological processes and phenotypes that underlie the

clinical heterogeneity to improve intervention tailoring based on

individual characteristics.

To better understand the pathophysiological mechanisms of

neurodegenerative diseases, a network-based perspective has been

posited to link three aspects of neurodegeneration: (1) the variable

spreading patterns of pathogenic processes, (2) the degeneration of

distributed neural networks, and (3) their integrative influence on

clinical manifestations (Vogel et al., 2023). The major contribution

of this perspective is that it identifies an intermediate phenotype

(i.e., neural networks) to account for the clinical heterogeneity of

neurodegenerative diseases. Moreover, it also paves the way for

investigating the highly heterogeneous clinical manifestations and

progression of neurodegenerative diseases using a well-developed,

powerful mathematical tool—network analysis (Newman, 2003).

This analysis maps distributed networks as nodes (e.g., neural

structures) and edges (e.g., anatomical or functional connections

between neural structures), and characterize nodal and edgewise

properties of the network using graph-based descriptors (Rubinov

and Sporns, 2010). Such descriptors provide a window into the

rules governing the behaviors (e.g., regulatorymechanisms of nodal

activities) and structural organization (e.g., connectivity between

nodes) of the network. By establishing individualized and dynamic

profiles of nodal and edgewise features, this network approach

may offer an effective means to characterize and quantify the

neurodegenerative processes at an individual level to improve

personalized diagnosis and management.

So far network analysis has been primarily applied to study

the degeneration of brain networks related to dementia syndromes,

such as in Alzheimer’s disease (Oxtoby et al., 2017; Vogel

et al., 2023). The other functional domains remain relatively

underexplored. Notably, bulbar motor function (i.e., speech and

swallowing), which is vital to daily functioning, psychosocial,

emotional, and physical health, has been rarely studied from the

network perspective. Speech and swallowing disorders constitute

key components of neurodegeneration in various conditions such

as amyotrophic lateral sclerosis (ALS). Compared with other

functional domains (e.g., mobility), there is a paucity of validated

objective quantifiable markers of bulbar involvement (Pattee et al.,

2019; Yunusova et al., 2019). This gap significantly hampers

the early detection, progress monitoring, and tailored care of

speech and swallowing disorders in neurodegenerative diseases and

further undermines the efforts for therapeutic treatment discovery

due to the lack of an efficacious means to evaluate treatment

effects on bulbar motor function in clinical trials. Therefore, the

need for objective quantifiable bulbar markers is well recognized

(Chiaramonte et al., 2019; Green et al., 2018; Tondo and De

Marchi, 2022). To fill this need, network analysis presents a huge

potential in providing an efficient computational tool to quantify

the performance of the bulbar motor system.

The purpose of this study is to exploit the potential of

network analysis for objective bulbar marker development, by

constructing a multiplex functional mandibular muscle network

during speech to characterize bulbar involvement in ALS across

the prodromal and symptomatic stages. Bulbar involvement is a

hallmark feature of ALS, affecting the majority of patients during

the course of ALS progression regardless of disease onset (e.g.,

bulbar/spinal) (Green et al., 2013; Yorkston et al., 1993). According

to a patient-based subjective experience report, loss of useful

speech secondary to bulbar involvement has been identified as

the most devastating consequence of ALS, significantly impacting

social participation, emotional health, and quality of life (Hecht

et al., 2002). Although the current clinical standards for bulbar

assessment focus on symptoms and functional outcomes, it is

well established in the research literature that subclinical bulbar

involvement starts long before the onset of clinical symptoms and

functional declines in ALS (Rong et al., 2015a, 2016). Developing

objective markers to capture such subclinical bulbar involvement

across the prodromal and symptomatic stages can therefore provide

important mechanistic insights for phenotyping the heterogeneous

bulbar presentations and progression trajectories in ALS to

improve personalized care.

While most existing network models are built upon brain

imaging data, this study innovatively applied network analysis to

electrophysiological data acquired by a clinically readily available,

noninvasive instrumental technique—surface electromyography

(sEMG). This methodological choice was contingent on three

considerations. First, different from other neurodegenerative

diseases such as Alzheimer’s disease and Parkinson’s disease, which

primarily involve brain structures and pathways, ALS attacks

various types of neurons in the cerebrum, brainstem, and spinal

cord, as well as in the pathways connecting these central nervous

system (CNS) structures with each other and with the muscles

in the peripheral nervous system (PNS). A brain network model

can only capture pathological changes in the CNS, but not in

the PNS or in the interface between CNS and PNS. In contrast,

the performance of a functional muscle network reflects the

integrative functioning of all upstream CNS and PNS structures

and pathways. Such a muscle network model can thus provide a
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more complete picture of the neuropathological mechanisms of

ALS compared to a brain network model. Second, with immediate

anatomical attachment to the effectors (e.g., speech articulators),

the performance of a functional muscle network is directly

associated with the behaviors of these effectors, which constitute an

important part of oral mechanism exam in standard clinical bulbar

assessment (Duffy, 2013; Yunusova et al., 2019). In this sense, the

muscle network can offer explanatory insights into the complex,

poorly understood clinical-neuropathological relationship in ALS,

by providing an interface to link the clinically relevant behavioral

patterns with the neuropathological underpinnings. Third, from a

practical standpoint, the instrumental technique for constructing

a functional muscle network (i.e., sEMG) is more accessible

and less expensive compared with the neuroimaging techniques

required for constructing a brain network. Lastly, the selected

mandibular muscle groups for network construction have been

demonstrated by previous studies to show measurable changes as

early as during the prodromal stage of bulbar involvement in ALS

(Rong and Jawdat, 2021; Rong and Pattee, 2021, 2022; Rong and

Rasmussen, 2024). Taken together, these practical and empirical

considerations support the potential of a sEMG-based functional

mandibularmuscle network for a clinically scalable objective bulbar

assessment tool.

To construct the proposed multiplex functional mandibular

muscle network, we developed a fully automated data processing

and analytic approach to characterize the network performance

using graph-based measures. We hypothesized that these measures

would (1) effectively detect and profile bulbar involvement across

the prodromal and symptomatic stages in ALS and (2) associate

with clinically relevant behavioral patterns of the effector (i.e., jaw).

2 Materials and methods

This study was part of an ongoing larger-scope project. The

protocol of this project was approved by the Institutional Review

Board of the university medical center. Written informed consent

was obtained from all participants. All study procedures were

non-invasive and minimal risk. No adverse events were reported.

2.1 Participants

Fifteen individuals with ALS (nine men/six women; age: 38–

77 years), including eight with overt clinical bulbar symptoms

and seven without, and 10 neurologically healthy controls (three

men/seven women; age: 38–81 years) participated in this study. The

inclusionary criteria included: (1) being diagnosed with definite

or probable ALS as per the revised El Escorial Criteria (Brooks

et al., 2000) for participants with ALS or reporting no known

neurological diseases or injury for healthy controls; (2) speaking

American English as the first and primary language; (3) passing

hearing screening at 1,000, 2,000, and 4,000Hz at 30 dB in the

better ear; (4) possessing adequate cognitive function to follow

instructions and perform experimental tasks as per by standard

cognitive screening procedures.

Participants with ALS were recruited from the

multidisciplinary ALS clinic of the university medical center.

As per standard clinical examination procedures (e.g., oral

mechanism exam, clinician-based screening/evaluation, patient-

reported outcomes), eight of the participants presented with

overt clinical bulbar symptoms, providing samples representative

of the symptomatic stage of bulbar involvement. The other

seven participants exhibited no overt clinical bulbar symptoms.

According to a prior longitudinal study (Rong et al., 2015a), the

likelihood that these participants, who were on average 453 days

post-diagnosis, had experienced subclinical bulbar involvement at

the time of enrolling into this study was high despite the absence

of clinical symptoms. Thus, these participants were regarded as

samples representing the prodromal stage of bulbar involvement.

Together, the inclusion of both prodromal and symptomatic

cases offered a comprehensive sample set representative of the

whole spectrum of bulbar involvement in ALS to address the

research aims.

To evaluate the severity of the overall and bulbar functional

disabilities, all participants with ALS completed the ALS Functional

Rating Scale-Revised (ALSFRS-R) (Cedarbaum et al., 1999).

ALSFRS-R is the most widely accepted means of monitoring

disabilities in ALS clinical practice and clinical trials. It consists

of 12 questions that assess four domains of function, including

gross motor, fine motor, bulbar, and respiratory functions, with

each question being rated on a scale of 0 to 4 points (4 being

normal; 0 being the highest level of disability). Based on the

participant’s responses, the total score for all 12 questions and the

bulbar subscore for the three questions related to bulbar items

(i.e., speech, salivation, swallowing) were calculated to index the

overall and bulbar functional disabilities, respectively. The clinical,

functional, and demographic characteristics of the participants are

provided in Supplementary Table S1, and a statistical summary of

these characteristics is displayed in Table 1.

2.2 Experimental task, setup, and data
collection

To construct the proposed functional muscle network, the

myoelectric activities of three bilateral pairs of jaw muscles—

anterior temporalis (TEMP), masseter (MAS), anterior belly of

digastric (ABD)—were recorded by a wireless sEMG system

(BIOPAC) during a speech task. The selection of target muscles was

primarily based on accessibility consideration. The morphological

characteristics of anterior temporalis, masseter, and anterior belly

of digastric muscles make them easily accessible and reliably

measurable by surface electrodes, as demonstrated by a body of

experimental work by our research team and others (Koole et al.,

1991; Moore et al., 1988; Rong and Pattee, 2021).

Regarding task selection, speech production, as a fine oromotor

behavior, requires rapid contractions and complex coordination of

a variety of bulbar muscles. Speech tasks such as oral reading and

narrative have been consistently demonstrated by prior studies to

be sensitive for detecting subtle bulbar involvement (e.g., during the

prodromal stage) in ALS (Rong andHeidrick, 2022, 2024; Rong and

Pattee, 2022). In this study, we selected an oral reading task, where

participants read a standard phonetically balanced reading passage,

namely Rainbow Passage, at their habitual rate and loudness. This
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TABLE 1 Summary of demographic, clinical, and functional

characteristics of participants.

Participant
characteristics

ALS
(N = 15)

Control
(N = 10)

Statistics for
between-group
comparison

Demographic

Women (n %) 40.00% 70.00% χ2 = 1.13, p = 0.29

Age, years (M; SD) 60.73; 12.66 66.80; 13.02 F(1, 23) = 0.54,

p = 0.47

Clinical

Disease onset (n %) Bulbar: 33.33%

Spinal: 66.67%

N/A N/A

Stage of bulbar

involvement (n %)

Prodromal:

46.67%

Symptomatic:

53.33%

N/A N/A

Days since diagnosis

(M; SD)

382.93; 416.72 N/A N/A

Functional

ALSFRS-R: total score

(M; SD)

37.33; 6.55 N/A N/A

ALSFRS-R: bulbar

sub-score (M; SD)

9.60; 2.87 N/A N/A

ALS, amyotrophic lateral sclerosis; control, healthy controls; ALSFRS-R, ALS Functional

Rating Scale-Revised.

passage consists of 19 sentences with a total of 329 words, which

cover the entire phonetic inventory with the frequency of each

phoneme matching their distribution in English. Oral reading of

the Rainbow Passage has proven by prior work to elicit robust

activations of mandibular muscles in both neurologically healthy

and impaired speakers (Rong and Jawdat, 2021; Rong and Pattee,

2022). The theoretical and empirical evidence base provides the

rationale for our task selection to enhance both the robustness and

generalizability of the results of this study.

To maximize reproducibility and minimize artifacts (e.g.,

crosstalk), we followed the best practice guidelines for surface

electrode selection, setup, and recording (Castroflorio et al.,

2008; Merletti and Muceli, 2019; Stepp Cara, 2012). First, the

target areas of skin were prepared using an alcohol swab to

increase skin conductance. Following skin preparation, self-

adhesive bipolar Ag/AgCl electrodes with 11mm diameter size and

the closest inter-electrode distance possible (e.g., about 20mm)

were attached to the skin over the belly of each target muscle,

parallel to fiber orientation. To enhance the reproducibility of

this procedure, craniofacial anatomical landmarks were used

to guide the placement of electrodes along the cantho-gonial

line for masseter, vertically at the coronal suture for anterior

temporalis, and submentally along the posterior-inferior direction

for anterior belly of digastric. Ground electrodes were attached

to the participant’s shoulder. Electrode placement was verified by

calibration gestures such as jaw oscillation and clenching to ensure

data validity. The analog signals acquired by the surface electrodes

were pre-amplified by 2,000 and band-passed filtered at 5–500Hz

by the wearable BioNormadix modules, digitized at 2,000Hz by the

MP160 module, and finally recorded by the Acknowledge software.

To examine the relation of the proposed functional mandibular

muscle network to behavioral patterns of the jaw, jaw motion

was recorded in three dimensions by an electromagnetic tracking

system (Wave, Northern Digital Inc.). During the recording,

participants were seated next to a field generator to the right; a

small wired sensor was attached to the center of lower chin, and

a reference sensor was attached to the center of forehead for head

movement correction. Jaw motion was captured by the sensor

on the lower chin relative to the forehead and was recorded at

100Hz by the WaveFront software. Additionally, the midsagittal

contour of the hard palate was traced by a manufacturer-supplied

probe, from the posterior edge at the intersection between the hard

and soft palate to the anterior edge at the location of the lower

central incisor. This palatal trace served as an anatomical reference

to characterize the motion pattern of the jaw in the subsequent

kinematic analysis.

In addition to the sEMG and kinematic recordings, speech was

audio-recorded by a head-mounted microphone (DPA dfine 4188)

placed ∼5 cm away from the left lip corner. The audio signal was

preprocessed by the Behringer Xenyx 802 sound conditioner and

recorded at 22,050Hz by the WaveFront software, simultaneously

with the kinematic signal. The audio recording served as a

reference to assist with sEMG and kinematic data segmentation and

interpretation. Figure 1 provides an overview of the experimental

paradigm along with the procedures for signal processing and

analysis, as elaborated below.

2.3 sEMG data processing

sEMG is known to be susceptible to various sources of electrical

and mechanical artifacts (e.g., motion at the skin-electrode

interface, crosstalk, power line noise). To enhance the signal-to-

noise ratio of the sEMG data, we used a multistep signal processing

approach to minimize these artifacts, following the recommended

guidelines in the sEMG literature (De Luca et al., 2010; Rong and

Pattee, 2022; Stepp Cara, 2012). First, to minimize the effect of

crosstalk, we adopted a blind source separation (BSS) algorithm

from Kilner et al. (2002) to remove potential contamination of

nearby muscles from each sEMG channel. BSS is a statistical

signal processing technique to reconstruct the original unobserved

signals (e.g., sources reflecting true myoelectric activities) based on

the decomposition of the measured signals (i.e., surface-detected

signals) (Talib et al., 2019). BSS has been successfully applied to

reduce crosstalk from facial sEMG recordings in previous research

(Sato and Kochiyama, 2023) and is therefore adopted by this

study to serve the same purpose. After crosstalk removal, all

sEMG channels were notch-filtered at 60Hz and high-pass filtered

at 20Hz to further remove power line noise and low-frequency

movement artifacts, respectively. Lastly, DC offsets were removed

from each channel.

2.4 sEMG data analytics

Based on the processed sEMG signals, a weighted multiplex

functional mandibular muscle network was constructed.
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FIGURE 1

Overview of experimental paradigm.

This network consisted of six nodes, each representing a

muscle; the weights of the edge between nodes reflected the

functional connection between each pair of muscles in different

frequency bands (see details below). To characterize the structural

organization and behaviors of the network in relation to bulbar

neuromuscular pathology in ALS, a fit-for-purpose data analytic

program was developed and implemented in MATLAB (R2023a)

to extract a variety of nodal and edgewise features from the sEMG

signals for each sentence of the Rainbow Passage [total N = (25

participants × 19 sentences) − 2 errors = 473]. An overview of

these network features is provided in Table 2, and the pipeline for

feature extraction is outlined in Figure 2, with methodological

details described below.

2.4.1 Nodal features
Nodal features were extracted from each sEMG channel

to characterize the regulatory mechanisms for modulating the

myoelectric activity of each jaw muscle. To this end, each sEMG

signal was first transformed into a local standard deviation series

using Equation 1:

Vj =

√

√

√

√

∑jL

(j−1) ∗ L+1
(Ui − Ūj)

2

L− 1
(1)

where
[

Uj

]

= [U1, U2, . . . , UN] is the original sEMG signal,
[

Vj

]

= [V1, V2, . . . , VM] is the transformed local standard

deviation series, and L is the length of interval for standard

deviation calculation, which was set to 50ms (i.e., L = 100), in

line with our prior study (Rong et al., 2024). These local standard

deviation series were then transformed to visibility graphs. This

transformation treated each data point in the series as a node and

determined the connection between nodes based on Equation 2:

Vy − Vz

y− z
>

Vy − Vx

y− x
(2)

where Vz is an arbitrary node between two given nodes Vx and Vy.

If all nodes between Vx and Vy meet the criterion in Equation 2, Vx

and Vy are regarded as being connected. A node corresponding to

a local peak in the series (i.e., a state of high-level activation) tends

to have high connectivity with its neighboring nodes (i.e., high

visibility). This notion relates the structure of the visibility graph

with the dynamics of myoelectric activities, allowing the descriptors

of the graph to inform the regulatory mechanisms for modulating

myoelectric activities.

To characterize the structure of the visibility graph, two

descriptors—density and spectral radius ratio—were derived.

Density represents the overall node connectivity of the graph,

which is defined as the ratio of the total number of the graph’s edges

to the largest possible number of edges, as per Equation 3:

density =
2×m

M(M − 1)
(3)

where M and m are the total number of nodes and edges of the

graph, respectively. Spectral radius ratio represents the variation

of node connectivity, which is defined as the ratio of the principal

eigenvalue of the adjacency matrix of the graph to the mean node

degree (Meghanathan, 2014).

Together, density and spectral radius ratio provided

quantitative means to assess the overall level and variability

of myoelectric activities. Given the well documented changes in

motor unit recruitment and firing patterns in ALS (de Carvalho

et al., 2014, 2012), myoelectric activities tend to be reduced and

become more irregular, as observed in prior research (Rong and

Pattee, 2022). Density and spectral radius ratio were intended to
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TABLE 2 Overview of network features.

Type Feature Notation Targeted functional underpinnings

Nodal density_RTEMP

density_LTEMP

density_RMAS

density_LMAS

density_RABD

density_LABD

Density Level of muscle activity

specradRatio_RTEMP

specradRatio_LTEMP

specradRatio_RMAS

specradRatio_LMAS

specradRatio_RABD

specradRatio_LABD

Spectral radius ratio Variability of muscle activity

Edgewise nodstr_theta.alpha

nodstr_beta

nodstr_gamma

Mean nodal strength Overall functional connectivity of multiplex muscle

network

ac_theta.alpha

ac_beta

ac_gamma

Assortativity coefficient Selective functional connectivity of multiplex muscle

network

ge_theta.alpha

ge_beta

ge_gamma

Global efficiency Functional integration of multiplex muscle network

wcc_RTEMP_theta.alpha

wcc_LTEMP_theta.alpha

wcc_RMAS_theta.alpha

wcc_LMAS_theta.alpha

wcc_RABD_theta.alpha

wcc_LABD_theta.alpha

Weighted clustering

coefficient

Functional segregation of multiplex muscle network

wcc_RTEMP_beta

wcc_LTEMP_beta

wcc_RMAS_beta

wcc_LMAS_beta

wcc_RABD_beta

wcc_LABD_beta

wcc_RTEMP_gamma

wcc_LTEMP_gamma

wcc_RMAS_gamma

wcc_LMAS_gamma

wcc_RABD_gamma

wcc_LABD_gamma

lat_TEMP_MAS_theta.alpha

lat_TEMP_ABD_theta.alpha

lat_MAS_ABD_theta.alpha

Laterality index Functional lateralization of multiplex muscle

network

lat_TEMP_MAS_beta

lat_TEMP_ABD_beta

lat_MAS_ABD_beta

lat_TEMP_MAS_gamma

lat_TEMP_ABD_gamma

lat_MAS_ABD_gamma

target and quantify these changes related to the nodal properties of

the muscle network.

2.4.2 Edgewise features
Edgewise features were calculated based on intermuscular

coherence in three frequency bands—theta/alpha (4–12Hz), beta

(12–30Hz), and low gamma (30–60Hz). By definition, coherence

is a measure of temporal correlation between two signals in

the frequency domain (Laine and Valero-Cuevas, 2017; Reyes

et al., 2017). It is well known that neural oscillations in

different frequency bands are related to distinct neural drives for

modulating muscle functions. Specifically, beta and low-gamma

oscillations originate directly from the motor cortical network,

which have been associated with submaximal tonic contractions

and attentionally more demanding, stronger tonic and phasic

contractions, respectively (Boonstra et al., 2015; Brown, 2000; Laine

et al., 2015). Theta/alpha oscillations have been linked to diverse

subcortical and cortical sources (e.g., brainstem, sensory cortex)

outside of the motor cortical network, contributing to indirect

motor control (e.g., sensorimotor integration and adaptation)

(MacKay, 1997; Maezawa, 2017; Suppa et al., 2016). Therefore,

measurements of intermuscular coherence in these bands can

provide a window into the multiplex functional connection
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FIGURE 2

Pipeline for constructing the multiplex functional mandibular muscle network. The network consists of six nodes corresponding to six mandibular

muscles: right temporalis (RTEMP), left temporalis (LTEMP), right masseter (RMAS), left masseter (LMAS), right anterior belly of digastric (RABD), left

anterior belly of digastric (LABD). Each pair of nodes are connected by an edge, with the weight of the edge (denoted by line width) reflecting the

strength of functional connection between muscles (measured by intermuscular coherence) in three frequency bands (theta/alpha, beta, low

gamma). Step ①: Nodal feature extraction. Using the RABD node as an example for demonstration, the surface electromyography signal for the node

is first converted to a local standard deviation series, which is then transformed to a visibility graph. Based on this graph, two visibility

descriptors—density and spectral radius ratio—are derived to measure the overall level and variability of nodal activity, respectively. Step ②: Edgewise

feature extraction. Using the edge between the RABD and RMAS nodes as an example, the magnitude-squared coherence spectrum is calculated;

after verifying significance, the mean coherence within the target frequency bands (highlighted by di�erent colors) is computed. Using these

coherence values as edge weights, a set of network measures, including mean nodal strength, assortativity coe�cient, global e�ciency, weighted

clustering coe�cient, and laterality, are derived to characterize the edgewise features of the muscle network.

between muscles related to different neural sources. The feasibility

of measuring intermuscular coherence in these bands from sEMG

signals has been established in the literature in both neurologically

healthy and impaired individuals (Carlsen et al., 2023; Fisher et al.,

2012; Flood et al., 2019; Issa et al., 2017; Laine and Valero-Cuevas,

2017; Rong and Pattee, 2021).

To calculate intermuscular coherence, all sEMG signals were

full wave rectified to maximize the timing information about

muscle activation (Halliday et al., 1995). The rectified signals were

then reconstructed by identifying and concatenating stationary 1-

s epochs around the bursts for each channel. Magnitude-squared

coherence spectrum was calculated based on the reconstructed

signals for each pair of muscles, using Equation 4:

|Rxy|
2 =

|Sxy(f)|
2

Sxx
(

f
)

S
yy
(f)

(4)

where |Rxy|
2 is magnitude-squared coherence spectrum, Sxy(f) is

the cross-spectrum between two muscles, and Sxx(f) and Syy(f) are

the auto-spectra for each muscle. This analysis was implemented

by a 4,096-point Fast Fourier Transform applied over a sliding

1,024-point Hamming window with 75% overlap, following the

recommendations by Terry and Griffin (2008).

For each coherence spectrum, a significance level

corresponding to the upper 95% confidence limit under the

hypothesis of independence between muscles was calculated as:

S = 1− 0.051/(L̂−1), where L̂ is the adjusted number of overlapped

segments in coherence calculation (Halliday et al., 1995; Terry and

Griffin, 2008). Weak, non-significant coherence usually implies

a spurious connection between muscles; such a connection could

obscure the topology of strong, significant connections in the

muscle network (Rubinov and Sporns, 2010). Therefore, the

significance level was applied as a threshold to rule out spurious

connections.Within each target band (theta/alpha, beta, gamma), if

there was a lack of peaks above the significance level, the coherence

for the band was set to zero; otherwise, the mean coherence

within the band was calculated. Finally, all coherence values were

transformed to Fisher z-scores for variance stabilization (Halliday

et al., 1995).

Following the procedures above, a total of 45 coherence

metrics (15 edges × 3 bands) were extracted for the multiplex

functional muscle network. Using these metrics as the weights

of the network’s edges, graph network analysis was applied to

derive a set of graph descriptors to characterize the edgewise

properties of the network. These descriptors included mean nodal

strength, assortativity coefficient, global efficiency, and weighted

clustering coefficients.
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Mean nodal strength is the average sum of edge weights across

nodes, which reflects the overall functional connectivity of the

network. There is a mounting body of evidence showing impaired

functional connection between muscles in individuals with ALS,

especially in the beta band (Fisher et al., 2012; Issa et al., 2017; Rong

and Pattee, 2021). Mean nodal strength was intended to detect and

quantify such impairments of functional connection in ALS.

Assortativity coefficient measures the correlation of the

(weighted) degrees of all nodes between two opposite sides of an

edge, providing an insight into selective functional connectivity

of the network. In general, an assortatively mixed network (i.e.,

characterized by mutually interconnected high-degree hubs) tends

to have a positive coefficient, whereas a disassortative network

usually has a negative coefficient. Prior studies have reported

selective vulnerability of functional connection between different

muscle groups in individuals with ALS (Rong and Jawdat,

2021; Rong and Pattee, 2021). Such selective vulnerability may

differentially affect the connectivity between different nodes and in

turn influence the assortativity of the muscle network.

Global efficiency is the average inverse shortest path length

between all pairs of nodes, which provides a global index

of functional integration of the network. Weighted clustering

coefficient represents the connectivity of each node to its

neighboring nodes, which can be interpreted as a measure of

functional segregation/specialization, that is, the ability to perform

specialized functions by segregated muscle groups within the

network. A complex, high-performing biological system should

be both functionally integrated and specialized (Tononi et al.,

1998). This notion, applied to the functional muscle network

in this study, implies that the activity of functionally segregated

muscle groups (e.g., agonists vs. antagonists) should be integrated,

in order to generate complex, coherent, and adaptive behaviors

during speech. Yet, prior work has reported overall less complex,

less coherent, and more irregular speech behaviors in individuals

with ALS (Rong, 2021). These changes could be attributed to

impaired functional integration and/or segregation of the speech

motor system due to neurodegeneration. Along this line, global

efficiency and weighted clustering coefficient were employed to

provide complementary insights into functional integration and

segregation of the muscle network.

Besides the standard graph descriptors above, another set of

edgewise features was extracted to characterize the laterality of the

multiplex functional muscle network. Here laterality was indexed

by the difference between the weight of a specified edge on the

right side and its counterpart on the left side, normalized by the

sum of all edge weights in the network. This index was calculated

for three types of edges, which connected temporalis with

masseter, temporalis with digastric, and masseter with digastric,

respectively. These indices evaluated the functional lateralization of

one agonist (temporalis-masseter) and two antagonist (temporalis-

digastric, masseter-digastric) muscle groups within each target

band. While the majority of bulbar muscles are bilaterally

innervated, a contralateral dominance has been reported in beta-

band corticomuscular coherence in previous studies, suggesting

that a larger proportion of corticobulbar projection comes from

the contralateral hemisphere (Maezawa, 2017; Maezawa et al.,

2014). For individuals with ALS, a recent evolutionary perspective

of neurodegeneration has associated evolutionary hemisphere

specialization with preferential involvement (Henderson et al.,

2019). It posits that ALS tends to preferentially involve cerebral

structures and pathways that have evolved recently in human

evolution, including those in the dominant left hemisphere serving

later evolved functions such as speech (Henderson et al., 2019).

Together, the interplay between the disease-related asymmetrical

cerebral involvement and contralateral dominance of corticobulbar

projection may result in a decrease in right-to-left functional

lateralization of the muscles. The laterality index was intended to

capture such a change in functional lateralization.

2.5 Kinematic data processing and analysis

The 3D jaw sensor data were low-pass filtered at 15Hz by a

second-order, zero-lag Butterworth filter to remove high-frequency

movement artifacts. The Euclidian distance between the jaw sensor

and the lower central incisor (i.e., anterior edge of the palatal trace)

was calculated at each sampled time point, generating a data series

representing the global movement pattern of the jaw.

This data series was submitted to a custom-developed analysis

to extract three metrics: acceleration time, mean acceleration, and

stiffness. Acceleration time and mean acceleration are temporal

and spatial descriptors of the acceleration profile. Scientifically,

according to Newton’s second law, force is the product of mass and

acceleration. As such, descriptors of the jaw acceleration profile can

provide insights into the force exerted by the jaw muscles on the

mandible. Clinically, the slowness of orofacial movement is one

of the most prevalent signs of bulbar involvement in ALS (Green

et al., 2013; Yorkston et al., 1993); such a sign can manifest in

the acceleration profile as increased acceleration time and reduced

mean acceleration, as demonstrated by prior research (Bandini

et al., 2018; Rong and Heidrick, 2021). Linking these acceleration

descriptors with the network measures can inform the relation of

the proposed functional muscle network to the force generation

capacity of the mandibular system.

From the perspective of dynamical systems, the generation

of the desired force/acceleration for a specific task requires the

neuromuscular system to modulate the dynamic properties of the

effectors based on task demands. Along this line, several theoretical

models have been established to characterize dynamic speech

behaviors with a spring-mass second-order dynamical system.

These models, including the original task dynamic model proposed

by Saltzman and Munhall (1989) and various extended versions

(Parrell and Lammert, 2019; Simko and Cummins, 2010), posit that

force/acceleration is associated with two dynamic parameters—

stiffness and damping. Given that these two parameters are not

mutually exclusive (i.e., damping is associated with stiffness and

mass), we focused on stiffness in this study. The functional

significance of stiffness is well established in the motor speech

literature. Increased stiffness is associated with various mechanical

advantages for generating rapid movement and/or maintaining

stability against perturbation to ensure movement precision

(Humphrey and Reed, 1983; Moore, 1993; Moore et al., 1988). As

such, linking stiffness with the network measures can inform the
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relation of the functional muscle network to the dynamic control

mechanism of the mandibular system.

To obtain these kinematic/dynamic metrics, the first and

second derivatives of the jaw Euclidian distance data series

were calculated, resulting in two new data series representing

velocity and acceleration traces, respectively. Acceleration time was

calculated as the average duration from the onset (i.e., velocity= 0)

to the peak velocity of movement across all jaw opening and closing

cycles during the speech stimulus.Mean acceleration was calculated

as the average acceleration across the accelerating phase of all jaw

opening and closing cycles. Unlike the acceleration descriptors,

stiffness was not directly measurable from the kinematic recording

but can be estimated by empirical means. In this study, stiffness was

estimated by the ratio of maximum speed to maximum distance of

motion (Berry, 2011).

2.6 Statistical and computational analyses

All analyses were conducted in the R statistical computing

program (R Core Team, 2022). For statistical analysis, the

significance level was set to p < 0.05 for main effects and was

adjusted using the Bonferroni method for post-hoc tests.

2.6.1 Data reduction
As shown in Table 2, a total of 48 network features

were extracted, which combined characterized the structural

organization and behaviors of the multiplex functional muscle

network. To reduce the dimensionality of the feature set, a data

reduction technique was applied. This procedure aimed to prevent

overfitting of the subsequent machine learning (ML) analyses due

to the dilemma between a large number of variables and a small

set of training samples, as commonly encountered in health data

applications (Berisha et al., 2021). To this end, maximum likelihood

factor analysis (factanal) with oblimin rotation was applied to the

feature set to cluster the features that shared common variance

into a lower-dimensional set of latent factors, where the number

of factors was determined by parallel analysis (fa.parallel; Revelle,

2020). The fit of the factorization model was verified by chi-

square goodness of fit test. After the verification, the scores of all

factors were calculated using the tenBerge method. These scores

represented the neuromuscular performance of the participants in

the new multidimensional factor space.

2.6.2 Utility of the multiplex functional muscle
network for detecting and profiling bulbar
involvement in ALS

To determine the utility of the multiplex functional muscle

network for detecting and profiling bulbar involvement in ALS,

we first evaluated the disease effect on all network features using

linear mixed effects (LME) models. For nodal features, the LME

models were constructed with group (i.e., ALS vs. healthy control),

node (i.e., six muscles), and group-by-node interaction as the fixed

effects and a subject-dependent intercept as the random effect. Post-

hoc between-group comparisons were conducted by node based on

estimated marginal means (emmeans; Lenth, 2020). For edgewise

features, the LME models were constructed with group, band (i.e.,

theta/alpha, beta, gamma), and group-by-band interaction as the

fixed effects and a subject-dependent intercept as the random effect.

Post-hoc between-group comparisons were conducted by band

based on estimated marginal means.

In the second step, we further evaluated the efficacy of the

factor scores as derived above for classification between the ALS

and healthy control samples, using supervised ML algorithms.

Three ML algorithms were employed, including random forest

(RF), support vector machine (SVM) with the radial basis function

kernel, and k-nearest neighbors (KNN), to allow for comparison

of classification performance. RF is an ensemble ML algorithm

that uses a combination of decision trees to solve classification

or regression problems (Breiman, 2001). SVM is a flexible ML

algorithm that allows raw data to be mapped into linear or

nonlinear space using different kernels (Drucker et al., 1997). KNN

relies on the similarity of data points (i.e., “nearest neighbors”)

to assign labels (for classification) or values (for regression)

(Taunk et al., 2019). All classification models were cross-validated

through five-fold cross-validation repeated 10 times, and model

performance was evaluated by precision (i.e., ratio of true positives

to total predicted positives), recall (i.e., ratio of true positives to total

actual positives), and F1 score (i.e., harmonicmean of precision and

recall, defined as F1 = 2 × Precision×Recall
Precision+Recall

). Moreover, the Receiver

Operating Characteristic (ROC) curve and the area under the curve

(AUC) were calculated for each model.

2.6.3 Relation of the multiplex functional muscle
network to clinically relevant behavioral patterns
of the jaw

A stepwise approach was chosen to construct LME models for

estimating the relation of the multiplex functional muscle network

to the three kinematic/dynamic metrics of the jaw. For each metric,

an initial LME model was constructed with group and the scores

of all latent factors as the fixed effects, and a subject-dependent

intercept as the random effect. Next, the fixed effects of the initial

model were screened in a backward stepwise fashion to optimize

the Akaike Information Criterion. The marginal and conditional

R2 of the final models were calculated to evaluate model fit.

3 Results

3.1 Factorization

The factor analysis clustered the 48 network features into 10

latent factors. The rotated factor loadings are shown in Figure 3.

This 10-factor model was determined to be sufficient based on chi-

square goodness of fit test, χ2 (693) = 4, 714.69, p = 0. The

cumulative variance accounted for by the model was 68.2%.

Based on the rotated factor loadings, features that loaded

>0.3 on each factor were conventionally identified as the primary

component features of the factor. As such, the primary component

features of the 10 factors were identified as: all nodal features for

factor 1; gamma-band weighted clustering coefficients for factor

2; theta/alpha-band weighted clustering coefficients for factor 3;
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FIGURE 3

Rotated factor loadings. The height of the colored bars reflects the loading of the network features on each factor. Features that load >0.3 (i.e.,

absolute loading >0.3) on each factor are by convention regarded as the primary component features of the factor and are marked in red; the

remaining features are marked in blue. specradRatio, spectral radius ratio; nodstr, mean nodal strength; ac, assortativity coe�cient; ge, global

e�ciency; wcc, weighted clustering coe�cient; lat, laterality index. RTEMP, right temporalis; LTEMP, left temporalis; RMAS, right masseter; LMAS, left

masseter; RABD, right anterior belly of digastric; LABD, left anterior belly of digastric.

beta-band weighted clustering coefficients for factor 4; theta/alpha-

band mean nodal strength and theta/alpha-band global efficiency

for factor 5; laterality indices for the antagonist muscle groups

(i.e., temporalis-digastric; masseter-digastric) across all three bands

for factor 6; beta-band mean nodal strength and beta-band global

efficiency for factor 7; laterality indices for the agonist muscle

group (i.e., temporalis-masseter) across all three bands for factor

8; gamma-band mean nodal strength and gamma-band global

efficiency for factor 9; assortativity coefficients across all three

bands for factor 10.

3.2 Utility of the multiplex functional
muscle network for detecting and profiling
bulbar involvement in ALS

3.2.1 Disease e�ects on network features
Descriptive boxplots and statistical results of the LME models

for the nodal features are provided in Figure 4 and Table 3,

respectively. Note that the descriptive boxplots are displayed

for each subgroup of the ALS cohort (i.e., corresponding to

the prodromal and symptomatic stages of bulbar involvement)

alongside the healthy controls, to allow for visual examination

of stage-dependent changes in these features. For both density

and spectral radius ratio, a significant main effect was found

for group, but not for node, nor did the interaction between

group and node show a significant effect. Post-hoc comparisons

between the ALS and healthy control groups revealed a

significant decrease in density and a significant increase in

spectral radius ratio, for all nodes. These results implied

reduced level and increased variability of myoelectric activities

in individuals with ALS relative to healthy controls. Most of

these disease effects were visually identifiable as early as in the

prodromal stage and were incremental as bulbar involvement

progressed from prodromal to symptomatic stages, as shown

in Figure 4.

Descriptive boxplots and statistical results of the LME models

for the edgewise features are provided in Figure 5 and Table 4.

Similar as above, the descriptive boxplots are displayed for each

subgroup of the ALS cohort alongside the healthy controls. Based

on the LMEmodels, mean nodal strength, global efficiency, and the

weighted clustering coefficients for right temporalis, right masseter,

and right digastric, as well as the laterality index for the masseter-

digastric group exhibited a significant main effect of group. All

features except the laterality index for the masseter-digastric group

showed a significant main effect of band. All features except the

laterality index for the temporalis-masseter group and the laterality

index for the masseter-digastric group revealed a significant effect

of group-by-band interaction.
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FIGURE 4

Boxplots for nodal features (density, spectral radius ratio) of the multiplex functional muscle network, displayed by node (RTEMP, right temporalis;

LTEMP, left temporalis; RMAS, right masseter; LMAS, left masseter; RABD, right anterior belly of digastric; LABD, left anterior belly of digastric) and

subgroup (ALSwB, individuals with amyotrophic lateral sclerosis, with overt clinical bulbar symptoms; ALSwoB, individuals with amyotrophic lateral

sclerosis, absent of overt clinical bulbar symptoms; Control, healthy controls).

Post-hoc comparisons between the ALS and healthy control

groups showed a variety of significant cross-band and band-

specific changes in the edgewise features, including (1) reduced

mean nodal strength and global efficiency across all bands; (2)

reduced theta/alpha-band assortativity coefficient; (3) reduced

beta- and gamma-band weighted clustering coefficients for

right temporalis, right masseter, and right digastric, as well

as reduced beta-band weighted clustering coefficients for left

temporalis and left masseter; (4) reduced beta- and gamma-band

laterality for the masseter-digastric group and reduced gamma-

band laterality for the temporalis-digastric group. As shown in

Figure 5, all these disease effects were observed as early as in

the prodromal stage; as bulbar involvement progressed from

prodromal to symptomatic stages, mean nodal strength and

global efficiency exhibited incremental changes upon the earlier-

observed disease effects, whereas all other features revealed a trend

of stabilization.

3.2.2 Classification between ALS and healthy
controls

The ROC curves and performance metrics of the classification

models are provided in Figure 6 and Table 5, respectively. All three

ML algorithms showed consistent performance, rendering an AUC

of 0.89–0.91 and an F1 score of 0.85–0.87 with 0.84–0.86 precision

and 0.87–0.88 recall for the classification between the ALS and

healthy control samples. These results confirmed the robustness of

the classification performance, providing evidence for the utility

of the multiplex functional muscle network for detecting bulbar

involvement in ALS across the prodromal and symptomatic stages

with acceptably high efficacy.

3.3 Relation of the multiplex functional
muscle network to behavioral patterns of
the jaw

A subset of variables was identified by the stepwise LMEmodels

as predictors of each kinematic/dynamic metric of the jaw. The

relationship between the model prediction and each metric is

depicted in Figure 7. The composition and fit of the LME models

are reported in the following.

Three latent factors of the functional muscle network were

identified as predictive of acceleration time. These predictors

included factor 1 (i.e., nodal features), t = −4.21, p < 0.001; factor

5 (i.e., theta/alpha-bandmean nodal strength and theta/alpha-band

global efficiency), t = 2.55, p = 0.011; and factor 9 (i.e., gamma-

band mean nodal strength and gamma-band global efficiency), t =

2.13, p = 0.034. In addition, group was also selected as a predictor

of the model (p = 0.020). The marginal and conditional R2 of the

model were 0.16 and 0.45, respectively.

Four latent factors of the functional muscle network were

identified as predictors of mean acceleration. These predictors

included factor 1 (i.e., nodal features), t = 7.62, p < 0.001; factor

5 (i.e., theta/alpha-bandmean nodal strength and theta/alpha-band

global efficiency), t = −5.45, p < 0.001; factor 6 (i.e., theta/alpha-,

beta-, and gamma-band laterality indices for the antagonist muscle

groups), t = 3.42, p < 0.001; and factor 9 (i.e., gamma-band mean

nodal strength and gamma-band global efficiency), t = −3.66,

p < 0.001. The marginal and conditional R2 of the model were

0.073 and 0.81, respectively.

Five latent factors of the functional muscle network were

identified as predictors of jaw stiffness. These predictors included

factor 1 (i.e., nodal features), t = 14.30, p < 0.001; factor 5

(i.e., theta/alpha-band mean nodal strength and theta/alpha-band
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global efficiency), t = −5.31, p < 0.001; factor 6 (i.e., theta/alpha-,

beta-, and gamma-band laterality indices for the antagonist muscle

groups), t = 2.56, p = 0.011; factor 7 (i.e., beta-band mean

nodal strength and beta-band global efficiency), t = −6.29, p <

0.001; and factor 9 (i.e., gamma-band mean nodal strength and

gamma-band mean global efficiency), t = −10.53, p < 0.001.

Moreover, group was selected as an additional predictor (p =

0.024). The marginal and conditional R2 of the model were 0.48

and 0.69, respectively.

4 Discussion

Developed upon a network-based neurodegeneration

perspective, this study constructed a multiplex functional

mandibular muscle network to link the clinical and

neuropathological aspects of bulbar involvement in ALS,

aiming to provide a novel objective tool for early identification and

phenotyping of bulbar involvement. To this purpose, a clinically

readily available, noninvasive electrophysiological technique—

sEMG—was combined with graph network analysis to extract 48

features for assessing the performance of the muscle network.

These features revealed a variety of disease-related changes,

reflecting reduced and more variable myoelectric activation of

all muscles, reduced functional connectivity and integration

of the whole muscle network across three frequency bands

(i.e., theta/alpha, beta, low gamma), and reduced functional

specialization and lateralization of selective muscles in the beta

and low gamma bands. Through dimension reduction, these

features were successfully clustered into 10 interpretable latent

factors, each reflecting a specific functional underpinning of the

muscle network. These latent factors (1) demonstrated promise

for detecting both clinically overt and silent bulbar neuromuscular

changes across the prodromal and symptomatic stages and (2) were

correlated with clinically meaningful behavioral changes of the jaw

in individuals with ALS. These findings pave the way for applying

the network-based neurodegeneration perspective and graph

network analysis to evaluate bulbar involvement—a previously

underexplored functional domain in neurodegenerative diseases

that lacks a validated objective marker. Given the noninvasiveness

and clinically readily availability of the instrument, and the

fully automated data processing and analytics, the sEMG-based

functional mandibular muscle network demonstrates strong

potential for a clinically scalable efficient measurement tool to

assess, monitor, and phenotype bulbar involvement in ALS.

4.1 Disease e�ects on the multiplex
functional mandibular muscle network

The comparison of the network features between the ALS and

healthy control groups reveals a variety of interpretable changes in

line with the neuropathology of ALS, relating to both upper and

lower motor neuron (UMN/LMN) degeneration. The combination

of these features may therefore provide an effective means to profile

bulbar involvement in ALS.
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FIGURE 5

Boxplots for edgewise features (nodstr, ac, ge, wcc_RTEMP, wcc_RMAS, wcc_RABD, wcc_LTEMP, wcc_LMAS, wcc_LABD, lat_TEMP_MAS,

lat_TEMP_ABD, lat_MAS_ABD) of the multiplex functional muscle network, displayed by band (theta/alpha, beta, gamma) and subgroup (ALSwB,

individuals with amyotrophic lateral sclerosis, with overt clinical bulbar symptoms; ALSwoB, individuals with amyotrophic lateral sclerosis, absent of

overt clinical bulbar symptoms; Control, healthy controls). nodstr, mean nodal strength; ac, assortativity coe�cient; ge, global e�ciency; wcc,

weighted clustering coe�cient; lat, laterality index. RTEMP, right temporalis; LTEMP, left temporalis; RMAS, right masseter; LMAS, left masseter; RABD,

right anterior belly of digastric; LABD, left anterior belly of digastric.
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TABLE 4 Statistics results of the linear mixed e�ects models for edgewise features of the multiplex functional muscle network.

Feature Main e�ects and interaction Post-hoc comparison: ALS vs. control

Group Band Group × band Theta/alpha Beta Gamma

F p F p F p t p t p t p

nodstr 13.53 0.0012 295.30 <0.001 29.18 <0.001 −5.46 <0.001 −3.03 0.0055 −2.18 0.039

ac 0.22 0.64 74.58 <0.001 34.57 <0.001 −2.77 0.0099 0.54 0.59 −0.87 0.39

ge 13.64 0.0012 303.08 <0.001 29.46 <0.001 −5.55 <0.001 −2.95 0.0065 −2.18 0.038

wcc_RTEMP 5.65 0.026 178.43 <0.001 4.13 0.016 −1.35 0.19 −2.83 0.0085 −2.58 0.015

wcc_LTEMP 2.27 0.15 198.66 <0.001 6.85 0.0011 −0.27 0.79 −2.35 0.026 −1.65 0.11

wcc_RMAS 4.93 0.037 136.94 <0.001 11.67 <0.001 −0.43 0.67 −2.85 0.0078 −2.97 0.0059

wcc_LMAS 2.76 0.11 151.05 <0.001 5.10 0.0062 −0.59 0.56 −2.30 0.029 −1.83 0.078

wcc_RABD 4.38 0.048 197.41 <0.001 15.98 <0.001 −0.32 0.76 −3.17 0.0037 −2.49 0.019

wcc_LABD 0.71 0.41 184.99 <0.001 8.41 <0.001 0.061 0.95 −1.76 0.090 −0.74 0.46

lat_TEMP_MAS 2.32 0.14 21.55 <0.001 1.06 0.35 −1.102 0.28 −1.41 0.17 −1.85 0.075

lat_TEMP_ABD 2.83 0.11 9.83 <0.001 3.46 0.032 −0.73 0.47 −1.64 0.11 −2.35 0.026

lat_MAS_ABD 7.28 0.013 1.28 0.28 2.36 0.095 −1.66 0.11 −2.62 0.013 −3.14 0.0035

ALS, amyotrophic lateral sclerosis; Control, healthy controls; F, F value; p, p value (note that the p values for the post-hoc tests are Bonferroni-adjusted); nodstr, mean nodal strength; ac,

assortativity coefficient; ge, global efficiency; wcc, weighted clustering coefficient; lat, laterality index. RTEMP, right temporalis; LTEMP, left temporalis; RMAS, right masseter; LMAS, left

masseter; RABD, right anterior belly of digastric; LABD, left anterior belly of digastric. Significant effects are highlighted in bold.

4.1.1 Nodal features
Decreased density and increased spectral radius ratio are

observed for all nodes/muscles in individuals with ALS (Table 3).

As shown in Figure 4, these changes appear to occur as early

as in the prodromal stage and decline incrementally from the

prodromal to the symptomatic stages. Such descriptive stage-

dependent changes along with the statistical results in Table 3

together reveal an early and incremental disease effect on the

regulatory mechanisms of all muscles in the network, resulting

in a trend toward progressively reduced and more variable

myoelectric activities.

Reduced myoelectric activities can be attributed to various

neurophysiological factors, including (1) decreased voluntary

recruitment and firing rate of motor units (MUs) due to

UMN involvement, (2) loss of viable MUs and altered muscle

fiber conduction velocity due to denervation and compensatory

reinnervation related to LMN involvement, and (3) reduced

MU synchronization due to both UMN and LMN involvement

(de Carvalho et al., 2014, 2012; Zwarts et al., 2000). Using a

traditional linear amplitude analysis, Rong and Pattee (2022)

has reported a similar decrease in the myoelectric activity of

masseter but not of temporalis or anterior belly of digastric

in individuals with ALS. The present finding of decreased

myoelectric activities of all three muscles (on both sides)

suggests that graph network analysis may provide a more

sensitive means for detecting the effect of bulbar involvement

on the modulation of myoelectric activities compared to linear

analysis. Increased variability of myoelectric activities could be

attributed to more variable firing rates, contractile properties, and

conduction velocities of MUs due to LMN-related denervation and

compensatory reinnervation (de Carvalho et al., 2014; Hansen and

Ballantyne, 1978; Wohlfart, 1957). Such an increase in variability

is in line with previous finding of decreased regularity of jaw

muscle activities in individuals with ALS (Rong and Pattee,

2022).

4.1.2 Edgewise features
Of all edgewise features, mean nodal strength and global

efficiency appear to be the most robustly affected by ALS, exhibiting

significant decreases across all frequency bands (i.e., theta/alpha,

beta, low gamma). Furthermore, as shown by the descriptive

boxplots in Figures 5A, C, these decreases are observed as early as

in the prodromal stage and show incremental trends during the

transition from the prodromal to the symptomatic stages. These

results together elucidate an early and incremental disease effect on

the overall functional connectivity and integration of the multiplex

mandibular muscle network.

The disease effect on functional connectivity can be attributed

to the impairment of multiple neural drives originating from

motor cortical (i.e., beta and gamma oscillations) and other

(i.e., theta/alpha oscillations) sources. Reduced beta functional

connectivity has been previously reported for both bulbar and

limb muscle groups in individual with ALS (Fisher et al., 2012;

Issa et al., 2017; Rong and Pattee, 2021). Such changes have

been suggested to reflect corticobulbar/corticospinal involvement,

which impairs the motor cortical drive for synchronous oscillatory

modulation of functionally related muscles during motor acts. The

results of the current study resonate with and further extend these

prior findings, suggesting that, in addition to beta oscillations,

gamma and theta/alpha oscillations are also affected by ALS,

leading to a global decrease in theta/alpha, beta, and gamma

functional connectivity. Similar to beta functional connectivity,

reduced gamma functional connectivity can also be interpreted as

resulting from impaired motor cortical drive due to corticobulbar

involvement, although the specific functional roles of beta and
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gamma oscillations likely differ in the time course of a motor act

(Reed et al., 2021). Theta/alpha oscillations have been associated

with sources outside of the motor cortex. A possible source is

from proprioceptive afferents. Such afferents, as generated by

the proprioceptors in muscles, are sent to the somatosensory

cortex (S1) and then to the motor cortex (M1), together

constituting a M1-muscle-S1-M1 feedback loop (Maezawa, 2017).

The impairment of this proprioceptive feedback loop may underlie

the decrease in theta/alpha functional connectivity in individuals

with ALS.

In addition to the impairment of the central neural drives

as noted above, physiological and histochemical changes in the

muscles themselves (e.g., related to denervation and reinnervation)

can also impact functional connectivity. Therefore, the observed

decreases in functional connectivity are likely reflective of the

interplay of all related central and peripheral factors, together

leading to a global weakening of nodal linkage of the whole muscle

network. The weakened linkage between muscles can further result

in a functional disintegration of the muscle network, which is

evidenced by the decreases in global efficiency across all three

frequency bands in individuals with ALS.

The disease effects on the other edgewise features are less

consistent across frequency bands. Weighted clustering coefficients

only reveal significant decreases in the beta and gamma bands,

but not in the theta/alpha band. Decreased weighted clustering

coefficients imply less specialized functions of the muscles, which

are likely attributed to the interplay of various pathological and

compensatory factors. Pathologically, it is known that reduced

voluntary recruitment (e.g., due to impaired beta and gamma

cortical drives) and loss of viable MUs (e.g., due to LMN

involvement) can differentially impair muscles with different

physiological origins and compositions (DePaul et al., 1988; Rong

and Jawdat, 2021; Rong and Pattee, 2021, 2022). In response to

such differential impairments, individuals with ALS often make

spontaneous adaptations to leverage the functional capacities of

different muscles and use the less affected muscles to compensate

for the functional impairments of the more affected ones. For

instance, Rong and Pattee (2022) has reported an adaptive shift of

primary agonist for speech-related jaw movement from masseter

to temporalis in patients with ALS. This adaptation is intended

to take advantage of the relative resistance of temporalis to

neurodegeneration (due to its higher composition of slow fatigue-

resistant fibers) (Frey et al., 2000; Pun et al., 2006), allowing patients

to maintain the overall force generation capacity of the agonists

despite the impairment of masseter. Yet, an adaptation like this

inevitably reduces the functional specialization of different muscles

(e.g., temporal vs. masseter), providing a possible explanation for

the decreases in weighted clustering coefficients as observed in

this study.

Similar as with the weighted clustering coefficients, the disease-

related decreases in the laterality indices are also only observed

in the beta and gamma bands, but not in the theta/alpha band.

Such changes coincide with the prediction of the evolutionary

neurodegeneration perspective discussed earlier, revealing a

tendency toward preferential involvement of the motor cortex

in the dominant left hemisphere. Given the known contralateral

dominance of corticobulbar projection, such preferential left-sided

FIGURE 6

Receiver operating characteristic (ROC) curves for the machine

learning classification models between amyotrophic lateral sclerosis

and healthy control samples. RF, random forest; SVM, support

vector machine; KNN, k-nearest neighbors.

TABLE 5 Classification performance of machine learning (ML) algorithms.

ML algorithm AUC F1 Precision Recall

RF 0.89 0.85 0.84 0.87

SVM 0.91 0.87 0.86 0.88

KNN 0.90 0.86 0.85 0.87

AUC, area under the curve; RF, random forest; SVM, support vector machine; KNN,

k-nearest neighbors.

cortical involvement would affect muscles on the right side

more than those on the left, thereby diminishing the right-to-

left laterality of muscle functioning as seen in Figures 5J–L. The

finding that the laterality of the antagonist muscle groups is more

affected than that of the agonist muscle group may be associated

with the different functional roles of antagonists vs. agonists in

speech production. While the coactivation of agonists generates

large forces for jaw elevation, the coactivation of antagonists tunes

the biomechanical properties of the mandibular system to facilitate

the generation of rapid, precise jaw movement (Humphrey

and Reed, 1983; Moore, 1993; Moore et al., 1988). Speech

production typically does not demand large forces (compared

to other oromotor tasks such as chewing) but requires rapid

and precise articulatory movements to efficiently and accurately

communicate linguistic messages. Such task demands may render

antagonists a more important functional role than agonists in

speech production, thereby enhancing their susceptibility to the

disease effect.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1491997
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rong et al. 10.3389/fnins.2024.1491997

FIGURE 7

Scatterplots for (A) acceleration time, (B) mean acceleration, and (C) sti�ness of the jaw against the predictions of the stepwise linear mixed e�ects

models based on the factor scores of the multiplex functional muscle network. The lines and shaded regions around the lines are linear fits and 95%

confidence intervals for individuals with amyotrophic lateral sclerosis (ALS, red) and healthy controls (Control, blue), respectively.

4.2 Utility of the multiplex functional
mandibular muscle network for detecting
bulbar involvement in ALS

The factor analysis successfully clustered all 48 features

of the multiplex functional mandibular muscle network into

10 interpretable latent factors, each representing a specific

functional underpinning of the network. Based on the primary

component features of each factor as identified in Figure 3,

factors 1 to 10 can be interpreted as respectively reflecting

(1) regulatory mechanisms of individual muscles; (2) gamma-

band functional specialization; (3) theta/alpha-band functional

specialization; (4) beta-band functional specialization; (5)

theta/alpha-band functional connectivity and integration; (6)

functional lateralization of the antagonist muscle groups; (7)

beta-band functional connectivity and integration; (8) functional

lateralization of the agonist muscle group; (9) gamma-band

functional connectivity and integration; (10) assortativity/selective

functional connectivity.

This factorization has two important implications: first,

it reduces the dimensionality of the original features into a

more manageable set of latent factors to circumvent the curse

of dimensionality as commonly encountered in digital health

applications (Berisha et al., 2021); second, the interpretability

of these factors renders them suitable for objective markers of

bulbar involvement. The second implication is supported by the

results of the classification analysis. As shown in Table 5 and

Figure 6, all classification models provide consistent evidence

that the 10 latent factors combined can detect (subclinical)

bulbar involvement across the prodromal and symptomatic

stages with acceptably high efficacy. These findings demonstrate

the promise of the multiplex functional mandibular muscle

network for an objective tool to detect and measure both

clinically overt and silent neuromuscular changes throughout

the course of bulbar progression. Such a tool can effectively

improve the early detection and monitoring of bulbar involvement

in ALS.

4.3 Relation of the multiplex functional
mandibular muscle network to clinically
relevant behavioral patterns of the jaw

The latent factors of the multiplex functional mandibular

muscle network were found to selectively correlate with the jaw

kinematic/dynamic metrics during speech. As a key dynamic

control variable, stiffness is known to be modulated by the

neuromuscular system for regulating the rate and precision of

movement (Humphrey and Reed, 1983; Moore, 1993; Moore et al.,

1988). The findings of this study identify several neuromuscular

factors for such stiffness modulation. These factors, including

the level and variability of myoelectric activities (factor 1), the

functional connectivity and integration of the whole multiplex

muscle network (factors 5, 7, 9), and the functional lateralization

of the antagonist muscle groups (factor 6), collectively account for

69% of the total variance in jaw stiffness. Notably, the majority of

these factors (i.e., factors 1, 5, 9) also correlate with the acceleration

time and mean acceleration of the jaw. Based on the directions

of these correlations, the disease-related changes in the factors

are associated with reduced stiffness, increased acceleration time,

and reduced mean acceleration. Such changes are in alignment

with the commonly reported behavioral deficits in ALS, including

weakness, imprecision, and slowness (Bandini et al., 2018; Darley

et al., 1969a,b; Moore and Rong, 2022; Rong and Heidrick, 2021;

Rong et al., 2021, 2015a, 2016; Shellikeri et al., 2016; Yunusova et al.,

2010).

The mutual contributions of the above-identified

neuromuscular factors to all three dynamic/kinematic metrics

elucidate a possible explanatory model of speech production.

In this model, stiffness, as an implicit dynamic control variable,

serves as a mediator to connect the muscle network to the

kinematic properties of the effector (i.e., acceleration time and

mean acceleration). This model provides novel and much-needed

insights into the clinical-neuropathological relationship, by linking

between the neuromuscular underpinnings (muscle network),

the dynamic control mechanism (stiffness), and the behavioral
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manifestations (acceleration profile) of bulbar involvement in

ALS. Such a model warrants further investigation in future

work. Lastly, it is worth noting that all predicted relationships

between the neuromuscular factors and kinematic/dynamic

metrics are followed by the data for both individuals with ALS and

healthy controls, as shown in Figure 7. This observation provides

supportive evidence to rule out a common “third variable”—disease

severity—which underlies and often confounds the relationship

between the predictors and the outcome in correlation analysis

on data drawn from a population with a wide range of severity

(Weismer, 2006).

4.4 Clinical implications

Using fully automated data processing and analytic procedures,

this study constructed a sEMG-based multiplex functional

mandibular muscle network for objective assessment and profiling

of bulbar involvement in ALS. This network approach has various

strengths over the existing clinical and quantitative tools for bulbar

assessment. Compared with the standard clinical tools which rely

primarily on expert-guided subjective evaluation of overt clinical

symptoms and functional declines, our network approach detects

and quantifies not only overt bulbar involvement during the

symptomatic stage, but also clinically silent bulbar neuromuscular

changes during the prodromal stage. Neurodegenerative diseases

are known to have a long prodromal stage, during which a

variety of subclinical changes occur silently at different levels

(Eisen et al., 2014). After years to decades of progression, these

changes eventually culminate in clinical symptoms and functional

declines. With the demonstrated sensitivity to prodromal bulbar

neuromuscular changes, our network approach can effectively

improve the early detection of bulbar involvement in ALS,

providing a supplementary assessment tool to the existing

clinical standards.

In addition to the standard clinical tools, a variety of

instrumental approaches using contemporary kinematic (e.g.,

sensor-based or markerless facial motion tracking) and acoustic

(e.g., lab-grade or mobile app-based speech recording) techniques

exist, allowing for alternative means of quantitative bulbar

assessment. These techniques, however, either rely on instruments

that are currently unavailable in a clinical setting (e.g., kinematic

tracking device) or focus on behavioral measures (e.g., acoustic

features) that lack mechanistic insights into the neuropathological

underpinnings. Compared with these techniques, our network

approach utilizes a clinically readily available noninvasive

instrument (i.e., sEMG) and generates a set of interpretable

objective outcome measures (i.e., latent factors) that are both

(1) explanatorily linkable to the neuromuscular mechanisms of

bulbar involvement and (2) correlated with clinically meaningful

behavioral changes (e.g., reduced stiffness, increased acceleration

time, reduced mean acceleration). Moreover, the fully automated

data processing and analytic procedures require minimal training

and technical expertise, largely enhancing the scalability of the

network approach to routine clinical practice.

With the various strengths as noted above, the network

approach has a variety of clinical implications. First, the

identification and quantification of clinically indiscernible

subclinical bulbar neuromuscular changes during the prodromal

stage would allow clinicians more time to engage patients and their

caregivers into the conversation about the expected functional

declines of the patients and the management options available

to support informed decision-making and patient-centered care.

Second, although not statistically tested, the descriptive patterns

in Figures 4, 5 reveal a trend toward progressive involvement of

various nodal (e.g., density, spectral radius ratio) and edgewise

(e.g., mean nodal strength, global efficiency) features of the

muscle network across the prodromal and symptomatic stages.

With further statistical verification warranted, the latent factors

associated with these features (e.g., factors 1, 5, 7, 9) may provide

useful objective markers for monitoring bulbar disease progression

to guide stage-dependent, tailored intervention for optimized

outcomes. Third, the finding that the multiplex functional muscle

network exhibits interpretable disease-related changes, which are

linkable to both the neuromuscular mechanisms and behavioral

patterns of bulbar involvement, corroborates the potential of

the network for an objective tool to measure and phenotype

bulbar involvement. Such phenotype information could improve

(1) personalized care of bulbar dysfunction and (2) patient

stratification for clinical trials to facilitate the efforts for therapeutic

treatment discovery and early trial enrollment.

4.5 Limitations and future directions

As an initial effort to apply graph network analysis for assessing

and characterizing bulbar involvement, there are several limitations

of this study that should be leveraged in future work along

similar lines. During network construction, target muscles were

selectedmainly based on accessibility consideration.While anterior

temporalis, masseter, and anterior belly of digastric muscles are

well supported by the evidence from the literature to be accessible

and reliably measurable by surface electrodes, it should be noted

that these muscles only consist of a small portion of the complex

bulbar musculature. Thus, the generalizability of the findings to

other muscles with distinct physiological origins and compositions

remains unclear. Nevertheless, the methodology of this study,

including the experimental paradigm and all data processing and

analytic procedures, is adaptable for other bulbar muscles, enabling

future scaling to larger-scale muscle networks.

In addition to the disease effects, various other factors that are

unrelated or not directly relatable to the disease can influence the

performance of the muscle network. These factors, including aging,

fatigue, and technical specifications of the sEMG system, might

confound the disease effects on the network properties such as

functional connectivity. Such contextual factors should be taken

into account in the study design and be better delineated and

controlled in the data analysis in future larger-scale studies.

While we demonstrated that the disease-related changes in

the network features can be explanatorily linked to the combined

effects of UMN and LMN degeneration (along with other related

neurodegenerative processes), these intertwined neuropathological

factors remain hard to disentangle based on the current approach.

This limitation, however, does not diminish the impact of
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developing a novel objective tool to comprehensively assess the

complete picture of bulbar neuromuscular pathology in ALS,

relating to both UMN and LMN degeneration. Such a tool is

highly needed for the understanding, phenotyping, and tailored

management of bulbar involvement.

Although our sample was carefully controlled in clinical

characteristics such as disease onset (i.e., bulbar onset: 33%,

resembling the population-wise prevalence of 25%−30%) and

staging of bulbar involvement (i.e., roughly balanced between the

prodromal [47%] and symptomatic [53%] cases), the limitations

of the sample size and population diversity due to the single-

site recruitment raise caution to generalizing the findings

to larger patient populations. Additionally, given the small

number of samples after stratifying the ALS patients into the

prodromal and symptomatic subgroups, we did not conduct

statistical analysis on the stratified samples. Thus, the stage-

dependent changes in all network features, as illustrated in

Figures 4, 5, are descriptive and require further statistical

verification. To address these limitations, a cross-site external

validation with larger, independent, and more heterogenous

ALS cohorts is needed to substantiate the clinical utility of

the proposed network approach in diverse patient populations

and subgroups.

The dataset analyzed in this study is cross-sectional in

nature. The discussion on the effect of bulbar progression

on the muscle network is based on the comparison between

individuals at different stages of bulbar involvement rather

than the dynamic changes within an individual throughout

their disease course; the relevant implication for progress

monitoring is thus speculative. The heterogeneity in bulbar

progression trajectories is well recognized in ALS (Rong

et al., 2020, 2015b). To characterize and potentially stratify

such progression trajectories, a well-powered longitudinal

dataset is needed in future research to (1) evaluate the

responsiveness of the muscle network to bulbar progression

within an individual and (2) identify potential subtypes (e.g.,

fast vs. slow progressors) to facilitate disease prognosis and

intervention planning.

Although we identified significant correlations of the latent

factors of the muscle network to acceleration time and mean

acceleration, it should be noted that the marginal R2 of both

models (0.073 − 0.16) are substantially lower than the conditional

R2 (0.45 − 0.81). This observation suggests that a notable

proportion of variance in these kinematic metrics cannot be

explained by the fixed effects of the models. Additional latent

variables likely exist alongside the factors examined in this study

to jointly contribute to the acceleration profile of the jaw. For

example, other muscles (e.g., medial pterygoid) may play a role

in regulating jaw kinematics in addition to temporalis, masseter,

and digastric. Such unknown variables remain to be identified in

future research.

In a prior study, Rong and Pattee (2022) has applied

traditional linear analysis in both frequency and time

domains along with recurrence quantification analysis to

assess the amplitude, frequency, complexity, regularity, and

coordination of jaw muscle activities. Various features have

been identified as being sensitive to early bulbar involvement

in ALS. These features provide distinctive insights into the

neuromuscular pathology of bulbar involvement that are

complementary to the network features in this study. One

future direction is to explore the possibility of combining the

analytic approaches in the current and previous studies into a

comprehensive multi-construct assessment protocol to further

improve the detection and phenotyping of bulbar involvement

in ALS.

5 Conclusions

To our knowledge, this was the first study to adopt

the concept of network-based neurodegeneration, which has

been primarily applied to brain networks associated with

dementia syndromes in previous studies, to construct a multiplex

functional mandibular muscle network for assessing bulbar

involvement—a hallmark feature of ALS currently lacking objective

markers. This network was constructed based on a clinically

readily available noninvasive electrophysiological technique—

sEMG—coupled with fully automated data processing and

analytic procedures to extract 48 features reflecting the network

properties during a speech task. These features exhibited a

variety of changes in individuals with ALS, all being explanatorily

linkable to the neuropathology of ALS, related to both UMN

and LMN degeneration. Through dimension reduction, the

features were successfully clustered into 10 interpretable latent

factors, each reflecting a specific functional underpinning of the

muscle network.

To evaluate the utility of the latent factors of the muscle

network as objective markers of bulbar involvement, statistical

and ML algorithms were trained and tested on a heterogenous

ALS dataset, consisting of about half samples presenting with

overt clinical bulbar symptoms and half without, along with a

matched healthy control sample set. Based on these analyses, the

latent factors (1) demonstrated efficacy for detecting both clinically

overt and silent neuromuscular changes across the prodromal

and symptomatic stages of bulbar involvement, and (2) were

correlated with clinically meaningful behavioral changes in the

jaw (i.e., reduced stiffness, increased acceleration time, reduced

mean acceleration). These findings provide converging supportive

evidence for the multiplex functional mandibular muscle network

to serve as an objective measurement tool to improve the early

detection and profiling of bulbar involvement in ALS. This tool has

several notable strengths, including the use of a clinically readily

available noninvasive instrument, fully automated data processing

and analytics, and the generation of clinically relevant, interpretable

objective outcome measures. These strengths render the tool

highly scalable for a variety of clinical applications to improve

personalizedmanagement and clinical trial planning for individuals

with ALS.
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