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Editorial on the Research Topic

Seizure forecasting tools, biomarkers and devices

Recent advancements in data collection through seizure diaries, invasive and non-

invasive devices, and implementing computational algorithms for identifying seizure

patterns and likelihood such as statistical and machine learning algorithms have made

reliable seizure forecasting increasingly feasible (Meisel et al., 2020; Brinkmann et al.,

2021; Nasseri et al., 2021; Stirling et al., 2021). This holds great promise for improved

seizure management. However, several significant challenges remain such as high false

alarm rates that undermine the reliability of current forecasting algorithms (Karoly et al.,

2020), and the variability in seizure patterns among individuals, which makes it difficult

to create a generalized model. Additionally, the quality of recorded physiological data

is crucial (Nasseri et al., 2020; Böttcher et al., 2022); while non-invasive devices can

provide valuable data, they are not always acceptable to all patients. Integrating various

types of data, such as physiological signals, sleep patterns, and mood information, into

a single forecasting model requires substantial data processing power and sophisticated

algorithms. Moreover, implementing seizure forecasting in real-life conditions necessitates

evaluating the acceptability of algorithm performance metrics among patients and

clinicians (Grzeskowiak and Dumanis, 2021). These challenges underscore the need for

ongoing research and innovation in the field of seizure forecasting.

One of the primary challenges with current seizure forecasting algorithms is their

high false alarm rate (FAR), which limits clinical applicability and acceptability to patients

(Alotaiby et al., 2014; Beniczky et al., 2021). High FAR is a critical barrier to the widespread

clinical adoption and utility of seizure forecasting technologies necessitating development

of more robust and accurate prediction models. In the study Segal et al. researchers applied

a risk-controlling prediction (RCP) calibration method called Learn then Test (LTT) to

address this issue. The calibration algorithmwas first validated with synthetic data and then

tested on scalp EEG recordings. A convolutional neural network was used to assess seizure

risk by defining the preictal state as the period from 60min to 30 s before seizure onset.

By implementing LTT as a post-processing step on the test dataset, an average reduction

of 92% in the FAR was achieved. Although this calibration method improved model

performance for some recordings, the results were still not sufficient for clinical relevance.

On the other hand, to develop reliable forecasting algorithms, identifying biomarkers

and features that capture the non-linear and non-stationary nature of physiological

signals is another promising area of investigation (Brinkmann et al., 2016; Meisel et al.,

2020; Nasseri et al., 2021). A 2014 paper (Wang and Lyu, 2014) derived comprehensive
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feature vectors from EEG signals for efficient prediction and

examined the relevance of primary amplitude and frequency

components to a patient’s seizure occurrence. The study by

Chen et al., highlights the significance of time-frequency features

extracted from cEEG in forecasting seizures. Time-frequency and

power spectrum analysis were applied to investigate periodic

discharges (PDs) patterns and their relation to seizure prediction.

The study demonstrated that high spectral power predicted a high

risk of seizures, while low spectral power was associated with a

lower risk. However, a prospective study that includes a larger

cohort of patients is needed to confirm these findings.

During the first international seizure prediction workshop, the

seizure prediction community established standards for datasets to

be used in the development and evaluation of seizure prediction

algorithms (Lehnertz and Litt, 2005). As a result, several EEG

datasets adhering to these guidelines were created and are

recommended for research groups working in the area of seizure

prediction (Wagenaar et al., 2015). Further datasets were made

available by the community (Brinkmann et al., 2016; Kuhlmann

et al., 2018). In the current Research Topic, Andrade et al.

compared the performance of a patient-specific seizure prediction

algorithm across four open access databases in a standardized

way. The study distinguishes between sample-based approaches

disregarding the temporal aspect of seizures, and alarm-based

approaches, which aim to simulate real-life conditions. In this

more realistic scenario results were less promising and shows the

importance of rigorous testing conditions. However, the existing

databases also have deficits, as they contain EEG recordings of

only a few seizures for many patients. Datasets with ultra-long

term recordings with subcutaneous (Pal Attia et al., 2023; Viana

et al., 2023) or intracranial EEG (Kuhlmann et al., 2018) offer

the possibility to overcome some of these limitations, although

these continuous ultra-long-term datasets remain rare due to the

challenges in acquiring such data. Efforts are underway to overcome

these barriers (Khambhati et al., 2024).

A lower burden for patients is achieved by using wearable

devices or intelligent (sensor-integrated) clothing during daily

routines. Gagliano et al. used a smart shirt with a single-lead

ECG, two respiratory bands and a detachable telemetry device

with a three-axis accelerometer to investigate the relation between

sleep efficiency and the occurrence of epileptogenic seizures.

Relationships between vigilance states, sleep stages and epilepsy are

known for many years and circadian profiles of seizure occurrence

are not only results of recent research (Khan et al., 2018) but are still

not completely understood and remain an active Research Topic,

particularly in relation to ictal and interictal EEG activity (Peter-

Derex et al., 2020). In this study, four sleep metrics were derived

from the sensor data of the smart shirt: total sleep duration, sleep

latency, time of waking after sleep onset, and sleep efficiency. It

could be shown, that sleep quality, especially sleep efficiency is

lower in nights before a seizure. These results complement those

obtained using a wristband wearable (Stirling et al., 2023), showing

that sleep onset and offset times were significantly associated with

heightened seizure risk the following day formore participants than

changes in sleep duration the night before. Overall these studies

emphasize the richness of information, which can be derived from

mobile recording devices contributing to seizure forecasting in real

life settings.

Seizure forecasting holds the promise of significantly

reducing the burden of epilepsy and enhancing the autonomy

and quality of life for those affected. To fully realize this

potential, further improvements in accuracy, reduction of

patient burden, and integration with targeted interventions

are essential.
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