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Introduction: Acupoint Catgut Embedding (ACE) is an extended and developed 
form of traditional acupuncture that serves as a composite stimulation therapy for 
various diseases. However, its local stimulation effects on acupoints remain unclear. 
Acupuncture can activate mechanically sensitive calcium ion channels, TRPV2 
and TRPV4, located on various cell membranes, promoting Ca2+ influx in acupoint 
tissues to exert effects. Whether ACE can form mechanical physical stimulation to 
regulate these channels and the related linkage effect requires validation.

Methods: This study investigates the influence of TRPV2 and TRPV4 ion 
channels on the local stimulation effects of ACE by embedding PGLA suture 
at the Zusanli (ST36) acupoint in rats and using TRPV2 and TRPV4 inhibitors. 
Flow cytometry, immunofluorescence, Western blot, and Real-time quantitative 
PCR were employed to detect intracellular Ca2+ fluorescence intensity, the 
expression of macrophage (Mac) CD68 and mast cell (MC) tryptase, as well as 
the protein and mRNA expression of TRPV2 and TRPV4 in acupoint tissues after 
PGLA embedding.

Results: The results indicate that ACE using PGLA suture significantly increases 
the mRNA and protein expression of TRPV2 and TRPV4, Ca2+ fluorescence 
intensity, and the expression of Mac CD68 and MC tryptase in acupoint tissues, 
with these effects diminishing over time. The increasing trends are reduced 
after using inhibitors, particularly when both inhibitors are used simultaneously. 
Furthermore, correlation analysis shows that embedding PGLA suture at the ST36 
acupoint regulates Mac and MC functions through Ca2+ signaling involving not 
only TRPV2 and TRPV4 but multiple pathways.

Discussion: These results suggest that embedding PGLA suture at the ST36 
acupoint generates mechanical physical stimulation and regulates TRPV2 and 
TRPV4 ion channels, which couple with Ca2+ signaling to form a linkage effect 
that gradually weakens over time. This provides new reference data for further 
studies on the stimulation effects and clinical promotion of ACE.
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1 Introduction

Acupoint Catgut Embedding (ACE) originates from the traditional 
acupuncture theory of “retaining needles,” utilizing absorbable sutures 
to provide continuous stimulation to acupoints for disease prevention 
and treatment (Guan et al., 2009; Huo et al., 2017). Due to its minimal 
invasiveness, simple operation, long-lasting stimulation, and low 
frequency of visits (Guo M. et al., 2022; Zhang X. H. et al., 2023), it has 
been widely used in clinical practice to treat various systemic diseases 
(Cheng et al., 2022b). Concurrently, research on the mechanisms of ACE 
has gradually increased (Wei et al., 2019). However, previous mechanism 
studies have mainly focused on therapeutic effects or distal acupoint 
effects (Huo et al., 2017; Teng et al., 2022; Duan et al., 2021), with a need 
for in-depth research on recognized target points (Huo et al., 2017; Wei 
et al., 2019). Local acupoints are the initial response sites for acupuncture 
effects (Chen et al., 2013; Fu et al., 2023) and a common foundation for 
mechanism research (Li et al., 2015). Although acupoint stimulation 
effects are involved in various acupuncture methods (Min et al., 2015; 
Chen T. et al., 2016; Lowe, 2017; Chen et al., 2021), basic research on 
ACE in this area remains scarce. Therefore, exploring the stimulation 
effects formed by ACE-induced changes in the local microenvironment 
of acupoints provides an objective scientific basis for its promotion.

Macrophages (Macs) and mast cells (MCs) in the connective 
tissue of acupoint areas are generally considered to participate in 
initiating local stimulation effects (Fu et al., 2023; Jung and Lushniak, 
2017). Acupuncture stimulation at acupoints can activate these two 
immune cells locally, transmitting stimulation signals (Wu et al., 2015; 
Yan et al., 2020; Yu et al., 2022). Previous research by our team found 
dynamic changes in the functional state of Macs and MCs in acupoint 
areas following ACE at the ST36 acupoint in rats. Besides the transient 
needle stimulation by embedding, the suture material as a foreign 
body causing a local immune inflammatory response is considered 
one of the stimulation effects post-ACE (Zhang Q. et al., 2023; Wang 
et al., 2023). However, as a composite stimulation therapy developed 
from traditional acupuncture, other local stimulation effects of ACE 
remain to be further studied (Wei et al., 2019; Xing et al., 2019).

It is known that in the transient receptor potential vanilloid (TRPV) 
family, TRPV2 and TRPV4 are mechanically sensitive calcium ion 
(Ca2+) channels (Shibasaki, 2016; Liedtke, 2005). When these channel 
proteins on different cell membranes perceive mechanical stimulation, 
the channels are opened, causing transmembrane Ca2+ movement into 
the cells (i.e., Ca2+ influx), triggering intracellular signal transduction 

and cell function activation (Liedtke and Kim, 2005). Recent studies 
have shown that acupuncture, as a mechanical physical stimulation, can 
activate TRPV2 and TRPV4 channels at acupoints, promoting Ca2+ 
influx, converting physical stimulation into biological information, and 
thus exerting acupuncture effects (Huang et al., 2018; Luo et al., 2022). 
Based on the above, on the one hand, ACE originates from traditional 
acupuncture and replaces needles with sutures to produce sustained 
stimulation at acupoints. Whether it can form mechanical physical 
stimulation in the acupoint area to regulate these two channels needs 
verification. On the other hand, as a composite stimulation therapy, in 
addition to causing Macs and MCs to participate in  local immune 
inflammation response, it remains to be further verified whether ACE 
can couple the functions of these two immune cells through the TRPV2 
and TRPV4 mechanosensitive channels on their cell membranes (Link 
et al., 2010; Chen et al., 2017; Michalick and Kuebler, 2020).

Therefore, this study aims to explore possible local mechanical 
physical and linkage stimulation effects of ACE by embedding 
poly(glycolide-co-lactide) (PGLA) sutures (Ke et al., 2020; Jain, 2000), 
known for their excellent mechanical properties and biocompatibility, 
at the ST36 acupoint in rats. By intervening with inhibitors of 
mechanically sensitive TRPV2 and TRPV4 channels, changes in 
TRPV mRNA and protein expression, intracellular Ca2+ fluorescence 
intensity, CD68 and tryptase expression in MACs and MCs in local 
tissues of acupoints were dynamically observed. Correlation analysis 
of the impact of intracellular Ca2+ fluorescence intensity on the CD68 
and tryptase expression in Macs and MCs in acupoint areas provides 
new reference data for further studies on the mechanism of ACE 
stimulation effects and its clinical promotion.

2 Materials and methods

2.1 Experimental animals and grouping

A total of 150 healthy male Sprague–Dawley (SD) rats (170-200 g, 
8 weeks old) were purchased from Guangdong Vital River Laboratory 
Animal Technology Co., Ltd. (production license number: SCXK 
(Yue) 2022–0063) and housed in the SPF-level animal room of the 
Clinical Research Center, Affiliated Hospital of Guizhou Medical 
University. The housing conditions were maintained at a temperature 
of 22–24°C, humidity of 50–70%, with a 12-h light/dark cycle, and 
free access to food and water. After a one-week acclimatization period, 
the 150 rats were randomly divided into five groups (30 rats per 
group): Blank Control Group (CON), Embedding Group (ACE), 
Embedding + TRPV2 Inhibitor Group (ACE+T2B), Embedding + 
TRPV4 Inhibitor Group (ACE+T4B), and Embedding + TRPV (2 + 4) 
Inhibitor Group (ACE+T(2 + 4)B). Each group was further divided 
into three subgroups based on time points (1 day, 3 days, 7 days) with 
10 rats in each subgroup (Figure 1A). The experimental protocol was 
approved by the Experimental Animal Ethics Committee of Guizhou 
Medical University (approval number: 2101330). During the 
experiment, the handling of animals strictly adhered to the “Guiding 
Opinions on Treating Experimental Animals Humanely” issued by the 
Ministry of Science and Technology of the People’s Republic of China 
in 2006. Before interventions, the rats were anesthetized with 3% 
sodium pentobarbital (P3761, Sigma, USA) administered 
intraperitoneally at a dose of 0.03 g/kg. The rats were then fixed in a 
prone position on a rat board with their limbs extended. The hair on 

Abbreviations: ACE, Acupoint Catgut Embedding; Ca2+, Calcium ion; PGLA, 

poly(glycolide-co-lactide); TRPV, Transient receptor potential vanilloid; Mac, 

Macrophage; MC, Mast cell; mRNA, messenger RNA; SD, Sprague–Dawley; CON, 

Control; T2B, TRPV2 Inhibitor; T4B, TRPV4 Inhibitor; DMSO, Dimethyl sulfoxide; 

FCM, Flow Cytometry; IF, Immunofluorescence; CY3, Cyanine 3; DAPI, 

4′,6-diamidino-2-phenylindole; WB, Western Blot; BCA, Bicinchoninic Acid; 

GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PVDF, Polyvinylidene 

Fluoride; TBST, Tris-buffered saline with Tween 20; ECL, Enhanced 

Chemiluminescence; RT-PCR, Real-time fluorescent quantitative polymerase 

chain reaction; cDNA, Complementary, Deoxyribonucleic Acid; SPSS, Statistical 

Package for the Social Sciences; ANOVA, Analysis of Variance; PDO, polydioxanone; 

PDS, polydioxanone suture; PGA, polyglycolic acid; TNF-α, Tumor Necrosis Factor-

alpha; IL-1, Interleukin-1; IL-12, Interleukin-12; MMPs, Matrix Metalloproteinases; 

HA, Histamine; 5-HT, 5-Hydroxytryptamine.
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the left hind limb was shaved, and the ST36 acupoint (located 
approximately 3 mm below the fibular head on the posterolateral side 
of the knee joint) was identified according to “Common Acupoint 
Names and Locations for Experimental Animals, Part 2: Rats” (China 
Association of Acupuncture and Moxibustion, 2021) and marked with 
a 1 cm × 1 cm square centered on this point (Figure 1B).

2.2 Intervention methods for each group

In the Embedding Group (ACE), rats underwent the ACE 
procedure at the marked ST36 acupoint on the left side once, and were 
injected daily with saline containing DMSO (the same amount as the 
ACE+T(2 + 4)B group). The embedding procedure was based on a 
method from previous studies by our research group (Wang et al., 
2023): after local disinfection of the acupoint marking area, a PGLA 

suture (specification 2–0, 0.5 mm) (Shanghai Pudong Jinhui Medical 
Supplies Co., Ltd.) was placed into the cannula of a disposable 
embedding needle (0.9 mm × 75 mm, Taizhou Minga Medical 
Equipment Co., Ltd.). The acupoint was fixed with the thumb and 
forefinger of one hand, while the other hand held the needle, aligning 
the cannula with the skin at the center of the ST36 acupoint at a 90° 
angle. The needle was quickly inserted subcutaneously, then advanced 
slowly to a depth of about 7 mm, slightly twisted (two turns each to 
the left and right), and the needle core was pushed while withdrawing 
the needle to embed the suture into the acupoint. After needle 
withdrawal, the area was pressed with a disinfected cotton swab. Once 
the rats recovered from anesthesia, they were returned to their 
housing. In the (ACE+T2B) Group, (ACE+T4B) Group, and 
(ACE+T(2 + 4)B) Group, the rats underwent the same embedding 
procedure as described above. Additionally, at the center of the 
marked ST36 acupoint, they were injected with a mixed solution of 

FIGURE 1

Experimental protocol. (A) Experimental procedures in this study. (B) Location of ST36 acupoint and interventions.
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SKF96365 (HY-100001, MCE, USA) (0.5 mg/kg) containing 0.5 mg/
mL SKF96365 and 1% DMSO in saline, a mixed solution of 
GSK2193874 (HY-100720, MCE, USA) (0.5 mg/kg) containing 
2.5 mg/mL GSK2193874, 5% DMSO, and 190 mg/mL sulfo-beta-
cyclodextrin in saline, and a mixture of the above two solutions, 
respectively, once daily. In the Blank Control Group, rats received no 
other interventions besides the same handling and fixation method. 
All embedding operations and acupoint injections were performed by 
an experienced acupuncturist. To avoid cross-contamination, a single 
embedding needle and syringe were used for each rat’s acupoint only 
once. The acupoint area of the rats was observed daily for redness, 
swelling, or ulceration, and the acupoint area marking was reinforced 
(Figures 1A,B).

2.3 Tissue sampling

At the corresponding time points (1 day, 3 days, 7 days) post-
intervention, tissue samples were collected from the five groups of 
rats. Following intraperitoneal anesthesia with 3% sodium 
pentobarbital (0.03 g/kg) and securing the rats on a board (the same 
fixation method as pre-intervention), tissue blocks (approximately 
1 cm × 1 cm × 1 cm) from the marked ST36 acupoint region (including 
skin, subcutaneous tissue, and some muscle) were excised. Fresh tissue 
samples from five rats per group were randomly selected; half of each 
sample was fixed in 4% paraformaldehyde for further analysis, and the 
other half was used to prepare single-cell suspensions. The remaining 
five tissue samples were stored in a − 80°C freezer for future analysis.

2.4 Observation indicators and detection 
methods

2.4.1 Flow cytometry
Subcutaneous fat was removed from the acupoint tissue, and the 

tissue was washed with Tyrode’s solution and cut into small pieces. 
Each gram of tissue was digested with 20 mL of digestion solution 
(collagenase type I and hyaluronidase, prepared in Hank’s solution 
with 20% fetal bovine serum) and incubated in a 37°C water bath for 
4 h. The digested tissue was filtered through a 70 μm mesh sieve and 
centrifuged at 4°C, and the supernatant was discarded. Cells were 
washed twice with PBS and collected by centrifugation at 1500 rpm 
for 5 min. The cells were resuspended in serum-free DMEM medium, 
and 5 μmol/L Fluo 3-AM working solution (S1056, Shanghai 
Biyuntian Biotechnology Co., Ltd.) was added to the single-cell 
suspension. The cells were incubated in the dark at 37°C in a 5% CO2 
incubator for 30 min, washed twice with calcium-free PBS, and 
resuspended to a final volume of 500 μL. The Ca2+ fluorescence 
intensity in the single-cell suspension was detected using a cytoFLEX 
flow cytometer (Beckman Coulter, USA).

2.4.2 Immunofluorescence staining
The acupoint tissue fixed in 4% paraformaldehyde was dehydrated 

through a graded alcohol series, cleared in xylene, infiltrated with 
paraffin, and embedded. Sections of 4 μm thickness were prepared. 
The paraffin sections underwent processes including baking, 
dewaxing, antigen retrieval, and blocking with 10% normal goat 
serum for 30 min. The sections were incubated overnight at 4°C in a 

humid chamber with primary antibodies: anti-CD68 (1:200) (97778S, 
CST, USA) and anti-Mast Cell Tryptase (1:100) (bs-2572R, Bioss, 
USA). The next day, the primary antibodies were washed off, and the 
sections were incubated with secondary antibodies conjugated with 
fluorescent CY3 (goat anti-rabbit IgG, 1:100) (BA1032, Wuhan Boster 
Biological Technology, Ltd.) at 37°C for 1 h in a humid chamber. After 
washing off the secondary antibody, nuclei were stained with DAPI 
(5 min in the dark), excess DAPI was washed off, and the sections were 
mounted with antifade mounting medium. Images were observed and 
collected using a fluorescence microscope, with three fields of view 
per section at 400x magnification. Optical density analysis was 
performed using Image-Pro Plus 6.0 software, and the average optical 
density value of the three fields was recorded.

2.4.3 Western blotting
Five cryopreserved acupoint tissue samples (approximately 

100 mg each) were taken from each group. The tissue samples were 
lysed and homogenized with RIPA lysis buffer, then fully lysed on ice 
for 30 min. The lysate was centrifuged at 12,000 rpm for 5 min at 4°C, 
and the supernatant was collected. Protein concentration was 
determined using the BCA method (A G3422, B G3522, GBCBIO 
Technologies Inc.). The samples were denatured by boiling for 10 min, 
followed by protein loading, electrophoresis, membrane transfer, and 
blocking. The membranes were incubated overnight at 4°C with 
primary antibodies: rabbit polyclonal anti-TRPV2 (1:1,000) 
(Bs-10297R, Bioss, USA), rabbit polyclonal anti-TRPV4 (1:2,000) 
(DF8624, Affinity, USA), and rabbit polyclonal anti-GAPDH (1:2,000) 
(AB-P-R001, Hangzhou Goodhere Biotechnology Co., Ltd). The next 
day, the PVDF membranes were washed five times with TBST (5 min 
each), incubated with HRP-labeled goat anti-rabbit IgG secondary 
antibody (1:10,000) (BA1054, Wuhan Boster Biological Technology, 
Co. Ltd.) at room temperature for 2 h on a shaker, and washed again 
five times with TBST (5 min each). ECL reagent was applied, and the 
membranes were exposed in a dark room. The film was scanned, and 
gray value analysis was performed using Image-Pro Plus 6.0 software. 
The relative expression level of the target protein was determined by 
the ratio of the grayscale value of the target band to the grayscale value 
of the internal control.

2.4.4 Real-time quantitative PCR
Five cryopreserved acupoint tissue samples (approximately 

100 mg each) were taken from each group. Total RNA was extracted 
using the Trizol method (15596–026, Ambion, USA). The purity 
and concentration of RNA were calculated. cDNA was synthesized 
by reverse transcription following the kit instructions (R233-01, 
Nanjing Vazyme), with reaction conditions set at 50°C for 15 min, 
85°C for 5 s, and 4°C for 10 min. PCR amplification was conducted 
with a reaction system totaling 20 μL, including 4 μL of cDNA, 10 μL 
of SYBR Green Master Mix, 0.4 μL of forward primer, 0.4 μL of 
reverse primer, 0.4 μL of 50× ROX Reference Dye 2, and 4.8 μL of 
H2O. The amplification conditions were as follows: initial 
denaturation at 95°C for 10 min, denaturation at 95°C for 15 s, and 
annealing and extension at 60°C for 60 s, for a total of 40 cycles. 
Melting curve data was collected under the following conditions: 
95°C for 15 s, 60°C for 60 s, and 95°C for 15 s. Using β-actin as an 
internal control, the relative mRNA expression levels were analyzed 
by the 2-ΔΔCt method, with each sample analyzed in triplicate. 
Primer sequences are listed in Table 1.
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2.5 Statistical analysis

SPSS 23.0 statistical software was used for data analysis, and 
GraphPad Prism 9.0 was used for statistical charting. Measurement 
data were expressed as mean ± standard deviation (x̄±s). Intra-group 
comparisons (i.e., comparisons within the same experimental group 
at different time points) and inter-group comparisons (i.e., 
comparisons across different experimental groups at the same time 
point) were performed using one-way analysis of variance (one-way 
ANOVA). When variances were equal, the LSD method was used for 
pairwise comparisons; when variances were unequal, the Dunnett T3 
method was used. A p-value of <0.05 was considered statistically 
significant. Pearson’s correlation coefficient was used for correlation 
analysis, with a p-value of <0.05 indicating a significant correlation. A 
correlation coefficient of 0 < r < 1 indicated a positive correlation, while 
−1 < r < 0 indicated a negative correlation.

3 Results

3.1 Comparison of Ca2+ fluorescence 
intensity in tissue cells of Zusanli (ST36) 
acupoint area among groups

In this study, flow cytometry was used to detect the Ca2+ 
fluorescence intensity in the acupoint tissue cell suspension to observe 
changes in the Ca2+ concentration in the local tissue cells following the 
embedding of PGLA suture in the acupoint and the use of TRPV2 and 
TRPV4 inhibitors. Compared to the CON Group, the Ca2+ fluorescence 
intensity in the tissue cells of the acupoint area in the ACE Group 
significantly increased at 1 day, 3 days, and 7 days after embedding. 
However, compared to the ACE Group, the Ca2+ fluorescence intensity 
in the tissue cells of the acupoint area significantly decreased in the 
(ACE+T2B) Group, (ACE+T4B) Group, and (ACE+T(2 + 4)B) Group 
at 1 day, 3 days, and 7 days post-embedding. Additionally, compared to 
the (ACE+T(2 + 4)B) Group, the Ca2+ fluorescence intensity in the tissue 
cells increased in the (ACE+T2B) Group at 1 day, 3 days, and 7 days 
post-embedding and increased in the (ACE+T4B) Group at 1 day and 
3 days post-embedding (Figures 2A,C). The Ca2+ fluorescence intensity 
in the tissue cells of the acupoint area in all intervention groups showed 
a decreasing trend over time. Compared to 1 day post-embedding, the 
Ca2+ fluorescence intensity in the tissue cells of the acupoint area 
significantly decreased at 3 days post-embedding in the ACE Group, 
(ACE+T4B) Group, and (ACE+T(2 + 4)B) Group, and at 7 days post-
embedding in the (ACE+T2B) Group (Figures 2B,C). These results 

indicate that embedding PGLA suture in the acupoint can affect the 
Ca2+ fluorescence intensity in tissue cells by regulating TRPV2 and 
TRPV4, and the Ca2+ fluorescence intensity gradually weakens 
over time.

3.2 Comparison of positive expression of 
Mac CD68 and MC tryptase in acupoint 
tissues among groups

CD68 and tryptase are commonly used markers for Macs and 
MCs, respectively (Payne and Kam, 2004; Chistiakov et al., 2017). To 
observe the effect of embedding PGLA suture in acupoints and the use 
of TRPV2 and TRPV4 inhibitors on the function of these two immune 
cells, immunofluorescence staining was used to detect the expression 
of CD68  in Macs and tryptase in MCs in the local tissue of the 
acupoint area. The results are as follows.

Compared to the blank control group, the expression of CD68 in 
Macs in the acupoint area of rats in the embedding group significantly 
increased at 1 day, 3 days, and 7 days after embedding. However, 
compared to the embedding group, the expression of CD68 in Macs 
in the acupoint area of rats in the embedding + TRPV4 inhibitor 
group and the (ACE+T(2 + 4)B) Group significantly decreased at 1 day 
and 7 days after embedding. The embedding + TRPV2 inhibitor group 
showed a significant decrease in CD68 expression at 3 days and 7 days 
after embedding. Furthermore, compared to the (ACE+T(2 + 4)B) 
Group, the CD68 expression in Macs increased in the embedding + 
TRPV2 inhibitor group at 1 day, 3 days, and 7 days after embedding, 
and increased in the (ACE+T4B) Group at 3 days and 7 days after 
embedding (Figures 3A,C). The expression of CD68 in Macs in the 
acupoint area of each intervention group showed a decreasing trend 
over time. Compared to 1 day after embedding, the CD68 expression 
in Macs in the embedding group, the (ACE+T4B) Group, and the 
(ACE+T(2 + 4)B) Group significantly decreased at 7 days after 
embedding, while in the (ACE+T2B) Group, the CD68 expression 
significantly decreased at 3 days after embedding (Figures 3B,C).

Compared to the blank control group, the expression of tryptase in 
MCs in the acupoint area of rats in the embedding group significantly 
increased at 1 day, 3 days, and 7 days after embedding. However, 
compared to the embedding group, the expression of tryptase in MCs 
in the (ACE+T(2 + 4)B) Group significantly decreased at 1 day, 3 days, 
and 7 days after embedding. The expression of tryptase in MCs in the 
(ACE+T2B) Group and the (ACE+T4B) Group significantly decreased 
at 3 days and 7 days after embedding. Furthermore, compared to the 
(ACE+T(2 + 4)B) Group, the expression of tryptase in MCs increased 
in the (ACE+T2B) Group at 1 day, 3 days, and 7 days after embedding, 
and increased in the (ACE+T4B) Group at 1 day and 3 days after 
embedding (Figures 4A,C). The expression of tryptase in MCs in the 
acupoint area of each intervention group showed a decreasing trend 
over time. Compared to 1 day after embedding, the expression of 
tryptase in MCs in the (ACE+T2B) Group, the (ACE+T4B) Group, and 
the (ACE+T(2 + 4)B) Group significantly decreased at 3 days after 
embedding, while in the embedding group, the expression of tryptase 
in MCs significantly decreased at 7 days after embedding (Figures 4B,C).

The above results suggest that embedding PGLA suture in 
acupoints may influenc the expression of CD68 in Macs and tryptase 
in MCs through TRPV2 and TRPV4, and the expression levels 
gradually decrease over time.

TABLE 1 Primer sequences.

Gene Primer Sequence (5′-3′) Product 
length/

bp

Rat 

b-actin

Forward TGACGTTGACATCCGTAAAGACC 117 bp

Reverse GTGCTAGGAGCCAGGGCAGTAA

Rat 

TRPV2

Forward CCGAAAGTTTACTGAGTGGTGTT 217 bp

Reverse GCAGGCGAAGTTGAAGAAGAA

Rat 

TRPV4

Forward CAAGTGGCGTAAGTTCGG 131 bp

Reverse TGGTACGGTAAGGGTAGGG
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FIGURE 2

Comparison of Ca2+ fluorescence intensity in tissue cells of Zusanli (ST36) acupoint area among groups. (A). Inter-group comparison of intracellular 
Ca2+ fluorescence intensity in tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison of intracellular Ca2+ 
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3.3 Comparison of TRPV2 and TRPV4 
protein expression in acupoint tissues 
among groups

In this study, Western blots (WB) were used to verify the 
regulatory effects of PGLA embedding on local TRPV2 and TRPV4 
channels by detecting the expression levels of TRPV2 and TRPV4 
proteins in acupoint tissues. The results are as follows.

Compared to the blank control group, the expression of TRPV2 
protein in the acupoint area of rats in the embedding group significantly 
increased at 1 day, 3 days, and 7 days after embedding. However, 
compared to the embedding group, the expression of TRPV2 protein in 
the acupoint area of rats in the (ACE+T2B) Group and the 
(ACE+T(2 + 4)B) Group significantly decreased at 1 day, 3 days, and 
7 days after embedding. Moreover, compared to the (ACE+T(2 + 4)B) 
Group at the same time point, the TRPV2 protein expression in the 
(ACE+T2B) Group increased at 7 days after embedding, with no 
significant difference at 1 day and 3 days after embedding (Figures 5A,E). 
The TRPV2 protein expression in the acupoint tissue of each 
intervention group showed a decreasing trend over time. Compared to 
1 day after embedding, the TRPV2 protein expression in the embedding 
group, the (ACE+T2B) Group, the (ACE+T4B) Group, and the 
(ACE+T(2 + 4)B) Group significantly decreased at 3 days after 
embedding (Figures 5B,E).

Compared to the blank control group, the TRPV4 protein 
expression in the acupoint area of rats in the embedding group 
significantly increased at 1 day, 3 days, and 7 days after embedding. 
However, compared to the embedding group, the TRPV4 protein 
expression in the acupoint area of rats in the (ACE+T4B) Group and 
the (ACE+T(2 + 4)B) Group significantly decreased at 1 day, 3 days, 
and 7 days after embedding. Moreover, compared to the (ACE+T(2 + 4)
B) Group, TRPV4 protein expression in the (ACE+T4B) Group 
increased at 1 day after embedding, with no significant difference at 
3 days and 7 days after embedding (Figures 5C,E). The TRPV4 protein 
expression in the acupoint area of each intervention group showed a 
decreasing trend over time. Compared to 1 day after embedding. The 
TRPV4 protein expression in the embedding group, the (ACE+T2B) 
Group, the (ACE+T4B) Group, and the (ACE+T(2 + 4)B) Group 
significantly decreased at 3 days after embedding (Figures 5D,E).

These results indicate that the stimulation formed by embedding 
PGLA suture in acupoints can regulate TRPV2 and TRPV4 protein 
expression, which gradually weakens over time.

3.4 Comparison of TRPV2 and TRPV4 
mRNA expression in acupoint tissues 
among groups

In this study, the expression levels of TRPV2 and TRPV4 mRNA 
in the tissues of the acupoint area were simultaneously detected using 
quantitative fluorescence PCR, to validate the results obtained from 
Western blot (WB) analysis. The results are as follows.

Compared to the blank control group, the expression of TRPV2 
mRNA in the acupoint area of rats in the embedding group 
significantly increased at 1 day, 3 days, and 7 days after embedding. 
However, compared to the embedding group, the expression of 
TRPV2 mRNA in the acupoint area of rats in the (ACE+T2B) Group 
and the (ACE+T(2 + 4)B) Group significantly decreased at 1 day, 
3 days, and 7 days after embedding. Moreover, compared to the 
(ACE+T(2 + 4)B) Group, there was no significant difference in the 
TRPV2 mRNA expression in the acupoint area of rats in the 
(ACE+T2B) Group at 1 day, 3 days, and 7 days after embedding 
(Figure 6A). The expression of TRPV2 mRNA in the acupoint area of 
each intervention group showed a decreasing trend over time. 
Compared to 1 day after embedding, the TRPV2 mRNA expression in 
the embedding group, the (ACE+T2B) Group, the (ACE+T4B) Group, 
and the (ACE+T(2 + 4)B) Group significantly decreased at 7 days after 
embedding (Figure 6B).

Compared to the blank control group, the expression of TRPV4 
mRNA in the acupoint area of rats in the embedding group 
significantly increased at 1 day, 3 days, and 7 days after embedding. 
However, compared to the embedding group, the expression of 
TRPV4 mRNA in the acupoint area of rats in the (ACE+T4B) Group 
and the (ACE+T(2 + 4)B) Group significantly decreased at 1 day, 
3 days, and 7 days after embedding. Moreover, compared to the 
(ACE+T(2 + 4)B) Group, the TRPV4 mRNA expression in the 
acupoint area of rats in the (ACE+T4B) Group increased at 3 days after 
embedding, with no significant difference at 1 day and 7 days after 
embedding (Figure  7A). The TRPV4 mRNA expression in the 
acupoint area of each intervention group showed a decreasing trend 
over time. Compared to 1 day after embedding, the TRPV4 mRNA 
expression in the embedding group, the (ACE+T2B) Group, and the 
(ACE+T4B) Group significantly decreased at 7 days after embedding 
(see Figure 7B).

These results indicate that the local stimulation formed by 
embedding PGLA suture in acupoints can regulate TRPV2 and 
TRPV4 mRNA expression, which gradually weakens over time.

3.5 Correlation analysis of Ca2+ 
fluorescence intensity and expression of 
Mac CD68 and MC tryptase in acupoint 
tissues among groups

Pearson correlation analysis was used to compare the correlation 
between Ca2+ fluorescence intensity and the expression of Mac CD68 
and MC tryptase in acupoint tissues in the analysis of the overall 
groups (including the blank control group and the intervention 
groups) and individual intervention group. The results showed that in 
the overall analysis, there was a positive correlation between Ca2+ 
fluorescence intensity and the expression of Mac CD68 and MC 
tryptase in acupoint tissues (Figure 8A). Analysis of the embedding 
group, the (ACE+T2B) Group, the (ACE+T4B) Group, and the 
(ACE+T(2 + 4)B) Group showed a positive correlation between Ca2+ 

fluorescence intensity in tissues of acupoint area across different time points (n  =  5 per group). (C) Detection of intracellular Ca2+ fluorescence intensity 
in tissues of acupoint area among groups by flow cytometry. (A) Comparison between groups at the same time point, *p  <  0.05, **p  <  0.01; 
(B) Comparison of the same group 1  day post-embedding, #p  <  0.05, ##p  <  0.01.
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FIGURE 3

Comparison of positive CD68 expression in Macs in acupoint area tissues: inter- and intra-group analysis. (A) Inter-group comparison of positive CD68 
expression in Macs in tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison CD68 expression in Macs in tissues 
of acupoint area across different time points (n  =  5 per group). (C) Immunofluorescence staining of CD68 expression in Macs in tissues of acupoint 
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fluorescence intensity and the expression of Mac CD68 and MC 
tryptase in acupoint tissues (Figures 8B–E).

4 Discussion

In traditional Chinese medicine theory, the acupoint “Zusanli” 
(ST36) belongs to the Stomach Meridian of Foot-Yangming. It serves 
both as the He-Sea point of the Stomach Meridian and the lower 
He-Sea point of the Stomach Fu organ. Stimulation of this acupoint 
can harmonize the spleen and stomach, invigorate Qi, and enhance 
the body’s resistance to diseases, making it widely used in the 
treatment of various ailments throughout history (Shi, 2017; Chen 
X. L. et  al., 2016). Recent meta-analyses have shown that the 
application of this acupoint has expanded to include treatment for 
pain, speech disorders, emotional problems, cognitive impairment, 
gastrointestinal tumors, adverse reactions to radiotherapy, and 
postoperative ileus (Huang et al., 2022; Zhou et al., 2020; Wu et al., 
2020; Li et al., 2022; Wang et al., 2015). Literature reviews indicate that 
ST36 is the most frequently used acupoint in both clinical acupuncture 
studies and basic experimental research (Zhu, 2021; Yang et al., 2018). 
Based on its extensive use and recognition in research, as well as 
previous findings from our research team showing inflammatory 
responses in the local acupoint area of both humans and rats after 
ACE at ST36 (Zhang X. H. et al., 2023; Zhang Q. et al., 2023; Wang 
et  al., 2023; Liang et  al., 2019), this acupoint was used in this 
experimental study. This study selected 1 day, 3 days, and 7 days post 
PGLA embedding as observation time points. This choice was mainly 
based on the regulations set forth by the National Standard of the 
People’s Republic of China (GB/T 21709.10–2008), which stipulates 
that the interval between ACE treatments should be at least 1 week 
(Guan et al., 2009). Additionally, bibliometric studies have indicated 
that the most commonly adopted interval in clinical practice is 7 days 
(Cheng et al., 2022a). Furthermore, observations made by the research 
team using MRI in clinical studies revealed that local stimulation 
effects after PGLA embedding change significantly within 1 week, 
typically appearing within 1 day and lasting for 3 to 7 days (Liang 
et al., 2016). Therefore, this study employed the aforementioned three 
time points for observation.

Compared to traditional acupuncture, ACE not only involves 
transient needling but also provides continuous stimulation of the 
acupoint due to the embedded threads (Wu et al., 2019), which is 
crucial. Clinically used threads include catgut, polydioxanone (PDO), 
polydioxanone suture (PDS), chitosan, polyglycolic acid (PGA), and 
poly(glycolide-co-lactide) (PGLA) (Cheng et al., 2022a). Catgut has 
long been the dominant material for ACE, but its propensity to cause 
allergic reactions and related adverse effects due to its foreign protein 
nature has limited its use, leading to a gradual replacement by newer 
materials (Ma et al., 2019). Threads like PDS and chitosan are less 
commonly used in ACE research due to their later emergence, longer 
degradation times, unclear degradation mechanisms, and higher costs 
(Ke et al., 2020; Cheng et al., 2022a; Du and Zhang, 2019). Among 

these materials, PGA and PGLA are derived from natural plants and 
do not contain animal-derived proteins, offering good 
biocompatibility. They degrade through hydrolysis in body fluids into 
carbon dioxide and water, which are excreted from the body (Bajaj 
and Singhal, 2011; Makadia and Siegel, 2011). Compared to PGA, 
PGLA has better biodegradability, and foundational research has 
further proven that PGLA sutures, due to their superior mechanical 
and hydrophilic properties, are more suitable for use as embedding 
materials in acupuncture (Jain, 2000; Xu, 2018).

Acupuncture, as an external mechanical and physical stimulus, 
can activate two types of mechanosensitive TRPV channels expressed 
on different cell membranes, causing Ca2+ influx and signal 
transduction (Liedtke and Kim, 2005; Luo et al., 2022). ACE, derived 
from the traditional acupuncture technique of “needle retention,” 
induces local immune-inflammatory responses at the acupoint due to 
the foreign body nature of the suture (Zhang X. H. et al., 2023; Zhang 
Q. et  al., 2023; Wang et  al., 2023). To verify the mechanical and 
physical stimulation formed by suture implantation at the acupoint, 
this study used the inhibitors SKF96365 (Guo Y. Y. et al., 2022) and 
GSK2193874 (Lawhorn et al., 2021) of the mechanosensitive channels 
TRPV2 and TRPV4. The results showed that, after embedding PGLA 
suture, the local tissues of the ST36 acupoint in rats showed an 
increase in the expression of mRNA and protein in TRPV2 and 
TRPV4, as well as an increase in intracellular Ca2+ fluorescence 
intensity, both of which decreased over time. When the inhibitors 
were used, the mRNA and protein expression of TRPV2 and 
TRPV4 in the local tissues, as well as intracellular Ca2+ fluorescence 
intensity, decreased correspondingly, especially when both inhibitors 
were used together, resulting in a further reduction in intracellular 
Ca2+ fluorescence intensity compared to using a single inhibitor. These 
results suggest that the stimulation generated by ACE at the acupoint 
can modulate the expression of the two mechanosensitive TRPVs 
(TRPV2 and TRPV4), affecting Ca2+ influx in tissue cells, and the 
stimulation gradually weakens over time. Studies have shown that 
absorbable sutures gradually soften and are absorbed over time after 
surgical suturing and embedding at acupoints, leading to a decline in 
their mechanical properties (Müller et al., 2016; Liang et al., 2019). In 
light of these findings, the results of this study indicates that the 
mechanical and physical stimulation at the acupoint post-PGLA 
embedding may result from the compression and friction of the suture 
against the local tissue, which diminishes as the suture softens and 
absorbs within the body.

Macs and MCs are important immune-inflammatory cells in the 
body, playing crucial roles in regulating inflammatory responses, 
immune surveillance, and tissue repair (Essandoh et al., 2016; Velez 
et  al., 2018; Xu and Shi, 2012; Ribatti, 2013). They are widely 
recognized as key participants in initiating the local stimulation effects 
of acupuncture points (Fu et al., 2023; Dou et al., 2022). In immune-
inflammatory responses triggered by foreign bodies, the involvement 
of these cells differs: Macs primarily clear foreign bodies through 
phagocytosis and decomposition, whereas MCs mainly trigger 
inflammatory responses by releasing inflammatory mediators (Velez 

area of each group. (A) Comparison between groups at the same time point, *p  <  0.05, **p  <  0.01. (B) Comparison of the same group 1  day after 
embedding, #p  <  0.05, ##p  <  0.01. (C) Blue indicates DAPI-stained nuclei, red indicates CD68 positive expression, scale bar  =  100  μm.
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FIGURE 4

Comparison of positive tryptase expression in MCs in acupoint area tissues: inter- and intra-group analysis. (A) Inter-group comparison of positive 
tryptase expression in MCs in in tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison of positive tryptase 
expression in MCs in tissues of acupoint area across different time points (n  =  5 per group). (C) Immunofluorescence staining of tryptase expression in 
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et  al., 2018; Franz et  al., 2011). CD68 is a highly glycosylated 
glycoprotein. Although it is also expressed in other cells, such as 
synovial cells and neutrophils (Kunisch et al., 2004; Wu et al., 2022), 
its high expression in Macs makes it a widely used marker for 
identifying Macs. CD68 can reflect the number and functional activity 
of Macs in various physiological and pathological processes 
(Ramprasad et  al., 1996; Chistiakov et  al., 2017; Seminerio et  al., 
2018). Our previous study has found that in the ST36 acupoint area of 
rats, the expression of Mac CD68 in local tissues dynamically changes 
over time after embedding catgut (Zhang Q. et al., 2023). In this study, 
embedding PGLA in the same acupoint resulted in elevated CD68 
expression in Macs, which gradually weakened over time. Tryptase, a 
serine protease mainly derived from MCs and released extracellularly 
upon mast cell degranulation, is the most specific biomarker of mast 
cell functional activation (Payne and Kam, 2004). Prior research 
suggests that the degranulation rate of local MCs in the ST36 acupoint 
of rats moderately changes over time after PGLA embedding (Wang 
et al., 2023). Correspondingly, in this study, the expression of MC 
tryptase increased following PGLA embedding in the same acupoint 
of rats and then showed a gradual decrease over time. The 
comprehensive results of this experiment reveal that after embedding 
PGLA in the ST36 acupoint of rats, the expression of CD68 in Macs 
and tryptase in MCs in the local tissues changes, suggesting that 
embedding PGLA suture can alter the functions of Macs and MCs in 
the acupoint area, which gradually diminishes over time. Additionally, 
in this study, after embedding PGLA in the ST36 acupoint of rats and 
subsequently injecting TRPV2 and TRPV4 inhibitors, the expression 
of Mac CD68 and MC tryptase in the acupoint tissue decreased. 
Notably, when both TRPV2 and TRPV4 inhibitors were used together, 
the decreasing trend was more significant compared to using a single 
inhibitor. As previously mentioned, the mechanosensitive TRPV2 and 
TRPV4 channels (Shibasaki, 2016; Liedtke and Kim, 2005) are 
expressed on the membranes of both Macs and MCs (Huang et al., 
2018; Link et al., 2010; Michalick and Kuebler, 2020; Chen et al., 2017), 
and CD68 and tryptase are important markers for identifying Macs 
and MCs, respectively (Chistiakov et al., 2017; Payne and Kam, 2004). 
Therefore, these changes in research results indicate that the 
stimulation generated by embedding PGLA suture in the ST36 
acupoint can influence the functions of MCs and Macs by modulating 
mechanosensitive TRPV channels, with the stimulation effects 
gradually weakening over time.

Ca2+ plays an important role as a messenger in signal transduction 
in tissue cells, a process known as Ca2+ signaling, which is a biochemical 
process (Bootman and Bultynck, 2020). During macrophage functional 
activation, an increase in intracellular Ca2+ concentration can activate 
a series of downstream signals, promoting phagocytosis (Zhu et al., 
2017) and the release of inflammatory factors, cytokines, and enzymes 
such as tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), 
interleukin-12 (IL-12), lysosomal enzymes, and matrix 
metalloproteinases (MMPs) (Kusmartsev et al., 2016; Liu et al., 2016; 
Chen et  al., 2015; Huang et  al., 2012), thereby influencing their 
participation in immune-inflammatory responses. In mast cell 

degranulation, in addition to Ca2+ release from the endoplasmic 
reticulum, the opening of ion channels on the cell membrane allows 
Ca2+ influx, which serves as a key signal, leading to increased 
intracellular Ca2+ concentration, which promotes cell functional 
activation and degranulation, as well as the release of bioactive 
mediators such as tryptase, histamine (HA), and serotonin 
(5-hydroxytryptamine, 5-HT) (Ma and Beaven, 2011; Tsvilovskyy 
et al., 2018; Wernersson and Pejler, 2014), thereby mediating immune-
inflammatory responses. Thus, changes in intracellular Ca2+ 
concentration, or Ca2+ signaling, affect the functions of both Macs and 
MCs. In this experimental study, the overall correlation analysis 
suggests that the fluorescence intensity of intracellular Ca2+ in acupoint 
tissues correlates positively with the expression of CD68 in Macs and 
tryptase in MCs, indicating that changes in intracellular Ca2+ 
concentration affect the functional changes of these two immune cells. 
Correlation analysis in the embedding group showed that after 
embedding PGLA in the ST36 acupoint of rats, the fluorescence 
intensity of intracellular Ca2+ in local acupoint tissue cells was positively 
correlated with the expression of CD68 in Macs and tryptase in MCs. 
This implies that PGLA embedding influences the functional changes 
of these two immune cells by regulating intracellular Ca2+ concentration 
in  local tissue cells. The regulatory pathway, as verified in this 
experiment, includes mechanosensitive TRPV channels. However, 
given that ACE is a complex stimulation therapy, the activation 
mechanisms of MCs and Macs are intricate (Gilfillan and Tkaczyk, 
2006; Tatemoto et al., 2018; Gordon and Martinez, 2010). In addition, 
in the study results, correlation analysis of the (ACE+T2B) Group, 
(ACE+T4B) Group, and (ACE+T(2 + 4)B) Group showed that after 
using the two inhibitors, the correlation coefficient between the 
fluorescence intensity of intracellular Ca2+ in local acupoint tissue cells 
and the expression of Mac CD68 and MC tryptase did not significantly 
decrease after embedding PGLA suture, and the fluorescence intensity 
of intracellular Ca2+ in acupoint tissue cells in the embedding + TRPV 
(2 + 4) group was still higher than that in the blank control group. These 
results suggest that the regulation of the functions of these two immune 
cells by Ca2+ signaling after embedding PGLA suture in the acupoint is 
not limited to the two mechanosensitive TRPV channels but involves 
multiple pathways. Therefore, we  propose that embedding PGLA 
suture in the ST36 acupoint of rats may induce the functional changes 
of MCs and Macs through Ca2+ signaling, which includes coupled 
participation of the mechanosensitive TRPV channels.

5 Conclusion

In summary, embedding PGLA suture in the ST36 acupoint may 
locally regulate the expression of TRPV2 and TRPV4 through 
mechanical and physical stimulation, leading to increased intracellular 
Ca2+ concentration in tissue cells. This, in turn couples with Ca2+ 
signaling to affect the functions of MCs and Macs, forming a physico-
chemical-immune linkage effect that gradually weakens over time. 
The findings of this study not only provide new scientific evidence for 

MCs in tissues of acupoint area of each group. (A) Comparison between groups at the same time point, *p  <  0.05, **p  <  0.01. (B) Comparison of the 
same group 1  day after embedding, #p  <  0.05, ##p  <  0.01. (C) Blue indicates DAPI-stained nuclei, red indicates tryptase positive expression, scale 
bar  =  100  μm.
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FIGURE 5

Comparison of TRPV2 and TRPV4 Protein Expression in Acupoint Tissues among Groups. (A) Inter-group comparison of TRPV2 protein expression in 
tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison of TRPV2 protein expression in tissues of acupoint area 
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the local stimulation effects of ACE under normal physiological 
conditions but also offer important reference points for future 
exploration of ACE’s role in pathological states involving TRPV2, 
TRPV4, MCs, and Macs, as well as its distal effects.

However, WB and qPCR results from the experiment suggest that 
the two inhibitors used may have interactive inhibitory effects on TRPV2 
and TRPV4 ion channels, and future research may consider using 
specific TRPV gene knockout rats for related studies. Additionally, 
besides TRPV2 and TRPV4, TRPV1 is also expressed in MCs and Macs 
(Freichel et al., 2012; Zhang et al., 2012; Vašek et al., 2024). TRPV1 is 
sensitive to mechanical stimulation under specific conditions such as 
inflammation, tissue injury, and nerve damage (McGaraughty et al., 
2008; Vilceanu et al., 2010; Brenneis et al., 2013). Therefore, whether 
ACE has a stimulatory effect on TRPV1 is also worth further 

investigation. Moreover, it remains to be verified whether ACE affects 
other tissue cells at the acupoint (such as neurons, fibroblasts, and 
endothelial cells) and their factor release through TRPV ion channels 
(Wu et al., 2015; Fu et al., 2023), and thus creates a cross-tissue effect, 
which is significant for exploring the potential distal effects of 
ACE. Research indicates that acupuncture effects are closely related to 
purinergic signaling, particularly the release of adenosine (ATP, ADP) 
by MCs triggered by Ca2+ influx, which plays a crucial role in acupuncture 
analgesia (Burnstock, 2009; Müller et al., 2016; Wang et al., 2022). As a 
complex stimulation therapy developed from acupuncture, whether 
ACE, in addition to regulating mechanical sensitivity TRPV at the 
acupoint, can mediate through purinergic signaling to induce Ca2+ influx 
and affect cell function still needs further exploration. Therefore, future 
studies could delve deeper into the mechanisms of ACE in these aspects.

across different time points (n  =  5 per group). (C) Inter-group comparison of TRPV4 protein expression in tissues of acupoint area at the same time 
point (n  =  5 per group). (D) Intra-group comparison of TRPV4 protein expression in tissues of acupoint area across different time points (n  =  5 per 
group). (E) TRPV2 and TRPV4 protein expression in tissues of acupoint area of each group of rats. (A) Comparison between groups at the same time 
point, *p  <  0.05, **p  <  0.01; (B) Comparison of the same group 1  day after embedding, #p  <  0.05, ##p  <  0.01. (C) Comparison between groups at the 
same time point, *p  <  0.05, **p  <  0.01. (D) Comparison of the same group 1  day after embedding, #p  <  0.05, ##p  <  0.01.

FIGURE 5 (Continued)

FIGURE 6

Comparison of TRPV2 mRNA Expression in Acupoint Tissues: inter- and intra-group analysis. (A) Inter-group comparison of TRPV2 mRNA expression 
in tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison of TRPV2 mRNA expression in tissues of acupoint area 
across different time points (n  =  5 per group). (A) Comparison between groups at the same time point, *p  <  0.05, **p  <  0.01. (B) Comparison of the same 
group 1  day after embedding, #p  <  0.05, ##p  <  0.01.

FIGURE 7

Comparison of TRPV4 mRNA Expression in Acupoint Tissues: inter- and intra-group analysis. (A) Inter-group comparison of TRPV4 mRNA expression 
in tissues of acupoint area at the same time point (n  =  5 per group). (B) Intra-group comparison of TRPV4 mRNA expression in tissues of acupoint area 
across different time points (n  =  5 per group). (A) Comparison between groups at the same time point, *p  <  0.05, **p  <  0.01; (B) Comparison of the 
same group 1  day after embedding, #p  <  0.05, ##p  <  0.01.
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FIGURE 8

Correlation analysis between Ca2+ fluorescence intensity and the expression of Mac CD68 and MC tryptase in acupoint tissues in the overall groups 
(including the blank control group and the intervention groups) and each intervention group. (A) Overall Analysis. (B) Embedding group. (C) (ACE+T2B) 
Group. (D) (ACE+T4B) Group. (E) (ACE+T(2  +  4)B) Group.
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