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Introduction: EEG-based emotion recognition has gradually become a new

research direction, known as a�ective Brain-Computer Interface (aBCI),

which has huge application potential in human-computer interaction and

neuroscience. However, how to extract spatio-temporal fusion features from

complex EEG signals and build learning method with high recognition accuracy

and strong interpretability is still challenging.

Methods: In this paper, we propose a hybrid attention spatio-temporal feature

fusion network for EEG-based emotion recognition. First, we designed a spatial

attention feature extractor capable of merging shallow and deep features to

extract spatial information and adaptively select crucial features under di�erent

emotional states. Then, the temporal feature extractor based on the multi-head

attention mechanism is integrated to perform spatio-temporal feature fusion to

achieve emotion recognition. Finally, we visualize the extracted spatial attention

features using feature maps, further analyzing key channels corresponding to

di�erent emotions and subjects.

Results: Our method outperforms the current state-of-the-art methods on two

public datasets, SEED and DEAP. The recognition accuracy are 99.12% ± 1.25%

(SEED), 98.93% ± 1.45% (DEAP-arousal), and 98.57% ± 2.60% (DEAP-valence).

We also conduct ablation experiments, using statistical methods to analyze

the impact of each module on the final result. The spatial attention features

reveal that emotion-related neural patterns indeed exist, which is consistent with

conclusions in the field of neurology.

Discussion: The experimental results show that our method can e�ectively

extract and fuse spatial and temporal information. It has excellent recognition

performance, and also possesses strong robustness, performing stably across

di�erent datasets and experimental environments for emotion recognition.

KEYWORDS

a�ective Brain-Computer Interface, EEG, emotion recognition, hybrid attention, spatio-

temporal feature

1 Introduction

Emotion is a complex psychological and physiological state in human life, typically

manifested as subjective feelings, physiological responses, and behavioral changes (Maithri

et al., 2022). Emotions can be brief or enduring, significantly influencing individual and

social interactions. The recognition of emotions can enhance human-machine interactions
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and improves user experiences, meeting user needs more

effectively. It also aids in diagnosing and treating mental health

issues such as Autism Spectrum Disorder (ASD) (Zhang et al.,

2022) and Bipolar disorder (BD) (Zhao et al., 2024). Compared

to non-physiological signals like facial expressions (Ge et al.,

2022), speech and text (Hung and Alias, 2023), or body posture

(Xu et al., 2022), physiological signals offer higher reliability,

are less susceptible to deception, and provide more objective

information. Physiological tests like Electroencephalogram (EEG)

(Su et al., 2022), Electromyography(EMG) (Ezzameli andMahersia,

2023), Electrocardiogram (ECG) (Wang et al., 2023), and

Electrooculogram (EOG) (Cai et al., 2023), are commonly used.

Among them, EEG signals are commonly used as they record the

electrical activity of brain neurons and provide direct information

about emotional processing. Additionally, EEG signals are acquired

non-invasively, at low cost and offers very high temporal resolution.

In the past researches, in order to further improve the

recognition accuracy of emotion and uncover brain responses

during the emotion induction process, considerable research

efforts have been devoted to extracting and classifying emotional

features of EEG signals. EEG signals contain a wealth of

information. Extracting appropriate features not only reduces data

dimensionality and complexity but helps emphasize the crucial

information related to emotions as well. In 2013, Duan et al.

(2013) proposed Differential Entropy(DE) features for emotion

recognition and achieved high recognition accuracy. And in 2017,

Zheng et al. (2017) extracted PSD, DE, DASM and other features,

inputting them into the same classifiers for emotion classification.

They found DE can improve the accuracy the most compared

to the baseline. Gong et al. (2023) also found that extracting DE

features would achieve higher accuracy. Therefore, in this study we

also extracted DE features. For classifiers, commonly used machine

learning classifiers mainly include Support Vector Machine (SVM)

(Mohammadi et al., 2017), Decision Tree (DT) (Keumala et al.,

2022), K Nearest Neighbor (KNN) (Li M. et al., 2018), Random

Forest (RF), etc. However, with the rapid development of deep

learning methods, their adaptability and excellent performance

have made them increasingly popular for emotion recognition.

In 2015, Zheng and Lu (2015) designed a Deep Belief Network

(DBN), results show that the DBN models outperform over other

models with higher mean accuracy and lower standard deviations.

Chao et al. (2023) designed ResGAT based on graph attention

network, it greatly improved accuracy compared to traditional

machine learning. In Fan et al. (2024), the accuracy of LResCapsule

proposed by Fan et al. is 10–20% higher than that of DT

and SVM.

Recently, more researchers have focused on utilizing deep

learning to extract information from different domains within EEG

signals, aiming to obtain more comprehensive information.

In the spatial domain, extracted features can reflect

relationships between EEG channels. Some researchers treat each

channel as a node, introduce topological structure, and employ

Graph Neural Networks (GNN) to capture the relationships

between channels. For example, Song et al. (2018) proposed a

dynamic graph convolutional neural network (DGCNN) for

multi-channel EEG emotion recognition, which extracts intrinsic

relationships among EEG channels. Similarly, Ye et al. (2022) and

Li et al. (2024) also based their work on GCN, using hierarchical

and multi-branch approaches to obtain richer spatial information.

While this approach simulates connectivity relationships among

EEG channels, GCNs typically use information from first-order

neighboring nodes for graph convolution, focusing on the nearest

nodes and potentially ignoring more distant ones. For EEG data,

channel relationships do not necessarily correlate with physical

proximity. Another approach is to map EEG channels to a 2D

matrix based on their original layout, and process them similarly

to image data (Yang et al., 2018a; Shen et al., 2020; Li J. et al., 2018;

Xiao et al., 2022). However, the resulting matrix does not match

typical image sizes, and each “pixel” represents an EEG channel,

which is not equivalent to pixels in an image (Xu et al., 2024).

Consequently, applying image processing techniques can lead to

information loss. Therefore, the primary issue to consider is how

to effectively utilize the spatial domain information in EEG signals

and construct deep learning networks that align with this structure

to extract information accurately.

Emotional states are dynamic, and EEG signals are acquired

in a time sequence, requiring consideration of their temporal

dynamics. Xing et al. (2019) employed LSTM-RNN to capture the

temporal information of emotions, using contextual correlation

to improve classification accuracy. Si et al. (2023) proposed

MATCN, which extracts local temporal information through

separable convolution with attention and captures global temporal

information through a Transformer, demonstrating its potential

in temporal emotional localization. While domain-specific features

of EEG signals exhibit distinct characteristics, they are not

entirely isolated; complementary and redundant information exists

between them. Some researchers combine different deep learning

networks to learn features from various domains (Pan et al., 2023;

Cheng et al., 2024; Li D. et al., 2022; Wei et al., 2024; Gong

et al., 2024; Sartipi et al., 2023). Specifically, Li D. et al. (2022)

introduced STGATE, a composite framework, which employs a

Transformer network to learn time-frequency representations and

Graph Attention Network (GAT) to learn spatial representations.

Sartipi et al. (2023) proposed a hybrid structure combining a

spatio-temporal encoder with a recurrent attention network to

learn spatio-temporal features. Fusing features from different

domains can effectively utilize complementary information and

eliminate redundancy, significantly enhancing emotion recognition

accuracy. Fully integrating spatio-temporal feature information

after effectively extracting spatial domain information is the second

issue to consider.

Emotions are complex, arising from the brain’s biological

mechanisms. Researchers in the neurological field strive to

understand these mechanisms to provide deeper insights into

the treatment of emotional disorders (McRae et al., 2012; Buhle

et al., 2014; Messina et al., 2021). This study goes beyond simply

categorizing emotions. It further investigates how emotions are

generated at the neural level and decodes their traces in the brain

(Bo et al., 2024). Therefore, the final issue to consider is conducting

an in-depth analysis of EEG signals. We aim to capture activity

levels and neural oscillation patterns in various brain regions

to reveal the spatio-temporal dynamics of emotion processing,

and visualize common neural patterns corresponding to different

emotional states and subjects.
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Thus, in summary, we have identified the following research

problems: (a). How to design spatial feature extractors that align

with EEG structure, mitigate information loss, and ensure precise

information extraction. (b). How to integrate spatio-temporal

features by leveraging complementary information and reducing

redundancy. (c). How to apply engineering methods to capture

brain activity across regions, revealing neural patterns linked to

different emotional states and subjects.

To address the above problems, this paper proposes a Hybrid

Attention Spatio-Temporal Feature Fusion Network (HASTF).

HASTF contains a spatial attention feature extractor and a temporal

attention feature extractor. It extracts more discriminative spatial

information, adaptively selecting crucial regions and electrode

channels. The temporal attention feature extractor uses a multi-

head attention mechanism to extract global temporal feature

information, and fuse it with spatial features. While completing

an emotion recognition task, it also visualize the activity levels of

various brain regions during the generation of different emotions.

The primary contribution of this study can be summarized as:

(1) We apply a parameter-free attention to the spatial feature

extraction network for the first time, which can directly calculate

attention weights for the 3D feature. And we add skip connections

to solve the problem of information loss, selecting crucial channels

related to emotions adaptively by learning and capturing more

fine-grained spatial features.

(2) We design HASTF, a hybrid attention model. It can

effectively utilizes the advantages of spatial domain attention and

temporal domain attention to fuse the spatial and temporal features

of EEG signals. HASTF fully leverages the complementary nature

of spatio-temporal features, enhancing the accuracy of emotion

recognition. We tested it on two public datasets, achieved state-of-

the-art performance.

(3) While achieving high recognition accuracy, we leverage

the strengths of HASTF to visualize the activation states of brain

regions corresponding to different emotions and different subjects,

exploring the neural patterns of emotions in the brain from an

engineering perspective.

The rest of paper is divided into five sections as follows: Section

2 provides a detailed elaboration of proposed model. Section 3

introduces the two publicly datasets and provides a comprehensive

report on various experimental setups conducted on these datasets.

Section 4 summarizes the experimental results and conducts an

analysis of these findings. Sections 5, 6, respectively, discuss and

conclude the research work of this paper.

2 Methods

In this section, we introduce the methods and the Hybrid

Attention Spatio-Temporal Feature Fusion Network (HASTF)

proposed in this paper. As shown in Figure 1, the overall framework

can be divided into four parts: Preprocessing & Feature Extraction,

3D Feature Mapping, Spatial Attention Feature Extractor (SAFE)

and Temporal Attention Feature Extractor (TAFE). Each part will

be introduced in detail below.

2.1 Preprocessing and feature extraction

For the preprocessed EEG signal X ∈ R
(C×L), where C

represents the number of EEG channels and L is the EEG sampling

time. According to Cai et al. (2024) and Yi et al. (2024), EEG

contains various frequency components, which are associated with

different functional states of the brain. Therefore, we first use a

third-order Butterworth bandpass filter to decomposed the signal

into Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta

(13–31 Hz), and Gamma (31–50 Hz), which can be described

as Equation 1. This ensures a smooth transition at frequency

boundaries and effective separation.



































yDelta = butter_pass(1, 4)

yTheta = butter_pass(4, 8)

yAlpha = butter_pass(8, 13)

yBeta = butter_pass(13, 31)

yGamma = butter_pass(31, 50)

(1)

Then, the signal is non-overlappingly segmented into n time

windows of length T. In this study, T is set to 8 s for the DEAP

dataset and 11 s for the SEED dataset. Each time window is further

divided into smaller patches of 1-s length. For each patch, DE

features are extracted in the five frequency bands according to the

following formula:

DE(X) =
∫ ∞

−∞
f (x) log f (x)dx (2)

Since the EEG signals within each subband tend to closely

approximate a Gaussian distribution, f(x) can be written as f (x) =
1√
2πσ 2

exp
(

− (x−µ)2

2σ 2

)

. Where µ and σ 2 represent the expectation

and variance of X, respectively. Therefore, the result of the above

formula is

DE(X) = 1

2
log

(

2πeσ 2
)

(3)

Here, e is the base of the natural logarithm.

2.2 3D feature mapping

After calculating the DE characteristics of each frequency band,

we process the EEG data into patches one by one. Each patch

P ∈ R
(n×T×B×C), where n is the number of time windows, T is

the number of patches in each time window, B is the number of

frequency bands, here B = 5, C is the number of channels. When

collecting EEG, electrode caps that comply with the international

10-20 standard are used for data collection. What we want is to

restore the arrangement of electrodes on the brain and integrate

frequency, spatial and temporal characteristics. Specifically, we

arrange the electrode channels in a 2Dmatrix format that preserves

their relative positions as they are placed on the scalp (Yang et al.,

2018a; Shen et al., 2020; Xiao et al., 2022). Figure 2 is the mapping

diagram of 32 and 62 electrode channels.
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FIGURE 1

The framework diagram of the hybrid attention spatio-temporal feature fusion network (HASTF) for EEG emotion recognition.

2.3 Spatial attention feature extractor

The role of the Spatial Attention Feature Extractor

(SAFE) is to extract spatial features from the EEG data to

adaptively capture the most crucial EEG channels within the

3D patch. As shown in Figure 3. It primarily consists of two

parts, namely the U-shaped Continuous Convolution Fusion

module (UCCF) and the parameter-free Spatial Attention

Module (SA). And we provided detailed explanations for

the research motivation behind each module and their

specific details.

2.3.1 U-shaped continuous convolution fusion
module

Due to the relatively small dimensions (9× 9) of the 3D features

after 3D mapping, applying conventional convolution operations

as used in image processing directly would result in an excessively

large receptive field. Such approaches have failed to capture enough

fine-grained features (Dumoulin and Visin, 2016; O’shea and Nash,

2015). There could be two potential solutions to this problem.

The first involves using shallow networks with small kernel sizes,

which is unsatisfactory in terms of capturing spatial features (Tan

and Le, 2019). The other one is to employ a deeper network,

but this could lead to issues such as overfitting and gradient

explosion (Fan et al., 2024). For images, adjacent pixels often exhibit

minimal differences, so researchers do not need to excessively

emphasize fine-grained features when processing images. while the

3D EEG features are distinct, each “pixel" represents an individual

channel, and the relationships between channels are subtle and

intricate. Despite the secondary processing of channels based

on electrode placement, some neighboring electrodes may have

weak relationships, while some distant electrodes may have strong

connections (Jin et al., 2024). So, we need to focus more on the

fine-grained features of the entire 3D patch. Skip connections

(Ronneberger et al., 2015) is introduced into the network, as shown

in Figure 3. There are two branches, the “channel expansion”

branch on the left and the “channel contraction” branch on the

right. These two branches are connected via a cascade operation.

It is worth noting that, in the corresponding layers of the two

branches, there is a fusion of intermediate features, creating skip

connections. This approach ensures that the network can capture

sufficient fine-grained features while mitigating overfitting to some

extent.

In previous sections, we rearranged the DE features to obtain

3D patches. The input data for UCCF is represented as Xt ∈
R
(n×B×h×w), where n is the number of windows, B is the number

of frequency bands, h and w are the length and width of the two-

dimensional feature matrix, respectively. The three-dimensional

structure of the EEG patches integrate spatial features, frequency

band features and time features to facilitate network extraction

and processing. Specifically, the structure of each patch is Pi =
(

x1,1, x1,2, . . . , xh,w
)

, where xi,j ∈ R
(h×w). Let Y

(k)
spatial, t

represent

the output of the k-th layer spatial convolution, Y
(k)
spatial, t

∈
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FIGURE 2

2D mapping of (A) DEAP dataset, (B) SEED dataset.

R
(n×Bk×hk×wk), where Bk, hk,wk represent the number, length and

width of feature maps obtained as the output of the k-th layer.

Y
(k)
spatial, t

can be defined as:

Y
(k)
spatial ,t

= 8ReLU

(

Conv2D
(

Y
(k−1)
spatial ,t

, S(k)
))

(4)

Where Sk is the kernel size of the k-th convolutional layer.

Y
(k−1)
spatial, t

represents the output of the previous layer. Conv2D(.)

represents a two-dimensional convolution operation. 8ReIU(.) is

RELU activation function. Due to the existence of skip connections,

the spatial convolution output formulas for the 4th and 5th layers

are different, defined as follows:

Y
(4)
spatial ,t

= 8ReLU

(

Conv2D
(

CAT
(

Y
(3)
spatial ,t

, Y
(2)
spatial ,t

)

, S(4)
))

(5)

Y
(5)
spatial ,t

= 8ReLU

(

Conv2D
(

CAT
(

Y
(4)
spatial ,t

, Y
(1)
spatial ,t

)

, S(5)
))

(6)

Where CAT(A, B) represents the concatenation operation,

meaning A and B are joined along a certain dimension to form a

new vector, which is then used as a new input and passed through

the corresponding spatial convolutional layer.

2.3.2 Spatial attention
The EEG signal is essentially a bioelectrical signal, and its

generation is related to the neural mechanism of the human brain.

When a neuron becomes active, it often leads to a spatial inhibition

in the surrounding area to suppress neighboring neurons (Yang

et al., 2021). Therefore, neurons that exhibit this inhibitory effect on

their surroundings are relatively expected to have higher weights.

Our attention module, based on this theory, employs a parameter-

free method to directly compute the attention weights for 3D

inputs. The specific approach is as follows:

To estimate the importance of each individual neuron, based

on the spatial inhibition phenomenon, a straightforward approach

is to measure the linear separability between the target neuron and

other neurons. Based on linear separability theory, let et denote the

energy of neuron t, establish the energy equation as follows:

et
(

wt , bt , y, xi
)

=
(

yt − t̂
)2 + 1

M − 1

M−1
∑

i=1

(

yo − x̂i
)2

(7)

where t̂ = wtt + bt and x̂i = wtxi + bt are the linear

transformations of xi and t, respectively. And t is the target neuron

for which the degree of correlation needs to be calculated and xi
represents other neurons except t, i represents the neuron index,

wt and bt are the weight coefficients and bias coefficients in linear

transformation. M represents the total number of channels in a

specific frequency band. When t̂ equals yt and x̂i equals y0, this

formula can obtain the minimum value, which is equivalent to

finding the linear separability between the target neuron t̂ and other

neurons x̂i. In order to facilitate calculation, the two constants yo
and yt are set to−1 and 1, respectively. 0 can be rewritten as

et
(

wt , bt , y, xi
)

= 1
M−1

∑M−1
i=1

(

−1−
(

wtxi + bt
))2

+
(

1−
(

wtt + bt
))2 + λw2

t (8)

where λw2
t is the regularization term, λ is a constant. We can

quickly get the analytical solution as:

wt = − 2 (t − ut)

(t − ut)
2 + 2σ 2

t + 2λ
(9)

bt = −1

2
(t + ut)wt (10)

Among them, ut = 1
M−1

∑M−1
i=1 xi, σ 2

t =
1

M−1

∑M−1
i=1 (xi − ut)

2. This is also the condition under which the

energy function e attains its minimum value. So, the minimum

energy can be obtained as:

e∗t =
4
(

σ̂ 2 + λ
)

(t − ut)
2 + 2σ 2

t + 2λ
(11)

Finally, based on this minimum energy, the importance of each

neuron can be quantified, expressed as 1/e*. In order to further

adapt the attention mechanism to the attention regulation method

in the mammalian brain, gain and scaling are used to enhance

features, as shown in Equation 12.

X̃ = sigmoid

(

1

E

)

⊙ X (12)
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FIGURE 3

The framework diagram of the SAFE.

Where X is the original input feature map, and X̃ represents

the refined feature map after applying the attention module. E

represents all neuron nodes, i.e., all EEG channels. sigmoid() The

sigmoid function is added to map the values in E to the range of

0–1. Therefore, the spatial attention module can be expressed as:

YSA,t = MP
(

SA
(

Yspatial ,t

))

(13)

where SA(.) represents the spatial attention mechanism

module. MP(.) represents max pooling operation.We then perform

a flattening operation on the resulting output.

2.4 Temporal attention feature extractor

As shown in Figure 1, the temporal attention feature extractor

consists of position encoding embeddings and several identical

temporal encoding layers. In each temporal encoding layer,

contains multiple self-attention layers, Feedforward Neural

Network (FFN) layers, and LayerNorm layers. Additionally,

residual connections are applied throughout the network.

After SAFE, the vector already contains spatial feature

information. Each vector Yt is treated as an individual token, and

these T tokens are combined to form the input sequence for TAFE.

In order to capture temporal feature information across the entire

sequence, similar to the BERT structure (Devlin et al., 2018), a

learnable class token is added at the very beginning of the input

sequence to obtain aggregated information from the entire input,

i.e.,

Zc = [Yclass , Y1, Y2, . . . , Yt , . . . , YT] (14)

where Yclass is class token, Yt is the output of SAFE, and

Zc represents the sequence after adding the class token. Yclass ∈
R
(n×1×d), Yt ∈ R

(n×1×d), where d is the dimension of the

embedding vector. The self-attention mechanism, by itself, only

considers the relationships between tokens in the input sequence

but does not take into account their specific positions. Positional

encoding is added to the TAFE to address the issue of the self-

attention mechanism not capturing positional information within

the input sequence. That is, the sequence Zp after adding position

coding is

Zp = Zc + P (15)

where P ∈ R
(n×(T+1)×d) is the position encoding. The multi-

head self-attention mechanism (Wang et al., 2023) transforms the

same input matrix Z into Q, K, and V matrices to calculate the

corresponding attention weights for each element in the sequence.

The calculation of the output result for the h-th head’s attention

weights can be defined as follows:

Ah = Attention(Qh,Kh,Vh) = Softmax

(

QhKh
T

√

dk

)

Vh (16)

Where h=1,2,...,H.
√

dk represents the scaling coefficient of the

elements in QhKh
T . It changes the variance of all elements to 1 so

that the gradient value remains stable during the training process.

Q, K, and V are obtained by linear transformation from the input

Z. We can obtain it through Equation 17:











Qh = Linear(Z)

Kh = Linear(Z)

Vh = Linear(Z)

(17)

The outputs are concatenated and then passed through a fully

connected layer, i.e.,

MSA(Q, K, V) = FC(CAT(A1, A2, . . . , AH)) (18)
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Therefore, the output ZA of MSA and the output ZF of FFN can

be defined as:

ZA = LN(MSA(Z)+ Z) (19)

ZF = LN
(

Linear
(

8GELU(Linear(F))
)

+ F
)

(20)

LN represents the LayerNorm. After iterating H temporal

encoding layers, take out the class token for classification.

Finally, we conduct a qualitative analysis of the computational

complexity of the entiremodel. Since the space complexity and time

complexity of pooling layer and linear layer is much smaller than

that of CNN and TAFE, the computational complexity of HASTF is

OTime =
∑

OCNN + OTAFE =
∑

O
(

H2
out • k2 • Cin • Cout

)

+O
(

T2d + Td2
)

(21)

OSpace =
∑

OCNN+OTAFE =
∑

O
(

k2 • Cin • Cout

)

+O
(

h • d2
)

(22)

whereHout is the output feature map size, k is the filter size, Cin

and Cout are the number of input and output channels, respectively.

T and d are the input sequence length and dimension size of TAFE.

3 Experiments

3.1 Datasets

In order to rigorously assess the performance of the proposed

algorithm, we have selected two public datasets widely used within

the realm of EEG-based emotion recognition research. The details

of these two datasets will be provided in the subsequent section.

3.1.1 DEAP dataset
DEAP dataset (Koelstra et al., 2011) comprises 32 participants

(16 males and 16 females) with an average age of 26.9. It uses

music videos as the primary stimulus method. Each participant

underwent 40 trials, with each trial lasting for 63 s. The initial 3

s are the time to obtain baseline data, and the last 60 s are the

time for music stimulation. After each trial, each participant was

asked to rate their emotional state in this trial on four dimensions

(arousal, valence, dominance, and liking) from 1 to 9. The device

has 40 channels, the first 32 channels are used to collect EEG signals

with a sampling frequency of 512 Hz. In this study, we chose 5

as the threshold, dividing the labels into two binary classification

problem, that is, HA/LA and HV/LV.

3.1.2 SEED dataset
The SEED Emotion Dataset (Zheng and Lu, 2015) is provided

by SJTU. It elicits three types of emotions—positive, neutral, and

negative—through clips of movie segments, using videos as the

primary stimulus. The dataset includes 15 participants (sevenmales

and eight females) with an average age of 23.27. Each participant

undergoes one session per week, for a total of three sessions. Each

session involves watching 15 movie clips, each approximately 4

min long, a duration considered sufficient to induce and maintain

the participants’ emotional responses without causing fatigue or

emotional decay. The process for each movie clip includes a 5-s

prompt before the start, 4 min of the movie clip, 45 s of self-

assessment, and 15 s of rest. The data is gathered using 62 channels

device at a sampling frequency of 1,000 Hz.

3.2 Data preprocessing

For SEED. The author has manually removed EMG and EOG

artifacts from the raw data. Subsequently, we down-sampled the

data to 200 Hz and employed a band-pass filter to eliminate high-

frequency noise.When adding labels, positive, neutral, and negative

emotions are represented by 1, 0, and −1, respectively. For DEAP.

In the preprocessing stage, Electrooculogram (EOG) artifacts are

removed, and then is down-sampled to 128 Hz, so each trial has 63

× 128 = 8,064 sampling points. The data dimensions of each subject

are 40 × 40 × 8,064. Finally, for the subjects’ ratings from 1 to 9,

we chose 5 as the threshold, categorizing the labels into high/low

arousal and high/low valence, thereby transforming it into a binary

classification problem.

3.3 Evaluation metrics

We use two of the most commonly used evaluation metrics

to evaluate and compare models. Accuracy represents the ratio

between the number of samples correctly classified by the model

and the total number of samples. Standard deviation (Std) is a

statistical metric used to measure the degree of data dispersion

within a dataset, indicating the degree of deviation from the mean

value. The calculation formulas for both are as follows:

Accuracy = TP + TN

TP + FP + TN + FN
(23)

where TP and TN are true positive and true negative,

respectively, FP and FN are false positive and false negativem,

respectively.

Std =

√

∑N
i=1 (xi − µ)2

N
(24)

Where Xi represents the i-th data. µ represents the average of

all data. N represents the total number of all data points.

In the ablation experiment, we also used one-way ANOVA to

detect whether there are significant differences among the various

modules. One-way ANOVA is a statistical analysis method that

compares whether there are significant differences in the means

between two or more groups by calculating within-group variance

and between-group variance.
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3.4 Implementation details

We employ 5-fold cross-validation approach in all experiments.

For the DEAP dataset, each subject participated in 40 trials, while

in the SEED dataset, each subject took part in 15 trials. All trial data

are shuffled and divided into five subsets. Each subset take turns

serving as the test set, while the remaining four subsets are used as

the training data, ensuring against randomness and data leakage.

The final result is calculated as the average of the results from these

5-folds.

For SAFE. UCCF consists of five convolutional layers. The

kernel size of the first four layers is all set to (3,3), stride = (1,1),

padding = (1,1). We change the kernel size of the last one to (1,1),

with no other variations in comparison to the preceding layers. Skip

connections are applied between the outputs of the first layer and

the fourth layer, as well as between the outputs of the second layer

and the third layer. Throughout the entire convolution process, the

spatial dimensions remain invariant.

For TAFE. Random numbers conforming to a standard normal

distribution within the range of 0–1 are generated to initialize the

class token and the position embedding. There are a total of six

temporal encoding layers. And the number of heads in the MSA is

set to 8. The dimensions of the QKVmatrices and that of the linear

layers within the FFN are specified as 256 and 128, respectively. We

also utilize LayerNorm and the GELU activation function.

During the experiment, we use the cross-entropy loss function

and AdamW optimizer. The initial learning rate was set to 0.0001,

with a weight decay of 0.0001. The batch size is 32 and the number

of epoches is 100. We trained and tested the proposed model on

NVIDA TESLA T4 Tensor Core GPU, and Pycharm, Python 3.8,

Pytorch 1.13.0 were used for algorithm implementation.

4 Results analysis

In this section, we first report the performance of the

proposed method on the DEAP dataset and SEED dataset,

and compare it with the current state-of-the-art methods.

Additionally, to investigate the roles of different modules in

HASTF, we then conduct ablation experiments on each proposed

module and use statistical methods to further elucidate the

functions of these individual modules. Finally, we perform

interpretability analysis on the entire network, display and

analyze the activation states of brain regions and crucial

channals corresponding to different emotional states and

different subjects.

4.1 Experimental results on DEAP and SEED

In order to verify the effectiveness of the proposed method,

according to the experimental method introduced in Section

3, 5-fold cross-validation is used to evaluate our model. The

experimental results of 32 subjects in the DEAP dataset are shown

in Figure 4. Based on all the results, HASTF achieves an impressive

average accuracy of 98.93% ± 1.45% on the Arousal dimension

and 98.57% ± 2.60% on the Valence dimension. From the graph,

it can be observed that subjects 1, 6, 7, 13, 14, 15, 18, 19, 20, 23, 27,

FIGURE 4

Experimental results on the DEAP dataset.

28, and 31 achieve a 100% accuracy in Valence. Additionally, half

of the subjects achieve a 100% accuracy in Arousal, and for most

subjects, the accuracy is above 96% in both labels. It’s worth noting

that the 22nd subject has a low recognition accuracy in both labels.

However, we have observed similar results in previous studies (Yang

et al., 2018a; Shen et al., 2020; Tao et al., 2020; Zhong et al., 2023),

where the 22nd subject’s recognition accuracy is also subpar. This

may be attributed to the subject’s inaccurate self-assessment of their

emotional state after the experiment. We then verify HASTF on the

SEED dataset, as shown in Figure 5, which displays the recognition

accuracy for 15 subjects across three sessions. From the bar chart,

it is evident that the results across 45 sessions are quite stable,

with over 90% of sessions achieving recognition accuracy above

98%. This demonstrates that HASTF performs well for all sessions

in the SEED dataset, resulting in an average recognition accuracy

of (99.12%± 1.25%).

4.2 Method comparison

In this section, we aim to further demonstrate the superiority

of our method by conducting a comparative analysis with the most

representative emotion recognition methods. This comparison

encompasses widely used traditional machine learning methods

Support Vector Machines (SVM) as well as various deep learning

methods proposed by researchers in recent years. In the following

content, we provide a brief introduction to these methods.

a. Para-CNN-LSTM (Yang et al., 2018b): It proposed a parallel

network of CNN and LSTM and inputs the extracted DE features

into the network.

b. 4D-CRNN (Shen et al., 2020): It used a CNN and LSTM

sequential structure, comprising five CNN layers and two LSTM

layers, to extract DE features as the input to the network.

c. ATDD-LSTM (Du et al., 2020): It added an attention

mechanism module to LSTM, proposed an attention-based LSTM
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FIGURE 5

Experimental results on the SEED dataset.

TABLE 1 The performance of each algorithm on the DEAP dataset.

Methods Year
DEAP-arousal DEAP-valence

Acc (%) Std (%) Acc (%) Std (%)

SVM 2019 86.75 – 84.05 –

Para-CNN-LSTM 2018 90.8 3.08 91.03 2.99

4D-CRNN 2020 94.58 3.69 94.22 2.61

ATDD-LSTM 2022 90.87 11.32 90.91 12.95

4D-ANN 2022 97.39 1.75 96.90 1.65

MTCA-CapsNet 2022 97.41 1.47 97.24 1.58

FPN 2022 96.97 – 94.29 –

ST-GCLSTM 2023 95.04 – 95.52 –

ACRNN 2023 93.38 3.73 93.72 3.21

STFCGAT 2023 95.04 3.02 95.70 3.36

Bi-ANN 2023 96.96 1.29 96.63 1.30

FTSCN 2024 97.39 1.93 97.55 1.65

TDMNN 2024 98.25 2.85 98.08 2.13

SST-emo 2024 96.28 2.34 95.25 2.93

Ours – 98.93 1.45 98.57 2.60

The bold font in the table represents the best in the results.

and domain discriminator, and also inputted DE features into the

proposed network.

d. ST-GCLSTM (Feng et al., 2022): It utilized the biological

topological information between brain regions, extracted spatial

features using GCN from multiple EEG channels, and employed

bidirectional LSTM with attention mechanisms to extract temporal

features.

e. 4D-ANN (Xiao et al., 2022): It incorporated spatial attention

mechanisms into the 4D-CNN-LSTM sequential structure,

adapting weights for different brain regions and frequency bands.
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f. MTCA-CapsNet (Li C. et al., 2022): It used a capsule network

as the base model and incorporated attention mechanisms to

extract feature probability maps from different channels. A multi-

task learning network based on capsule network and attention

mechanism was proposed, which can effectively learn the intrinsic

relationship between different tasks of EEG signals.

g. FPN (Hou et al., 2022): It extracted DE features as

fundamental features, then constructed a feature matrix to obtain

inter-channel correlations, and builded FPN network to obtain

distinctive EEG features for emotion classification.

h. ACRNN (Tao et al., 2020): It comprehensively considered

the spatial information, temporal information, and attention

mechanism of EEG signals, integrated the attention mechanism

into CNN, and combined it with RNN for emotion recognition.

i. STFCGAT (Li et al., 2023): It integrated multi-head attention

mechanism into the graph convolutional neural network, and

considered multi-band DE features and FC features to extract

powerful graph structure information.

j. Bi-AAN (Zhong et al., 2023): It established a bihemispheric

asymmetric attention network based on the asymmetry of the brain

and combined with the Transformer architecture. This simulates

the attention differences between brain hemispheres, providing a

more precise description of distinctive emotional representations.

k. CSGNN (Lin et al., 2023): It combined the advantages of

1D convolution and graph convolution, proposed an improved

dynamic channel selection graph convolutional network. This

approach reduces the computational cost of emotion recognition

while maintaining high recognition accuracy.

l. MFBPST-3D-DRLF (Miao et al., 2023): It proposed a novel

multi-band parallel spatio-temporal 3D deep residual learning

framework to extract high-level abstract features and achieve

accurate classification.

m. TDMNN (Ju et al., 2024): Ju et al. incorporated the slow

changes of emotions over time as a priori knowledge into emotion

recognition. They enhanced the model’s ability to capture subtle

changes in EEG features over time through MMD evaluation of

temporal differences and a multi-branch strategy.

n. FTSCN (Yang et al., 2024): It combines factorizationmachine

and separable convolution into TCN and develops a Factorization

Temporal Separable Convolution Network. It can not only capture

long-term dependencies in time series data, but also increase the

model’s expressive power in feature dimensions.

o. PGCN (Jin et al., 2024): This paper proposes a pyramid

structure model based on GCN, it combines the 3D topological

relationship of the brain to aggregate features at the local, central

and global levels.

p. SST-Emo (Peng et al., 2024): SST-Emo leverages spectrum-

based spatial channel attention and time continuity encoding

mechanisms to fully utilize the spectral, spatial, and temporal

features of EEG signals, demonstrating excellent performance in

emotion analysis tasks.

The performance of each algorithm on SEED dataset

and DEAP dataset are shown in Tables 1, 2, respectively.

The comparison results clearly indicate that our approach

outperforms other methods. Overall, compared to traditional

machine learning method, our approach shows a significant

performance improvement, surpassing the SVM method by

approximately 14%. In comparison to other deep learningmethods,

TABLE 2 The perform of each algorithm on the SEED dataset.

Methods Year
SEED

Acc (%) Std (%)

4D-CRNN 2020 94.58 6.16

DGCNN 2020 90.40 8.49

ATDD-LSTM 2022 91.08 6.43

4D-ANN 2022 96.25 1.86

FPN 2022 97.12 –

ST-GCLSTM 2023 96.72 –

CSGNN 2023 90.22 3.67

MFBPST-3D-

DRLF

2023 96.67 2.80

STFCGAT 2023 99.11 0.83

FTSCN 2024 89.13 4.49

TDMNN 2024 97.20 1.57

PGCN 2024 96.93 5.11

Ours – 99.12 1.25

The bold font in the table represents the best in the results.

our approach not only exhibits higher accuracy and lower standard

deviation but also consistently performs well on both the DEAP

and SEED datasets. In more detail, first, HASTF outperforms all

CNN-based methods. Compared to the Para-CNN-LSTM model,

HASTF achieves an average accuracy improvement of 8.18%

and 6.31% for DEAP-Arousal and DEAP-Valence, respectively.

The corresponding improvements of 4D-CRNN are 4.35% and

3.12% for the DEAP dataset and 4% for the SEED dataset. It

also surpasses TDMNN by 0.59% and 1.92% on the DEAP and

SEED datasets, respectively. Second, HASTF also surpasses all

GCN-based methods. On the SEED dataset, it exceeds DGCNN,

CSGCN and PGCN by 8.72%, 8.90%, and 2.19%, respectively,

showing significant superiority. These enhancements are primarily

attributed to the superior capacity of our model in capturing the

overall contextual information within EEG signals.

Comparing our method to STFCGAT, Bi-AAN and SST-

emo, all four employ multi-head attention mechanisms to extract

temporal information. HASTF outperforms STFCGAT and SST-

emo by almost 3% on the DEAP, and it surpasses Bi-AAN by 1.97%

and 0.71% in arousal and valence, respectively. This suggests that

the proposed UCCF with spatial attention and skip connections

is better at extracting deep and fine-grained emotional features.

It’s worth noting that STFCGAT exhibits similar accuracy to our

method on the SEED dataset and has a lower standard deviation

by 0.42%, but our method outperforms STFCGAT by 2% for two

dimensions on the DEAP dataset. This further demonstrates that

our method has high generalization performance and is suitable for

emotion recognition generated by different stimuli.

Comparing our method with 4D-ANN, ACRNN, ST-GCLSTM,

MFBPST-3D-DRLF, MTCA-CapsNet, these methods all use

attention mechanisms to obtain the information of EEG channels,

but our method outperforms these models by 0.1%–5.55% on

the DEAP dataset and exhibits a superior improvement of over
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2% on the SEED dataset, with higher recognition accuracy. This

can also prove from the side that the parameter-free attention

mechanism we use can help the network acquire key channels more

precisely, Additionally, this also indicates that HASTF provides

more comprehensive extraction of crucial information in the time

domain.

4.3 Ablation experiments

In this section, we conducted various ablation experiments

to analyze in more detail the impact of different modules in

the network on the results, further exploring how our network

achieves such performance. In Section 2, our proposed method is

divided into twomain parts: SAFE and TAFE, with SAFE consisting

of UCCF and Spatial Attention (SA). Therefore, we conducted

ablation experiments on the Skip connection, SA, UCCF, and SAFE

modules, which are All: HASTF, Wo-Sc: Without Skip connection,

Wo-SA: Without-SA, Wo-UCCF: Without-UCCF, Wo-TAFE:

Without TAFE. Table 3 gives the overall experimental design.

The results corresponding to the four test plans are shown in

Figure 6. Let’s first focus on the role of skip connections and spatial

attention in UCCF. It can be calculated from the experimental

results that when UCCF does not have skip connections, the

average accuracy of the model on the DEAP dataset decreases

by 2.00%, and the accuracy on the SEED dataset decreases by

TABLE 3 Design of ablation experiments.

Skip-
connection

SA UCCF SAFE

Wo-Sc × X X X

Wo-SA X × X X

Wo-UCCF – – × X

Wo-SAFE X X X ×

All X X X X

1.81%. This is due to the fact that when the fusion of shallow

and deep network features is canceled, with the increase in the

number of iterations, some spatial information is lost, leading to

a decrease in accuracy. When UCCF lacks the spatial attention,

the average accuracy on the DEAP dataset decreases by 1.62%,

and the accuracy on the SEED dataset decreases by 2.59%. This

clearly highlights the importance of the attention mechanism.

The existence of the attention mechanism allows the network

to follow the contribution of each channel gives each channel

the weight it deserves, adaptively selecting crucial channels for

emotion recognition instead of treating all channels equally. Then,

we examine the role of UCCF and TAFE. Without UCCF, i.e., only

the temporal domain features in the EEG data are extracted, the

accuracy of the model dropped by 5.19% and 3.3%, respectively,

on DEAP and SEED. Without SAFE, which means extracting only

the spatial domain features from EEG data, the model’s accuracy

drops by 7.75% on DEAP and 7.52% on SEED. Obviously, the lack

of TAFE has a greater impact on the model. This may be because

EEG data is inherently collected over time, making temporal

information more accessible and capable of effectively representing

the deeper emotional features.

To better understand the impact of each module on the

final results, we use one-way ANOVA to study the significant

differences after each module is removed at the 95% confidence

level. We set the null hypothesis (H0) as the means of each

group being equal, that is, removing different modules has no

significant impact on model performance. The corresponding

alternative hypothesis (H1) is that at least one group’s mean

is significantly different from the others, that is, removing

certain modules significantly affects model performance. The

statistical results are shown in Table 4. For the DEAP dataset,

the degrees of freedom within groups (DFW) and between

groups (DFB) are 4 and 155, respectively, while for the SEED

dataset, DFW and DFB are 4 and 220, respectively. it can

be observed that the p-values for all three are significantly

< 0.05. This indicates that there are statistically significant

differences under different module. The high F-scores (29.59,

15.67, and 33.37) indicate that the variability between the groups

(different models) is much greater than the variability within

FIGURE 6

The results of the ablation experiments on (A) DEAP-arousal (B) DEAP-valence (C) SEED.

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1479570
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2024.1479570

TABLE 4 The results of one-way ANOVA.

Dataset Sum of
squares

Degree of
freedom

Mean
squares

F-score p-value

DEAP-arousal Between 1,423.19 4 355.80 29.59 2.78E-18

With 1,863.92 155 12.03

Total 3,287.11 159 –

DEAP-valence Between 1,079.51 4 269.88 15.67 8.70E-11

With 2,670.07 155 17.23

Total 3,749.57 159 –

SEED Between 1,399.48 4 349.87 33.37 9.48E-22

With 2,306.81 220 10.49

Total 3,706.30 224 –

TABLE 5 The results of multiple comparisons.

Dataset Mean
di�erence

Deviation Standard
error

Bca95% Confidence interval

Lower limit Upper limit

DEAP-arousal All Wo-Sc 1.074219 −0.013460 0.522036 0.131240 2.095704

Wo-Attn 1.503906 −0.035406 0.616266 0.516662 2.610400

Wo-UCCF 4.459656 −0.033330 0.878871 2.949839 5.994727

Wo-TAFE 8.235656 −0.039103 0.842052 6.736735 9.715444

DEAP-valence All Wo-Sc 2.910156 −0.012861 0.933834 0.992163 4.700305

Wo-Attn 1.738281 −0.015684 0.825217 0.203462 3.379859

Wo-UCCF 5.279969 −0.034749 1.136944 3.317446 7.323220

Wo-TAFE 7.356687 0.001739 0.759507 5.818458 8.777459

SEED All Wo-Sc 1.819444 0.016495 0.476962 0.887990 2.843215

Wo-Attn 2.597222 0.000430 0.535290 1.614596 3.579459

Wo-UCCF 3.300978 0.034174 0.585036 2.135436 4.558495

Wo-TAFE 7.523800 −0.010304 0.676748 6.202649 8.855647

each group. The corresponding low p-values (2.78E-18, 8.70E-11,

9.48E-22) suggest that these differences are statistically significant.

Thus, we can reject the null hypothesis and conclude that

the removal of different modules leads to significantly different

performance outcomes.

To further understand the degree of dissimilarity between

different frameworks. we conducted post-hocmultiple comparisons

using the Games-Howell method after one-way ANOVA. This

approach, in combination with the correction for confidence

interval biases, provided a more accurate estimation of the

confidence intervals for the population parameters. Table 5

displays the results of post-hoc multiple comparisons for

the two datasets, showing mean differences, standard errors,

biases, and other relevant information. This provides a more

precise assessment of the contributions of each module to

the overall performance. From the results, when a particular

module is removed, the average performance decreases

compared to the original model. Furthermore, the most

significant decrease in performance occurs when the TAFE is

omitted.

4.4 Interpretability analysis

In SAFE, we incorporated spatial attention modules, and

through the ablation experiments in Section 4.3, we observed

that these attention modules significantly improved the network’s

recognition performance and generalization ability. This suggests

that HASTF’s high performance is closely related to the adaptive

selection of crucial channels through attention mechanisms. In

this section, we conduct an in-depth discussion on the added

spatial attention mechanism module, explore how it plays a role in

emotion recognition, and visually display the results. Additionally,

we conducted an analysis of the activation levels in different brain

regions corresponding to various emotions. This analysis aims

to explore the neural patterns in the human brain associated

with emotions and decode the imprints of emotions within the

brain regions.

Using feature map visualization method. We compared the

results when the attention mechanism module is added and

when it is not added. The results of adaptive crucial channels

and crucial brain regions selection for neutral, negative and
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FIGURE 7

Visualization results on DEAP. (A) Pos-Wo SA, (B) Pos-SA, (C) Neg-Wo SA, (D) Neg-SA.

FIGURE 8

Visualization results on SEED. (A) Pos-Wo SA, (B) Pos-SA, (C) Neu-Wo SA, (D) Neu-SA, (E) Neg-Wo SA, (F) Neg-SA.

positive emotions on two datasets are, respectively, shown in

Figures 7, 8.

From the visualized results, it is evident that whether it’s

the DEAP dataset or the SEED dataset, whether it’s positive or

negative emotion, when spatial domain attention is not involved,

the network’s focus is not concentrated on specific channels. There

is no clear spatial attention, and the spatial domain contains more

noise, as shown in Figures 7A, C, 8A, C, E. When spatial attention

is added, the network begins to pay more attention to a certain

brain areas or even a certain electrode channel, and the attention

to channels in some brain regions weakens, resulting in a clear

contrast between bright and dark. The brighter the color, the higher

the attention of the network, that is, the higher the activation level

of the area; the darker the color, the lower the attention of the

network, that is, the lower the activation level of the area; as shown

in Figures 7B, D, 8B, D, F. It’s worth noting that this selective

attention mechanism is similar to the human brain’s attention

mechanism, which intuitively illustrates the effect and operation of

spatial attention.

4.5 Emotional neural patterns

Based on the experimental results in the previous section,

it has been demonstrated that our attention module can filter

out key channels and brain regions. However, further research is

needed to identify the brain activation areas and electrode channels

corresponding to different emotions. To this end, we utilize the

feature maps to analyze the specific feature patterns corresponding

to negative, neutral, and positive emotions. Figures 8B, D, 9B, D,

F, respectively, visualize the average emotional feature patterns of

all subjects in the DEAP and SEED datasets. We find that there are

indeed specific neural features for different emotional states. When

a certain emotion is activated, the attention weights are mainly

distributed in the prefrontal cortex (around channels FP1, FPz,

FP2, AF3, AF4, F1, FZ, F2) and the lateral temporal lobes (around

T7, T8, TP7, TP8, P7, P8, PO7, PO8). This is consistent with the

conclusions obtained in the field of neuroscience (Allen et al., 2018;

Etkin et al., 2015; Pozzi et al., 2021).

Specifically, when positive emotions are generated, channels

located in the lateral temporal lobe receive significantly higher

attention weights compared to neutral and negative emotions,

followed by an increase in the frontal lobe. when negative emotions

are generated, there is higher weight in the frontal lobe, while

the electrode channels in the temporal lobe exhibit lower weight.

From the visual results, neutral emotions are similar to negative

emotions. The frontal lobe area is not given a particularly high

attention weight value, but the activation degree of the parietal

lobe and occipital lobe is slightly increased for neutral emotions.

Moreover, our experimental results clearly indicate the presence

of lateralization between brain regions, further supporting the idea

that specific brain regions are more inclined to handle certain tasks

or functions, rather than processing evenly across both sides of

the brain. The activation states of brain regions corresponding

to different emotions are also consistent with previous research

findings (Ding et al., 2022; Gong et al., 2023).

To observe the differences between subjects more clearly, we

also visualized the average emotional feature patterns of each

subject in the SEED dataset, as shown in Figure 9, The figure not

only confirms the aforementioned conclusions but also reveals that

lateralization is not present in every individual. For some subjects,

the lateralization in brain regions is not particularly pronounced.
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FIGURE 9

Average visualization results of each subject in the SEED dataset. (A–O) correspond to 15 subjects, respectively.

5 Discussion

In this paper, we proposed HASTF to extract spatio-temporal

features from EEG for emotion recognition. We validated

our approach using two publicly available datasets. HASTF

outperformed many state-of-the-art models and achieved excellent

performance on both datasets. This indicates that our model can

maintain high accuracy in recognizing emotions induced by both

music videos (DEAP) and movie clips (SEED). Some models,

such as Li et al. (2023) and Yang et al. (2024), excel in one

induction method but falter in another. This also demonstrates

that HASTF not only has excellent recognition performance but

also possesses universality and strong robustness, performing

stably across different datasets and experimental environments.In

general, HASTF has the ability to capture both spatial and

temporal dependencies, has the potential for application in online

detection systems. In future online detection systems, we will

further optimize computational efficiency to reduce the latency of

deployment.

Our model introduces a novel two-part structure comprising

a spatial attention feature extractor and a temporal attention

feature extractor. Different from traditional GCN-based (Lin et al.,

2023; Li et al., 2023; Jin et al., 2024) or convolution-based

approaches (Ju et al., 2024), this spatial attention extractor employs

a parameterless attention module. It perfectly matches 3D features

and can adaptively select crucial electrode channels. As shown

in Section 4.4, this module not only optimizes feature extraction

but also eliminates the need for additional parameters, making

the model more efficient and versatile across varied subjects.

Furthermore, by incorporating skip connections, we mitigate

information loss and ensure better integration of shallow and deep

features throughout the iterative process. Tables 1, 2 shows that

our spatial attention feature extractor surpasses existing methods

in capturing key spatial features. Similarly, our temporal attention

feature extractor leverages a multi-head self-attention mechanism

to capture richer temporal features than previously used methods

like RNN and TCN (Shen et al., 2020; Xiao et al., 2022; Tao et al.,

2020; Yang et al., 2024). Ablation experiments confirm that the

combination of these two attention mechanisms leads to state-of-

the-art performance, underscoring the effectiveness of our spatio-

temporal fusion approach. This integrated model advances EEG-

based emotion recognition while providing a more adaptable and

efficient framework for complex spatio-temporal data.

Finally, we also used the superior performance of HASTF to

conduct in-depth analysis of EEG signals to capture the traces

of emotions in various brain areas. As shown in Figures 7, 8,

the lateral brain regions, especially the frontal and temporal

lobes, are closely link to emotions. Specifically, positive emotions

correspond to the temporal lobe, while negative emotions are

associated with the frontal lobe. For neutral emotions, attention

increased in occipital and parietal regions. However, we also

observed significant individual differences in the model across

subjects, as shown in Figure 9, manifested in different degrees

and locations of lateralization. This difference suggests that
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cross-subject generalization remains a challenge. Although our

attention mechanism can enhance attention to specific channels,

different subjects have different weight assignments to the same

channel, which complicates the calculation of channel weights

across subjects. Therefore, future work will focus on how to design

more flexible attention modules that can extract appropriate spatial

and temporal features for different individuals to improve the

performance of cross-subject emotion recognition. This will be the

focus of our next research.

6 Conclusion

In this paper, we propose a hybrid attention fusion model

capable of extracting spatio-temporal features for emotion

recognition. The model uses spatial attention feature extractor

to select crucial channels, extracting spatial features, integrates

temporal attention feature extractor to select temporal features.

Extensive experiments on two public datasets show that HASTF

achieves superior performance than other methods. We also

explore the role and interpretability of the spatial attention

mechanism, visualizing the adaptive crucial channels and brain

regions. Finally, we employ this model to capture the traces of

emotions in the brain corresponding to different emotions and

different subjects, proving that emotion-related neural patterns do

exist, which is consistent with conclusions in the field of neurology.

This research has promoted the progress of aBCI, which can

be combined and applied to fields such as Emotion-Enhanced

BCI, Human-Robot Interaction, Mental Health Detection and

Autonomous driving, making our lives more convenient and

intelligent.
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