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Exoskeleton robots have the potential to augment human motor capabilities.

however, current control strategies often require task-specific control laws

tailored for di�erent scenarios, which limits the applicability of exoskeletons.

In this study, we propose a control strategy for exoskeleton robots that is

adaptable across various scenarios. We employ adaptive oscillators (AO) with

feedback control to rapidly estimate thewearer’smotion phase and subsequently

provide torque assistance to the wearer’s hip joint based on a TCN-LSTMmodel.

During experiments, we collected surface electromyographic (sEMG) signals

from the tibialis anterior, gastrocnemius, and rectus muscles of seven groups

of subjects performing treadmill walking and inclined treadmill exercises. We

utilized the short-time Fourier transform to extract frequency characteristics

of the signals and statistically analyzed the rate of frequency change in each

muscle group under di�erent strategies. The results indicate that when wearing

the exoskeleton, the overall muscle frequency changes more slowly, suggesting

that subjects can maintain activity for a longer duration before fatigue sets in.

This control strategy e�ectively reduces the energetic cost of lower limb work

for the wearer and enhances the exoskeleton’s versatility in various applications.

KEYWORDS

exoskeleton, EMG, neural network, wearable device, adaptive control, transferable

scenario

1 Introduction

Exoskeleton robots have now been widely applied in our daily lives, making

carrying loads more effortless, enabling athletes to run faster, and allowing patients

with hemiplegia to move again (Zhang and Huang, 2018; Li et al., 2019; Choi

et al., 2018; Wu et al., 2021). Exoskeleton robots have demonstrated their capability

to provide assistance to individuals during specific tasks. However, the emerging

problem, is that different tasks and scenarios often require control objectives

that match their needs (Yan et al., 2015). For instance, in the case of lower

limb assistive exoskeletons, the significant cost associated with exoskeleton robots
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highlights the importance of identifying a control strategy that

exhibits strong robustness and can be seamlessly integrated

into various task scenarios. This holds considerable engineering

significance. What, then, limits the transferable of exoskeletons?

The critical challenge lies in the design of the exoskeleton

controller. The control framework of exoskeleton robots is divided

into high-level, middle-level, and low-level (Tucker, 2015; Narayan

et al., 2023). The high-level layer estimates the wearer’s motion

intentions and decision-making; the middle level specifies sub-task

control laws, and the low-level layer completes control through

specific actuation mechanisms. The complete control process is

a tightly integrated procedure; the challenge lies in the fact that

the main differences for various tasks are centered on distinct

motion rhythms and specific assistive torques. If we can bypass the

process of motion intention decoding in the advanced controller

and find a universal control strategy, it could significantly enhance

the applicability of the exoskeleton. In this paper, we extract phase

information from motion signals, collect joint torque data sets

of walking actions, and use transfer learning methods to deploy

to target tasks with a small amount of target data sets. During

continuous task transitions, motion rhythm is the foundation of

assistive mode switching; motion rhythm unifies the wearer’s gait,

and gait is a description of continuous motion events within a

motion cycle. For wearable devices, such as exoskeleton robots,

accurate gait events are particularly crucial for providing precise

assistive force (Young et al., 2017; Kang et al., 2020; Murray

et al., 2015). In Kawamoto et al. (2015), it is pointed out that

asymmetric gait can lead to the following negative effects: (1)

a decrease in dynamic control balance capabilities, (2) increased

energy consumption, (3) a reduction in overall activity levels. In

the rehabilitation exoskeleton assistive system of Aguirre-Ollinger

et al. (2019), the authors use the kinematic trajectory of a healthy

wearer as a reference trajectory. However, the gait characteristics

of patients may differ significantly from those of healthy wearers,

and compensatory movements of the hip joint by healthy wearers

result in a trajectory that may not be the optimal gait trajectory

relative to the patient (Qian et al., 2022). Similar time-based

estimation methods match different sensor outputs with gait events

(Nazmi et al., 2019; Hao et al., 2019), which although simple and

practical, cannot be used in variable speed and model scenarios

and have limitations. Adaptive oscillators (AO) are a model-free

phase estimation method (Seo et al., 2015), which can use past

motion trajectories to predict the next action, thereby estimating

the gait cycle (Murray et al., 2015). This method is used to describe

gait events with continuous cycles and has been proven to possess

strong adaptability and robustness.

In the realm of exoskeleton robotics, traditional models have

predominantly focused on facilitating a singular type of motion

(Liang et al., 2024; Huang et al., 2019; Zhang et al., 2024).

An active assistance control approach, termed assist-as-needed

(AAN), has been posited (Shahbazi et al., 2018). However, the

development of a universal AAN algorithm has a formidable

challenge.Torque assistance control can generally be categorized

into model-based and feedback-based control strategies. For

instance, Zhang et al. (2017) and Franks et al. (2021) have employed

a Human-in-the-loop controller, which, while effective, necessitates

an extended learning period and lacks the adaptability to real-time

motion variations. Another approach, based on model predictive

control (MPC), has achieved on-the-fly transitions between modes

of assistance by leveraging physically-driven models (Aguirre-

Ollinger et al., 2019), but encounter nonlinear scenarios, it can be

difficult to build an accurate model (Liang et al., 2022). Data-driven

methods, as seen in Caulcrick et al. (2021), identify the mapping

relationship between phase and assistive force, offering a viable

solution that eschews complex sensor suites (Molinaro et al., 2024).

However, these approaches typically require extensive datasets

for training, which may incur significant costs in specific tasks.

Research has demonstrated that walking and waterstroke motions

share substantial similarities (Wang et al., 2020), both being

describable as repetitive cyclical movements achieve the potential

of transferable such analogous motion patterns is promising. In

this work, to achieve controller nesting, we have designed a deep

network model based on transfer learning strategies, employing

a TCN-LSTM-based recurrent neural network architecture, which

significantly enhances the representational capacity for sequential

data (Hochreiter and Schmidhuber, 1997). Leveraging above-

mentioned network models, our approach enables adaptive control

for a variety of periodic motions, significantly reducing the reliance

on large datasets and based on this, we believe that through

this transfer learning framework, knowledge acquired in one

domain (such as walking) can be transferred to another domain

(such as deep space exploration), enabling rapid adaptation and

enhancement of performance.

Based on the above problems, in this work, we designed

an assistive evaluation framework that can be applied to

amphibious exoskeleton.

(1) An adaptive Ao controller is proposed, which can effectively

converge and quickly track changing periodic signals to achieve fast

scene switching; In addition, after the scene switch is identified, a

multi-step prediction strategy based on the Ao model is designed,

which effectively accelerates the convergence speed through the

recurrence of the current cycle to achieve fast help.

(2) We propose a deep network model based on TCN-LSTM

neural network architecture, which enhances the representation

capability of sequence data. By utilizing transfer learning strategies,

we explore the potential for nesting circular-like movement

patterns, such as walking and swimming, because of their

inherently cyclical nature. Our model adapts to similar periodic

motion with minimal data set requirements, so as to realize

adaptive auxiliary control of lower limb periodic motion for

multiple scenes with limited data.

(3) We have designed an sEMG signal-based assistive

assessment experiment. By statistically analyzing the frequency

change rate of the sEMG signals before and after each batch of

experiments, it is possible to determine the degree of fatigue of

the muscle group in question. Through control experiments, we

can demonstrate whether our exoskeleton’s assistance strategy can

make the subjects feel more relaxed.

The structure of this paper is as follows: the second

section describes the data set and experimental platform design

in detail, the third section introduces the adaptive oscillator

and the hip moment estimation network, the fourth section

shows the experimental results, and the fifth section summarizes

the work.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1472184
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1472184

2 Design

This section will be composed of several parts from the

experimental use of lower limb exoskeleton robot design,

data acquisition, control framework: adaptive oscillator (AO)

and long short-term memory network and time Convolutional

network (TCN-LSTM) control framework, aiming to introduce the

hardware to software content of this work.

2.1 Experimental platform

To Meet the needs and challenges of underwater and land

multi-scenario applications, the following principles need to be

determined (Wang et al., 2024, 2023): First, the weight of

the exoskeleton should be designed to be light, reduce the

environmental impact caused by counterweight problems, and

improve underwater operation mobility; Secondly, the exoskeleton

should have ergonomic characteristics adapted to different lower

limb lengths; Finally, the exoskeleton should be combined with

the motion mode to limit the actual joint drive, such as the hip

Angle of the water stroke action should be between [-40◦, 40◦],

which is based on the human kinematics (Nakashima et al., 2015)

to ensure safety.

In this paper, we designed a wire-driven flexible lower limb

exoskeleton (Xiangyang et al., 2024) as Figure 1. The executive

motor is placed on the back of the exoskeleton, and the

joint is lifted by an inner Bowden cable to achieve power.

The motor and driver used in this system are self-developed

products, and the motor Angle can be output through the

embedded encoder. The motion sensor is based on Wit-9073

(Witmotion Company), and the attitude quaternion is output.

We chose to place sensors on the back, left knee joint, and

right knee joint of the robot as feature sources, which have

been proven to be the most important locations for determining

classification accuracy (Sang et al., 2018). The inertial sensor

architecture consists of a Speedgoat real-time target machine, a

high-precision nineaxis sensor, and a power circuit. The inertial

sensor establishes real-time communication with the controller

through the EtherCAT bus.

The sampling frequency of the sensor is configured to be 1,000

Hz, and it will be turned on simultaneously after initialization

to ensure information synchronization. The position of the

sensor is fixed. To ensure the accuracy of the experimental

results, we conducted several experiments and readjusted the

position of the sensor before each experiment to prevent

the sliding or instability of the sensor from affecting the

experimental results.speedgoat is a system developed based on

matlab-simulink, which provides a variety of communication

protocol interfaces. The motor and sensor use ethercat bus

for communication. Through the DataInspector interface inside

simulink, signals of each channel can be read online to complete

data acquisition.

The electromyography (EMG) sensors utilized are products

fromDelsys Corporation. Each sensor has an extremely light weight

of only 14 grams, and they can be worn without the need for

electrode pads. They are connected to an upper computer that

has built-in filtering and noise reduction functions. Moreover,

they have interfaces for kinematics and motion capture, and the

collected data is saved in XML format for later processing.

2.2 Data collection

In this experiment, in order to achieve the control goal under

multiple scenarios, behavioral data under land and underwater

scenarios were collected. The training data of land walking were

collected from 8 subjects (age: 27 ± 5 years old, weight: 77 ±

32 kg, height: of 1.69 ± 0.11 m) in the paper (Luo et al., 2024).

All participants had a walking gait, and there was no lower limb

injury in the past 6 months. The experimenters walked at a speed

of 0.75 m/s on the treadmill, and the walking method was in

accordance with the habits of the subjects. The inertial sensor

recorded the data at a frequency of 200 Hz.

Data of underwater freestyle swimming come from Swimsuit

fluid simulation platform developed by Tokyo Institute of

Technology, Japan (Liew et al., 2023). Human swimming is an

unsteady flow process, involving fluid dynamics (CFD) analysis.

The former obtains experimental data through image velocity

measurement (PIV) (Equation 1). Where 1x represents the shift

of the marker in 1t time, PIV acquisition device generally

includes multiple high-speed cameras, a laser (Nd:YAG lasers are

commonly used) controlled by an optical system, and a precision

synchronizer, which coordinates the operation of the cameras and

the laser, ensuring precise timing and synchronization for the

processes involved.

CFD is a numerical method to solve the Navier-Stokes equation

describing fluid dynamics (Zawawi et al., 2018). The computational

domain is divided into a large number of grids, and the velocity

and pressure of the fluid are calculated based on the grid, so as to

realize the discrete space. The mesh size needs to be less than the

minimum vortex length, i.e., the Kolmogorov length scale η, which

defind as (2), where v is the kinematic viscosity of the fluid,U is the

characteristic velocity of the fluid, and Lis the characteristic length

of the fluid.

u(x, t) =
1X(x, t)

1t
(1)

η = (
v3L

U3
)
1
4 (2)

The Swumsuit takes into account common fluid properties such

as addedmass and unsteady fluid forces. Swimsuit has interfaces for

human joint position, characteristics and kinematic Settings, and

the simulation performance error of predicting the time change

of fluid force under the determined fluid force coefficient is less

than 7.5%, which is generally satisfactory. We collected the body

information as follows: (height: 1.65 m, weight: 50 kg), (height:

1.68 m, weight: 53 kg), (height: 1.75 m, weight: 64.5 kg), (height:

1.80 m, weight: 75 kg), with human data of different lower limb

proportions, their movement trajectory was set as a standard

freestyle movement, and the feet alternated up and down twice

for one movement cycle, and the kinetic data was collected at

a frequency of 100 Hz. Figure 2 shows the out-of-phase motion

posture in one cycle.
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FIGURE 1

Exoskeleton assistance frame. From left to right is sEmg acquisition and analysis, the application scenario selection, exoskeleton equipment and

sensor position; Through the motion sensor placed in the hip and knee, the attitude quaternions are output to the AOs controller. The Aos controller

will first change the data in the frequency domain and high-pass filtering, and then realize the phase division. Through pre-training, the TCN-LSTM

network outputs a desired torque to the exoskeleton using the input phase, and the wearer can actively adjust the power sensation according to their

own sti�ness to achieve a closed loop of power control.

FIGURE 2

Di�erent phases of water striking action schematic diagram.
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3 Method

3.1 AOs-based high-level controller

Adaptive oscillator was proposed by Righetti et al. (2006).

Its purpose is to continuously estimate the periodic input signal

characteristics (frequency, phase, amplitude). By learning the target

signal, the system can still maintain a synchronous oscillation

frequency with the previous one after removing the input after

learning (Righetti et al., 2006).

As shown in Figure 1, AOs will estimate the gait phase in real

time from the input kinematic signal. The controller consists of

threemodules (Figure 3). The input preprocessingmodule, the core

of which is IIR filter; Phase Estimation module is composed of AOs

Network and adaptive PD adjustment module for AOs parameters.

The Scene Change module applies zero-crossing detection and

multi-step prediction model output estimation phase to the output

of the previous step.

3.1.1 Pre-process
An infinite impulse response (IIR) bandpass filtering

mechanism is used to suppress the high frequency noise and

DC bias in the signal. The filter is designed with a specific

passband frequency range, i.e. 0.2–20 Hz, to preserve the main

low-frequency dynamic features during motion. Subsequently, in

order to mitigate computational discrepancies stemming from

variable data magnitudes, as well as to avert convergence rate

impediments in modeling due to possible numerical overflows

within the signal, the signal amplitude is standardized and adjusted

to the range of [-1, 1] to facilitate the standardized input of

subsequent processing steps.

A consistent preprocessing strategy is also adopted for the

Angle of the encoder output and the quaternion features obtained

from the motion sensor. However, according to the characteristics

of angular data and kinematic data, the parameters of amplitude

normalization are adjusted respectively, so that the maximum

response value of each signal can be close to the unit amplitude.

Through this method, the aim is to achieve effective normalization

of all kinds of signals.

3.1.2 Phase estimation
In Section 3.1, we introduce the application background of AO,

and the mathematical derivation of AO will be introduced in detail

in this section. The core of AO is to adjust the phase of the oscillator

according to the error between the estimated frequency and the

true frequency. When both frequencies are closed, the oscillator’s

signal is synchronized with the input signal. Firstly, the kinematic

signal u(t) is estimated as sine function superposition based on

Fourier transform:

û(t) = α0(t) +

N∑

i=1

αi(t) sin(φi(t)) (3)

In the given equation, û(t) represents the reconstructed signal

of the oscillator, αi(t) and φi(t) denote the amplitude and phase

of the i-th harmonic, respectively, while α0(t) is an integrator

used to learn the offset of the oscillator signal. Additionally, the

characteristics of the signal can be specifically calculated through

the following formula:

φ̇i(t) = iω(t) +
kφe(t)∑N
j=0 αj(t)

cos(φi(t)) (4)

ẇ(t) =
kωe(t)∑N
j=0 αj(t)

cos(φ1(t)) (5)

α̇i = kαe(t) sin(φi(t)) (6)

α̇0 = k0e(t) (7)

e(t) = u(t)− û(t) (8)

Where i is the harmonic number, ω(t) is the base frequency

estimated by the oscillator, and e(t) is the error between

the oscillator’s estimated output and the actual output, which

represents the degree of convergence of each variable to the input.

Kω, K0, Kα are learning rate coefficients, which determine the

learning speed of the model. The PD Parameter Colltroller adjusts

the above parameters. With the PD controller, the AOs model

can adapt effectively without flying when facing environment-task

(frequency) changes. This ensures security and completes adaptive

task switching, Enhancing model transferability.

According to the experiment, we find that the kinematics curve

of human walking task is similar to sine wave, and setting n to 2 will

have better tracking effect. In underwater fetching tasks, because of

the strong nonlinearity, setting n to 3 will have a better effect.

3.2 LSTM-TCN-based mid-level controller

3.2.1 Overview
In the first section, we explained the feasibility of

data-driven exoskeleton power, and this section will

specifically introduce the Mid-Level architecture based on the

LSTM-TCN model.

Torque regression is a common sequential task, and a large

number of studies have proved that recurrent neural networks

(RNN) have a good performance in dealing with such problems

(Molinaro et al., 2022; Mundt et al., 2020; Dorschky et al.,

2020). LSTM structures control the flow of information and

learn long-term dependence of long and short term memory

units by designing input gates, forgetting gates and output gates.

Temporal and spatial convolutional networks (TCN) employ causal

convolution and extended convolution to capture local features and

process translation invariance in data. Compared to the traditional

CNN framework, TCN can also capture the causal relationship of

the sequence, which has significant advantages when dealing with

time series data (Pratap et al., 2024), which making TCN perform

well in short-term features (Molinaro et al., 2024).

In addition, TCN has simple structure and advantages

in efficiency, and adding residual connections can effectively

avoid the problem of gradient disappearance (Gan et al.,

2021; Bai et al., 2018). However, in the capture of long-term
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FIGURE 3

Structrue of AOs controller.

FIGURE 4

TCN-LSTM network overall flow chart of model.

relationships, because TCN can only improve the learning ability

by increasing the depth of the network, no state information

of previous layers is retained between each convolutional

layer. Compared with the unique gating mechanism of LSTM,

the latter is more suitable for processing data with high

contextual correlation.

In this paper, we construct a TCN-LSTMmodel to predict joint

torques based on phase and historical data. The model consists

of three parts: input layer, feature extraction layer and output

layer. The input layer manages the data input of each channel;

The feature extraction layer is composed of three layers of TCN,

which have the same number of filters and kernel size, and the

expansion factor is 1,2,4. dropout is added after each convolutional

layer to avoid overfitting. After the TCN layer, time features are

extracted through two layers of LSTM model. Through the above

series of nonlinear transformations of the input layer data, the

deep features are extracted. The output layer is composed of two

fully connected layers, and the result is predicted by dimensional

transformation. This model not only contains the understanding

of medium and long-term dependencies and complex patterns of

time series data, but also has a stronger ability to express short-

term features. The working flow chart of this model is shown

in Figure 4.

3.2.2 Temporal convolutional network (TCN)
The application of time series data in neural networks requires

data to be transformed into sequences. Generally, the sliding

window method is adopted to segment the data set and obtain an

input sequence as the input feature. Input features and output labels

of the time series regression problem need to be presented and

defined (Benson et al., 2020) for the TCN-LSTM model. The time

window is equal to the number of samples in one period to predict

the next observation results, and the input and output of the data

set are divided through a sliding window. Figure 5 shows the sliding

window process for our one-step time series.

Sequence modeling tasks require the ability to capture

continuous data, understand the coherence of the data along its

expansion direction, and comply with causal constraints, that is,

the prediction of the current moment cannot be based on the input

of the future moment (Wei et al., 2024). TCN is an advanced

sequence modeling framework designed for processing sequence

data with causal relationships. Compared to traditional recurrent

neural network (RNN), TCN provides a novel way to capture

dynamic features in time series while following the principle

of causality.

TCN achieves these requirements through a range of innovative

technologies. Firstly, TCNs uses causal convolution, a special
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FIGURE 5

Sliding windows process. The window size is 100 ms and the window stride is 50 ms.

FIGURE 6

The struct of TCN network.

convolution operation that ensures that the direction of the

sequence follows the predicted causal law. Secondly, TCN uses

extended convolution to increase the model’s receptive field, which

enables the network to capture longer time dependencies with

fewer parameters (Cheng et al., 2021). For a one-dimensional

input sequence X, the extended convolution operation F can be

expressed by the Equation 9. Finally, TCN uses residual connection

to alleviate the problem of gradient disappearance in deep network

training and improve the learning ability of the model (Zhou

et al., 2019). Specifically, the TCN structure is shown in Figure 6,

which contains three hidden layers, each of which is composed

of two expanded convolution layers, two batch normalization

layers, two dropout, two Relu activation layers and a residual

link layer.

F(s) = (x ∗d f )(s) =

k−1∑

i=1

f (i) · xs−d·i (9)

3.2.3 Long short-term memory network (LSTM)
LSTM network is A variant of RNN structure, which adjusts

hidden neurons in RNN into a special gate structure, enabling it

to capture long-term dependencies in time series data (Molinaro

et al., 2022). This gate structure corresponds to the “A” module in

Figure 4. The internal structure of concrete containing unit state

Ct , input door it , output door ot and forget ft . The flow of LSTM

information depends on the special internal state (Shahbazi et al.,

2018). The current input Xt will concat operation with the output

ht−1 of the previous layer. ft selectively forgets the information of

the previous moment to control the loss degree of Ct . it selectively

records the information of Xt into Ct ; ot controls the amount of

information corresponding to external output ht at the current

time. Let Xt be The input at the current time, and the output

through the network is ht . The formula for calculating LSTM is as

follows (10) to (15) (Zhou et al., 2019).

ft = σ (Wf · [ht−1, xt]+ bf ) (10)
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it = σ (Wi · [ht−1, xt]+ bi) (11)

C̃t = tanh(WC · [ht−1, xt]+ bC) (12)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (13)

ot = σ (Wo · [ht−1, xt]+ bo) (14)

ht = ot ⊙ tanh(Ct) (15)

4 Result

4.1 Model evaluation

In Section 2.2, we introduced the collection process of the data

set. In off-line training and testing, we divided the data according to

80% training set and 20% test set. TCN-LSTMnetwork is composed

of one LSTM layer, three TCN convolutional layers, and a fully

connected layer. The activation function used is ReLU, and the

network is trained using stochastic gradient descent with a batch

size set to 64 and an initial learning rate of 0.001. In off-line testing,

we focused on the accuracy of the torque estimate returned by

the TCN-LSTM model. Figure 7 shows the predicted stride length

of the single sagittal leg of the hip in different modes (Walking,

Runing, Swiming) (Red Line), and the true value of each data (Black

Line) is also shown.

The statistical results are shown in Figure 8. The models of

walking action (RMSE = 0.089) and swimming action (RMSE =

0.083) show better performance, and the trough in walking mode

have certain uncertainties, which may be related to the speed and

habits of different subjects during movement. In general, the TCN-

LSTMmodel accurately fits the changes of hip moment in different

stages under different periodic movements.

There have been extensive studies on hip torque estimation

under offline conditions (Kang et al., 2020; Mundt et al.,

2021), but in online applications, dynamic verification under real

environment interaction plays a crucial role in evaluating the

performance of the control framework. In the following chapters,

we will evaluate the helpability of online applications by sEMG.

4.2 Evaluation of exoskeleton assisted
performance based on EMG signals

Muscle fatigue results in a degradation of physical movement

ability, and while the manifestation of muscle fatigue can

differ, there are still commonalities that can be identified

through statistical features. Historically, researchers have utilized

characteristics such as the amplitude of EMG signals and their

spectral shift from high to low frequencies. The prevailing

perspective is to examine whether there is a significant reduction

in the median and mean frequencies of EMG signals over time as

key indicative features (Haddad and Mirka, 2013).

The present experimental investigation aims to validate

the efficacy and assess the generalizability of a supportive

framework. Electromyographic signals were harvested from a

cohort comprising seven participants (six male and one female)

engaged in locomotion and incline walking on a treadmill at

a velocity of 2 m per second. Kinematic trajectories of the

hip joint, ascertained during both walking and incline walking,

demonstrated analogous attributes; moreover, incline walking was

observed to precipitate fatigue in the participants at a more

accelerated rate compared to flat walking, potentially augmenting

the discernible outcomes within the framework of our validation.

The electromyographic data were procured via six channels, each

aligned with the rectus femoris, tibialis anterior, and gastrocnemius

muscles of the lower limbs. The sensors operated at a sampling

frequency of 1000 Hz, and the raw electromyographic signals

underwent band-pass filtration within the bandwidth of 10 Hz to

499 Hz to eliminate noise.

In this study, we established a control experiment without

the use of an exoskeleton and with the use of an exoskeleton

without assistance for the same task. Each experiment lasted for

five minutes, with a ten-minute break between groups. As depicted

in Figure 9, from top to bottom, they illustrate the raw (EMG)

signals for six different motion modes: No Exoskeleton Climb

(NEC), Exoskeleton without Assist Climb (EWC), Exoskeleton

Assist Climb (EAC), No Exoskeleton Walk (NEW), Exoskeleton

without Assist Walk (EWW), and Exoskeleton Assist Walk (EAW).

From left to right, the signals represent the Gastrocnemius, Tibialis,

and Rectus femoris channels, corresponding to three distinct

pathways. Among these, the Gastrocnemius and Tibialis muscles

exhibit more pronounced activation, This perhaps indicates that

they are more involved in force generation. We also recorded the

fatigue node of the subject’s subjective feedback, and calculated

fatigue quantitatively by using a feature based onmedian frequency

proposed in Chand et al. (2023). The former verified the

relationship between muscle fatigue with task load and repetitive

movements based on this method, and we combined the them to

evaluate the effect of the exoskeleton on the Subject’s body.

The average value of the input signal was subtracted from

each sample point to eliminate the deterministic trend effect. We

designed a short-time Fourier transform with a window length

of 30,00 sampling points. Accumulated experimental evidence

suggests that a sampling size of 3000 points is typically adequate

to encompass an entire motion cycle, thereby facilitating a

comprehensive analysis of periodic attributes, which is essential

for accurate characterization of the motion’s periodic nature. and

by averaging every three adjacent points, we obtained a frequency

curve that varies over time, as shown in Figure 10. Although we

collected electromyographic signals from three distinct muscular

regions, the gastrocnemius has been established in prior research

as the predominant muscle group engaged during lower limb

ambulation (De Luca, 1984). Through observation of this dominant

muscle group, we can more clearly discern variations in the degree

of fatigue.

We conducted a comprehensive statistical analysis focusing on

the fatigue contours of electromyographic (EMG) signals for each

subject, as depicted in Figure 11. This analysis involved calculating

the rate of change in average frequency for each channel under

various conditions. Our findings revealed a consistent negative

linear relationship between the overall muscle frequency and the

progression of fatigue, which aligns with the frequency decay

gradient reported by Chand et al. (2023).
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FIGURE 7

Estimating representative hip moments have the TCN-LSTM model, and forecast the output of the hip joint torque (red line), truth value (black line).

FIGURE 8

The predictive performance of the TCN-LSTM model across walking and swimming activities, (A) highlighting the RMSE and R
2 scores. The RMSE

values are 8.9% for walking and 8.3% for swimming (the lower percentages indicating higher accuracy). (B) The R
2 values are 0.87 for walking and

0.89 for swimming (the higher values represent better model fit).

Specifically, we observed a significant decline in the rate

of muscle frequency change for conditions involving exertion

compared to normal conditions: 8.948% for climb_work versus

climb_wear, and 7.442% for climb_normal. Similarly, for

walking activities, the decline was 11.687% for walk_work versus

walk_wear, and 11.058% for walk_normal. These results suggest

that the exoskeleton provides substantial assistance, enhancing

performance and energy efficiency during tasks that would

otherwise be fatiguing when performed without the support of

an exoskeleton.

The observed negative linear relationship can be attributed

to the manifestation of muscle fatigue, which is reflected in the
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FIGURE 9

Original sEMG signals of various motion patterns.

FIGURE 10

Comparison of sEMG frequency change rates for climbing and walking movements: a visual representation of three modes (A) without exoskeleton,

(B) with exoskeleton without assistance, (C) with exoskeleton assistance for climbing, (D) without exoskeleton, (E) with exoskeleton without

assistance, and (F) with exoskeleton assistance for walking.
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FIGURE 11

Overall fatigue profile change rate and fatigue profile change rate of each channel.

reduced efficiency of muscle contractions. As muscle contraction

efficiency decreases, the muscle’s ability to generate force during

elongation diminishes, leading to a decrease in the frequency and

amplitude of the EMG signals (Haddad and Mirka, 2013). This

effect is particularly pronounced in the dominant muscle groups,

as they bear a greater load and exhibit more noticeable changes in

average frequency.

Conversely, for muscle groups that are less dominant

or have a weaker association with the specific movement

pattern, the expected negative linear relationship may

not be as apparent in our experiments. This variability

could be attributed to factors such as the duration of the

activity and individual differences in movement habits

and biomechanics.

5 Disscussion

1. For source datasets with smaller samples, if the target

task is complex, it may lead to poor transfer learning effects. In

our subsequent research, we plan to delve into and address the

challenges of small sample source datasets in transfer learning.

2. While simulated environments provide a controlled and

efficient way to collect data, there are still differences between
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these conditions and those in the real world, For our forthcoming

experiments, we intend to incorporate waterproof six-axis force

sensors to gather data from authentic environments, thereby

leveraging the strengths of both simulated and real-world data to

bolster the model’s robustness.

3. In the results, we found that the activation of the

gastrocnemius muscle during lower limb movement is significantly

more pronounced than that of other muscle groups. This could be

related to the exercise modality we chose, as well as factors such

as the fatigue resistance characteristics of different muscles. In our

future work, we will expand our research to cover these areas.

6 Conclusion

The control strategy of the exoskeleton robot proposed in

this paper can effectively improve the applicability and robustness

of the exoskeleton robot in different scenarios by combining

adaptive oscillator and deep learning model. The experimental

results show that the control strategy not only reduces the lower

extremity work cost of the wearer, but also improves the movement

efficiency and comfort of the wearer. Specific contributions include:

Adaptive AOs controller: Fast and accurate estimation of the

wearer’s motion phase, providing real-time motion intent feedback

for the exoskeleton robot. TCN-LSTM model: Through transfer

learning strategy, the model can adapt to different periodic motion

patterns, and achieve accurate assistance to hip torque. Multi-scene

application verification: Through the analysis of the frequency

change rate of EMG signal, the fatigue degree of the subjects

was assessed. Through the controlled experiment, the effectiveness

of the control strategy in the walking scene in different modes

was verified.

Cross-task, cross-scenario operation: The design of the control

framework allows the exoskeleton robot to demonstrate powerful

performance in multiple tasks and environments, reducing the

reliance on extensive data sets and complex sensor suites.

Future work will focus on further optimizing control strategies,

improving the system’s adaptive and user-customized capabilities,

and exploringmore application scenarios, such as Under analogous

kinematic patterns, the deployment of exoskeleton assistance

models in environments characterized by unknown gravitational

accelerations, such as in deep space, or in conditions with

fluid pressure-induced perturbations, such as during deep-sea

diving, presents unique challenges. However, employing a transfer

learning strategy to formulate a control framework for these

contexts is deemed to be promising.In the case of deep space,

the unknown gravitational forces may introduce complexities in

movement dynamics that are not present on Earth. Similarly,

the hydrodynamic pressures in deep-sea conditions can cause

disturbances that affect the kinesthetic feedback and load

management of exoskeleton systems. Despite these challenges, the

transfer learning approach, by its nature, is adept at generalizing

across different physical contexts, making it a potent tool

for developing robust control frameworks that can adapt to

these unknowns.

In addition, the research team will continue to explore the

application of deep learning models in the recognition and

prediction of different motion patterns to achieve more intelligent

and personalized robotic assistance systems for exoskeletons.
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