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Epilepsy is a chronic neurological disorder that poses significant challenges to patients 
and their families. Effective detection and prediction of epilepsy can facilitate patient 
recovery, reduce family burden, and streamline healthcare processes. Therefore, it is 
essential to propose a deep learning method for efficient detection and prediction of 
epileptic electroencephalography (EEG) signals. This paper reviews several key aspects 
of epileptic EEG signal processing, focusing on epilepsy detection and prediction. It 
covers publicly available epileptic EEG datasets, preprocessing techniques, feature 
extraction methods, and deep learning-based networks used in these tasks. The 
literature is categorized based on patient independence, distinguishing between 
patient-independent and non-patient-independent studies. Additionally, the evaluation 
methods are classified into general classification indicators and specific epilepsy 
prediction criteria, with findings organized according to the prediction cycles reported 
in various studies. The review reveals several important insights. Despite the availability 
of public datasets, they often lack diversity in epilepsy types and are collected under 
controlled conditions that may not reflect real-world scenarios. As a result, signal 
preprocessing methods tend to be  limited and may not fully represent practical 
conditions. Feature extraction and network designs frequently emphasize fusion 
mechanisms, with recent advances in Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) showing promising results, suggesting that new 
network models warrant further exploration. Studies using patient-independent data 
generally produce better results than those relying on non-patient-independent data. 
Metrics based on general classification methods typically perform better than those 
using specific epilepsy prediction criteria, though future research should focus on 
the latter for more accurate evaluation. Epilepsy prediction cycles are typically kept 
under 1 h, with most studies concentrating on intervals of 30 min or less.
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1 Introduction

Epilepsy is a chronic neurological disorder affecting over 50 million people worldwide, 
according to the World Health Organization. It can impact individuals of all ages and is 
characterized by recurrent seizures, which result from sudden, abnormal discharges of neurons 
in the brain (Pelkonen et al., 2020). These seizures can vary widely in severity and presentation, 

OPEN ACCESS

EDITED BY

Zhongbo Sun,  
Changchun University of Technology, China

REVIEWED BY

Mingjie Dong,  
Beijing University of Technology, China
Jiliang Zhang,  
The University of Sheffield, United Kingdom

*CORRESPONDENCE

Fuming Chen  
 cfm5762@126.com

†These authors have contributed equally to 
this work

RECEIVED 22 July 2024
ACCEPTED 23 September 2024
PUBLISHED 15 November 2024

CITATION

Zhang X, Zhang X, Huang Q and 
Chen F (2024) A review of epilepsy detection 
and prediction methods based on EEG signal 
processing and deep learning.
Front. Neurosci. 18:1468967.
doi: 10.3389/fnins.2024.1468967

COPYRIGHT

© 2024 Zhang, Zhang, Huang and Chen. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 15 November 2024
DOI 10.3389/fnins.2024.1468967

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1468967&domain=pdf&date_stamp=2024-11-15
https://www.frontiersin.org/articles/10.3389/fnins.2024.1468967/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1468967/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1468967/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1468967/full
mailto:cfm5762@126.com
https://doi.org/10.3389/fnins.2024.1468967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1468967


Zhang et al. 10.3389/fnins.2024.1468967

Frontiers in Neuroscience 02 frontiersin.org

ranging from brief lapses in awareness to full-body convulsions. The 
underlying causes of epilepsy are diverse, including genetic, infectious, 
structural, immune, metabolic, and sometimes unknown factors 
(Scheffer et al., 2017). The primary treatments for epilepsy include 
medication and surgery, but these interventions are not always 
effective (Perucca, 2021). Approximately 30% of patients continue to 
experience recurrent seizures despite treatment (Liu et  al., 2021). 
These seizures can lead to a range of symptoms, including loss of 
consciousness, muscle twitching, and difficulty breathing (World 
Health Organization, 2024). In severe cases, seizures can result in falls, 
injury, and even drowning, posing significant risks to life. Additionally, 
the social implications of epilepsy, such as the potential for 
discrimination and the stigma associated with the condition, can 
exacerbate psychological distress. Studies have shown that individuals 
with epilepsy, especially children and adolescents, are more likely to 
suffer from anxiety and depression due to the chronic and 
unpredictable nature of their condition (Puka et  al., 2017). EEG, 
which records the brain’s electrical activity, is a crucial tool in 
diagnosing and managing epilepsy. However, analyzing EEG data is 
time-consuming and requires the expert of trained neurologists. The 
accuracy of diagnosis heavily depends on the neurologist’s experience 
and skill. This traditional approach has its limitations: particularly 
given the complexity and volume of EEG data that must be reviewed 
(Chandani and Kumar, 2018). In recent years, the development of 
deep learning techniques has offered new possibilities for improving 
epilepsy detection and prediction. These advanced algorithms can 
process and analyze large volumes of EEG data more efficiently than 
traditional methods, assisting neurologists in diagnosing epilepsy and 
predicting seizures more accurately. By providing timely warnings, 
these technologies can help patients take preventive measures, 
reducing the physical and psychological impact of seizures. This paper 
provides a comprehensive review of the current research on epileptic 
EEG signal detection and prediction using deep learning methods. 
EEG has the advantages of simplicity, safety, high temporal resolution, 
and high utilization, making it a key tool in diagnosing epilepsy (Wei 
et al., 2021; Ein Shoka et al., 2023). Given this prevalence, this paper 
concentrates on reviewing literature specifically related to EEG signals 
in the context of epilepsy. We will explore four key areas: the nature of 
epileptic EEG data, preprocessing techniques, feature extraction 
methods, and deep learning-based detection and prediction 
algorithms. This review also addresses gaps in existing literature, 
including issues related to data partitioning, model evaluation 
methods, and prediction timeframes, offering a more detailed 
perspective on the state of the field.

2 Epileptic EEG signals

2.1 Partitioning of epileptic EEG signal 
states

EEG signals of an epileptic patient can be categorized into four 
states: Post-ictal state, Inter-ictal state: Pre-ictal state and Ictal state. 
The pre-ictal state is the state minutes before the actual occurrence of 
the seizure. The ictal state is the state actual occurrence of the seizure. 
The post-ictal state is the state after the seizure has passed. The inter-
ictal state is the state between post-ictal state and preictal state. Signals 
during ictal and inter-ictal periods are often used as data for detecting 

the occurrence of epilepsy. Signals during pre-ictal and inter-ictal 
periods are often used as data to predict whether epilepsy will occur 
or not (Aslam et  al., 2022). Figure  1 illustrates the four states of 
epileptic EEG signals.

2.2 Data presentation

The 10–20 International Standard Electrode Placement System, 
established by the International Federation of Clinical 
Neurophysiology, is widely recognized as the standard method for 
electrode placement in EEG data acquisition (Maillard and Ramantani, 
2017). This system is employed by most publicly available epileptic 
datasets, ensuring consistency and reliability in data collection. In this 
section, we will discuss commonly used datasets in epilepsy research. 
Most of these datasets are freely accessible, with the exception of the 
Bonn dataset, which requires a purchase. These datasets typically 
organize epileptic EEG data on a patient-by-patient basis, with each 
patient’s data stored in separate folders. This organization leads to two 
primary methods of data segmentation for epilepsy detection and 
prediction: patient-independent and non-patient-
independent methods.

Patient-independent methods refer to data from a particular 
patient as training, validation, and testing data for the model. This 
data partitioning approach can be further divided into two types: 
segment-based approach and event-based approach. Segment-based 
approach means that the data of a particular patient is divided into 
training, validation, and testing sets. The event-based approach 
means: dividing the data of a patient into k groups according to the 
number of seizures, using the k-1 group of data as the training and 
validation set, and the kth group of data as the test set. This approach 
generally yields more accurate evaluation results compared to 
non-patient-independent methods. However, it requires a substantial 
amount of patient-specific data, which must be recorded over different 
seizure periods to effectively train the model for detecting or 
predicting seizures in that particular patient. Figure 2A shows the 
segment-based data partitioning method and Figure 2B shows the 
event-based data partitioning method.

On the other hand, non-patient-independent methods refer to the 
use of all patients’ data as training, validation, and testing data for the 
model. This data partitioning can be further divided into two types: 
the all-patient approach and the cross-patient approach. The difference 
is as follows: the all-patient approach divides data from all patients 
into training, validation, and testing sets. The cross-patient approach 
refers to dividing the data of n-1 patients as the training set and 
validation set, and the remaining patient data as the test set. Figure 3A 
shows the all-patient data division method and Figure 3B shows the 
cross-patient data division method.

FIGURE 1

Four states of epileptic EEG signals.
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3 Techniques for pre-processing EEG 
signals in epilepsy

During EEG acquisition, artifacts such as electrocardiogram 
(ECG) signals, electromyogram (EMG) signals, and thermal noise 
can contaminate the data. Effective preprocessing of these artifacts is 
essential for improving the accuracy of epilepsy detection and 
prediction models. Several techniques are widely employed in the 
preprocessing of epileptic EEG signals, including thermal noise 
reduction, artifact removal, and data enhancement methods.

3.1 Thermal noise processing of EEG 
signals

Electromagnetic interference in the ambient environment and 
thermal noise inherent in the device can severely damage the 
low-amplitude EEG signal. The raw EEG signal is highly non-stationary 

and dynamic, and the scalp EEG itself is small in amplitude, so it is easily 
affected by high-frequency interferences as well as 50 Hz or 60 Hz signals 
(Lakehal and Ferdi, 2024; Wang et al., 2024). A 50 Hz or 60 Hz notch filter 
is commonly used to remove the industrial frequency noise (Raghu et al., 
2020). High-frequency noise is filtered out using a high pass filter, low 
pass filter, band pass filter, etc (Liu et al., 2022).

3.2 Removal of artifacts in EEG signals

To address thermal noise and artifacts in EEG data, various signal 
processing methods have been developed. Techniques such as Wavelet 
Transform (WT), Empirical Mode Decomposition (EMD), and Blind 
Source Separation (BSS) are commonly employed to identify and 
remove these artifacts.

WT denoising works by using a basis function to compute the 
wavelet coefficient that represent the degree of similarity between the 
basis function and the original signal. Noise is removed by setting a 

FIGURE 2

Schematic diagram of patient-independent data segmentation.

FIGURE 3

Schematic diagram of non-patient independent data segmentation.
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TABLE 1 Information on publicly available epileptic EEG datasets.

Data sets Subjects Electrode 
placement system

sampling 
frequency (Hz)

Detection Prediction Patient 
independence

Non-patient 
independence

Signal 
acquisition 

location

CHB-MIT (Shoeb, 2009) 23 10–20 256 Yes Yes Yes Yes Scalp

Siena (Detti, 2020; Goldberger et al., 2000) 14 10–20 512 Yes Yes Yes Yes Scalp

Freiburg (Zhang and Parhi, 2016) 21 – 256 Yes Yes Yes Yes iEEG

SWEC-ETHZ iEEG (The SWEC-ETHZ iEEG 

Database and Algorithms Overview, 2024; Burrello 

et al., 2018; Burrello et al., 2019)

18 - 512/1024 Yes Yes Yes Yes iEEG

16 512 Yes No Yes Yes

New Delhi (Swami et al., 2016) 10 10–20 200 Yes Yes No Yes Scalp

Helsinki (Stevenson, 2019) 79 10–20 256 Yes Yes Yes Yes Scalp

Bonn (Andrzejak et al., 2001) 10 10–20 173.61 Yes No No Yes Scalp, iEEG

TUH (Harati et al., 2014) 115 – 250/256/400 Yes No No Yes –

Kaggle (Brinkmann et al., 2016; Zhao et al., 2022; 

Bbrinkm Sbaldassano Will Cukierski, 2014)

7 – 400/5000 No Yes Yes Yes iEEG

12 – 400/500 ~ 5,000 Yes No Yes Yes

BERN-BARCELONA (Xin et al., 2022) 5 10–20 512/1024 Yes No No Yes iEEG

Epileptic EEG Dataset (Nasreddine, 2021) 6 10–20 500 Yes Yes Yes Yes Scalp

EPILEPSIAE (Ihle et al., 2012; Klatt et al., 2012) 275 – – Yes Yes Yes – Scalp, iEEG
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threshold for these coefficients; those below the threshold are 
discarded, and the remaining coefficients are used to reconstruct the 
denoised signal. For example, Zhou et al. (2021) proposed a dynamic 
thresholding method based on Discrete Wavelet Transform (DWT) 
for artifact removal, which has proven effective in enhancing EEG 
signal quality. Similarly, Yedurkar and Metkar (2020) applied DWT 
with adaptive filtering to remove low-frequency physiological 
artifacts while retaining more useful signal components.

However, the basis function in wavelet denoising is set manually 
and lacks adaptability. This limitation can be  addressed by EMD, 
which decomposes any complex signal into multiple Intrinsic Mode 
Functions (IMFs) at different frequencies. A denoised signal can 
be obtained by setting a threshold to discard inappropriate IMFs and 
reconstructing the remaining ones. Parija et al. (2020) processed EEG 
signals by selecting the first four high-frequency IMFs from EMD, 
although the selection criteria lack a strong theoretical basis. 
Moctezuma and Molinas (2020) further refined EMD by filtering out 
noisy IMFs using Minkowski distance, while Karabiber Cura et al. 
(2020) applied energy, correlation, and other statistical measures to 
screen suitable IMFs for both EMD and Ensemble Empirical Mode 
Decomposition (EEMD). Hassan et al. (2020) obtained clean EEG 
signals using Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) and NIG parameters. Bari and 
Fattah (2020) concluded that extracting the first IMF components is 
the most desirable by comparing the amplitudes and frequencies of 
IMFs obtained after CEEMDAN decomposition. Variational Modal 
Decomposition (VMD) offers an alternative approach, solving the 
problem of mode mixing in EMD and reducing computational 
complexity, as demonstrated by Liu et al. (2022), who removed noise 
by correlating VMD functions with the original signal. Peng et al. 
(2021) proposed the Elastic Variational Mode Decomposition 
(EVMD) algorithm, which is able to capture the center frequency 
variations of EEG signals in various frequency band segments 
compared to VMD, thus improving the experimental performance.

However, EMD has limitations, including mode mixing, noise 
introduction, and high computational complexity. These drawbacks can 
be addressed by BSS. BSS operates on the principle that a signal can 
be represented as a linear combination of different source signals. By 
decomposing the signal into multiple source components, discarding the 
noisy ones, and reconstructing the remaining components, a denoised 
signal can be  obtained. Classical BSS techniques include Canonical 
Correlation Analysis (CCA), Principal Component Analysis (PCA), and 
Independent Component Analysis (ICA). While CCA and PCA are 
effective for analyzing linear signals, ICA is better suited for nonlinear 
signals, making it a more commonly used method for artifact removal in 
EEG data. Islam et  al. (2020) introduced an advanced ICA variant, 
Infomax ICA, which showed improved reliability in separating 
components based on mutual information. Becker et al. (2015) enhanced 
ICA with a penalized semialgebraic deflation algorithm, reducing 
computational complexity while maintaining performance. Beyond 
conventional approaches, several innovative methods have been 
developed for denoising epileptic EEG signals. Sardouie et al. (2014) 
introduced two semi-blind source separation techniques based on time-
frequency analysis: Time-Frequency Generalized Eigenvalue 
Decomposition (TF-GEVD) and Time-Frequency Denoised Source 
Separation (TF-DSS). These methods were shown to outperform 
traditional techniques. Qiu et al. (2018) proposed the Denoising Sparse 
Autoencoder (DSAE), an advanced deep neural network that combines 

the strengths of sparse and denoising autoencoders. By enforcing sparsity 
in the hidden layers, this method efficiently represents EEG signals, 
particularly when dealing with non-smooth, noisy data. The DSAE’s 
ability to learn robust representations of the underlying EEG signals 
makes it a valuable tool for improving the accuracy of seizure detection. 
Lopes et al. (2021) explored a deep learning approach by developing a 
Deep Convolutional Neural Network (DCNN) model for artifact removal 
in EEG data. This model is particularly effective in handling nonlinear 
signal sources and removing various artifacts, including those caused by 
eye blinks, muscle activity, and channel motion. Despite its complexity, 
the DCNN model offers significant improvements in 
denoising performance.

However, BSS requires a reference waveform to effectively remove 
noise by linking it with multiple source signal waveforms. Recognizing 
that each denoising method has its strengths and limitations, 
researchers have also explored hybrid approaches to improve the 
purity of EEG signals. Du et al. (2024) employed a combination of 
CEEMDAN and Continuous Wavelet Transform (CWT) for joint 
denoising of epileptic EEG signals. This approach further improves 
signal quality by integrating the benefits of both CEEMDAN and 
CWT, offering a more comprehensive noise reduction strategy. Please 
refer to Table 2 for details.

3.3 Data enhancement

In addition to artifact removal, data enhancement techniques are 
crucial for improving the quality of EEG signals, especially when 
dealing with small or imbalanced datasets. Data augmentation 
methods, such as flipping, windowing, and adding noise, are 
commonly used to artificially expand datasets (Wan et  al., 2023). 
Palanisamy and Rengaraj (2024) employed these techniques by 
increasing the amplitude and applying random transformations to 
EEG signals, thereby enhancing the robustness of deep learning models.

Generative Adversarial Networks (GANs) represent a more 
sophisticated approach to data augmentation. Initially proposed by 
Goodfellow et al. (2014), GANs generate synthetic data that can balance 
training datasets, as demonstrated by Gao et  al. (2022) with their 
GAN-based model for seizure detection. Temporal Generative Adversarial 
Networks (TGAN) and Wasserstein Generative Adversarial Networks 
(WGANs) have also been employed to address temporal dependencies 
and gradient vanishing issues in EEG data, respectively. Nasiri and Clifford 
(2021) propose a Generative Transferable Adversarial Network (GTAN) 
that generates transferable adversarial features to address the performance 
degradation of traditional algorithms due to inter-individual variation in 
EEG data. A comparison of each method is shown in Table 3.

4 Feature extraction techniques for 
epileptic EEG signals

Feature extraction can streamline and organize underlying 
patterns, making them more manageable. Although neural networks 
are capable of automatically identifying useful features from raw data, 
well-engineered features can simplify problem-solving. This approach 
often requires less data and fewer resources to achieve effective results 
(Francois, 2022). Feature extraction in EEG signal analysis involves 
time-domain features, frequency-domain features, time-frequency 
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domain features, and nonlinear dynamics features. Time-domain 
features provide a general overview of the signal’s distribution but do 
not capture frequency-related information. Conversely, frequency-
domain features convert signals from the time domain to the frequency 
domain, enabling the extraction of frequency-specific information. 
Time-frequency domain methods offer a more nuanced approach by 
representing spectral signals over time, combining both temporal and 
spectral analyses (Pham, 2021; Qin et al., 2024). Nonlinear dynamics, 
on the other hand, are used to quantify the chaotic nature of EEG 
signals, offering insights into their complexity (Yan et al., 2022).

Sun and Chen (2022) utilized entropy-based features, such as Sample 
Entropy (SampEn), Permutation Entropy (PermEn), and Fuzzy Entropy 

(FuzzyEn), both individually and in combination, to form three-
dimensional feature vectors. Their findings indicated that combining 
SampEn, PermEn, and FuzzyEn produced the highest accuracy and recall 
rates. However, this approach did not incorporate time or frequency 
domain information. Fei et  al. (2017) addressed this limitation by 
employing the Fractional Fourier Transform (FrFT), the adaptive 
maximal Lyapunov exponent, and its energy, which captured both the 
chaotic and frequency domain characteristics of epileptic EEG signals. 
Wang et al. (2019) Extracting features of the signal using Teager energy 
entropy, curve length and Teager-Huang transform results in better results 
than ordinary energy entropy. Zhang et  al. (2024) took a more 
comprehensive approach by extracting features using DWT, Power 

TABLE 2 Denoising methods for epileptic EEG signals.

Author Dataset Denoise 
methods

Type Result Advantages Disadvantages

Zhou et al. (2021) Non-public DWT, dynamic 

thresholding

DWT precision:86.8% sensitivity: 

82.7%

Window is Adjustable 

(Chen et al., 2024)

Basis functions are not 

adaptive (Sharma, 2017; 

Huang et al., 1998)Yedurkar and 

Metkar (2020)

Non-public 

CHB-MIT

DWT, adaptive filtering accuracy: 86.66% 

Precision:88.88%

Parija et al. (2020) Bonn EMD EMD Accuracy:100% Basis functions are 

adaptive (Das et al., 

2024)

modal aliasing (Song et al., 

2023) High time complexityMoctezuma and 

Molinas (2020)

CHB-MIT Minkowski Distance, 

EMD

accuracy: 93%

Karabiber Cura 

et al. (2020)

Non-public EEMD 1.5% improvement in 

classification accuracy

Reducing modal 

aliasing

Noise residue (Lan et al., 

2024) High time complexity

Hassan et al. 

(2020)

Bonn CEEMDAN, NIG 

parameters

Over 97% accuracy, sensitivity, 

specificity

Reducing noise residue High time complexity

Bari and Fattah 

(2020)

Bonn CEEMDAN Accuracy reduced by 1%, 

computational complexity and 

time complexity reduced

Liu et al. (2022) Bonn Freiburg Correlation,VMD Sensitivity and specificity of 

more than 95%

Reduced modal 

aliasing and reduced 

computational 

complexity

Slow parameter selection 

and poor generalization

Peng et al. (2021) BERN-

BARCELONA

EVMD Accuracy, sensitivity and 

specificity increased by more 

than 3%.

De Vos et al. 

(2011)

Non-public ICA BSS The number of false alarms has 

been reduced by almost four 

times

No need to know the 

signal artifact type 

(Uddin et al., 2023), 

Lower time complexity 

than EMD

Reference signals required 

(Xu et al., 2024)

Islam et al. (2020) Non-public Infomax ICA Accuracy can be improved by 

24%

Becker et al. 

(2015)

Non-public deflation ICA Reduce computational 

complexity by a factor of 10

Sardouie et al. 

(2014)

Non-public TF-GEVD, TF-DSS Better results than CCA and 

ICA

Qiu et al. (2018) Bonn DSAE Deep 

learning

Performance improved by 8.19% Less residual noise High computational 

complexity, High time 

complexity
Lopes et al. (2021) EPILEPSIAE DCNN Evaluation indicators are better 

than Infomax ICA-MARA

Jana et al. (2022) CHB-MIT 

Bonn

DWT-EMD Fusion 

methods

Accuracy can be improved by 

19.58%

Less residual noise High time complexity

Du et al. (2024) New Delhi CEEMDAN-CWT The signal-to-noise ratio (SNR) 

can be increased by 1.0567 dB 

and the root mean square error 

(RMSE) can be reduced by 

0.1045
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Spectral Density (PSD), standard deviation, band energy, and FuzzyEn. 
While this method effectively gathered diverse feature information, it also 
introduced redundancy and increased computational complexity. To 
mitigate these issues, Zhang et al. (2018) generated 2,794 features for each 
sample using multiple feature extraction methods. These features were 
evaluated by a series of three consecutive selection algorithms, i.e., VarA, 
iRFE, and BackFS, to screen important features. Table  4 presents a 
summary of various feature extraction methods employed in the analysis 
of epileptic EEG signals.

5 Algorithms for detection and 
prediction of epileptic EEG signals

After preprocessing and feature extraction on the data, the 
processed signal is then fed into the network model for deep feature 
extraction and classification.

5.1 Assessment of indicators

In evaluating deep learning models for epileptic EEG signal 
detection and prediction, specific assessment metrics are employed to 
measure performance effectively.

For seizure detection, the evaluation is typically straightforward, 
relying on standard classification metrics such as Accuracy, Sensitivity, 
Specificity, Precision, F1 Score, Receiver Operating Characteristic 
(ROC) curve, Area Under the ROC Curve (AUC), and False Positive 
Rate (FPR). These metrics provide a clear measure of how well the 
model distinguishes between seizure and non-seizure events.

In contrast, seizure prediction models are designed to differentiate 
between inter-ictal (periods between seizures) and pre-ictal (periods just 
before a seizure) states, which requires a more nuanced approach. While 
prediction models often use the same metrics as detection models, a 
specialized set of criteria—known as the Epilepsy Prediction Evaluation 
Criteria—was introduced by Maiwald et al. (2004). This method includes 
several key metrics: Maximum False Positive Rate (FPRmax): The highest 
allowable prediction error rate within a given time interval. Seizure Onset 
Period (SOP): The timeframe during which a seizure is expected to occur 
following a prediction. Seizure Prediction Horizon (SPH): The time 
interval between the prediction and the SOP. Figure  4 provides a 
schematic representation of SPH and SOP.

The process for applying these criteria begins with setting initial 
values for FPRmax, SPH, and SOP. The model’s parameters are then 
adjusted to ensure that the false prediction rate for each patient 
remains within the set FPRmax. The sensitivity for each patient is 
calculated, and the average sensitivity across all patients is determined. 
This process is repeated iteratively to establish reasonable ranges for 
FPRmax, SPH, and SOP, as shown in Figure 5. This methodology 

builds on earlier work by Osorio et al. (1998), who emphasized the 
importance of considering both FPR and sensitivity in prediction 
models. Notably, there is a trade-off between the FPR and sensitivity.

5.2 Convolutional neural networks

CNNs, first introduced in 1980, can learn both feature extraction 
and classification layers within the network. This dual learning 
enhances the network’s generalization ability, making CNNs 
particularly effective for processing complex signals (Hassan et al., 
2024). Given the non-linear and intricate nature of EEG signals, CNNs 
are well-suited for their analysis (Hassan et  al., 2024). CNNs are 
structured with several key components: an input layer, convolutional 
layers, pooling layers, fully connected layers, and an output layer. The 
convolutional layers, equipped with convolutional kernels, are crucial 
for extracting features from the input data. Pooling layers further 
compress the feature space, which reduces computational complexity. 
The fully connected layers consolidate these features and serve as 
classifiers. This architecture allows CNNs to be  both efficient in 
computation and effective in training due to the localized and globally 
shared connections between neurons in the convolutional layers. 
Figure 6 shows the Diagram of CNN.

Several studies have explored CNNs for epilepsy detection. 
Acharya et  al. (2018) introduced a 1-Dimensional Convolutional 
Neural Network (1D-CNN) that directly classifies EEG signals 
without prior feature extraction. Their approach achieved an average 
accuracy of 88.7%, with a sensitivity of 95% and specificity of 90%. In 
contrast, Wang et al. (2021) used a stacked 1D-CNN on two public 
datasets, also skipping pre-processing and feature extraction. Their 
results demonstrated high accuracy and specificity (over 99%), but the 
absence of a test set leaves their findings open to debate. Avcu et al. 
(2019) utilized a 2-Dimensional Convolutional Neural Network 
(2D-CNN) with only two channels of data, outperforming models that 
used 18 channels. Das et al. (2024) compared 1D-CNN and 2D-CNN 
by reshaping data into both formats, finding that the 2D-CNN offered 
superior classification performance. Pan et  al. (2022) proposed a 
lightweight 2D-CNN that processed both raw data and data 
transformed by various techniques, such as Discrete Fourier 
Transform (DFT), Short-Time Fourier Transform (STFT), 
DWT. While this hybrid method improved detection performance 
with limited data, the lack of a test set data raised concerns about 
model reliability. Xu et  al. (2024) introduced a 3-Dimensional 
Convolutional Neural Network (3D-CNN) aimed at reducing the 
latency of seizure detection through probabilistic prediction, achieving 
detection delays at least 50% shorter than previously reported.

Table 5 lists various epilepsy detection models based on CNNs, 
detailing their accuracy (Acc), sensitivity (Sen), and specificity (Spe). 
The table also indicates the data partitioning methods used, with #1 
indicating a segment-based data partitioning approach, #2 indicating 
an event-based data partitioning approach, *1 indicating an 
all-patient-based data partitioning approach. If the symbols (#1,#2,*1) 
are not indicated, it means that the method of partitioning the dataset 
is not applicable or not specified in the article.

CNNs prediction based on metrics of common classification 
methods: Shafiezadeh et al. (2024) introduced a calibration pipeline 
using a 2D-CNN model. By incorporating a small amount of data 
from test set patients into the training set, their approach fine-tunes 
the model to predict epileptic events from new patients. This method 

TABLE 3 A comparison of each method.

Author Net Result

Gao et al. (2022) GAN More than 20% higher sensitivity

Ganti et al. (2022) TGAN 18.5% improvement in accuracy

Wei et al. (2019) WGAN Specificity increased by more than 3%

Nasiri and Clifford 

(2021)

GTAN More than 5% improvement in accuracy and 

more than 7% improvement in specificity
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improved accuracy, sensitivity, and specificity by over 15% on the 
CHB-MIT dataset and by more than 19% on a non-public dataset. But 
the computational complexity is too high. Zhang et  al. (2021) 
Proposed Lightweight-2D-CNN reduces computational complexity.

Table  6 outlines various CNNs prediction models and their 
performance metrics, including accuracy (Acc), sensitivity (Sen), 
specificity (Spe), and pre-epileptic time (PT) in minutes. It also 
denotes data partitioning methods: #2 indicating an event-based data 
partitioning approach, *1 indicating an all-patient-based data 
partitioning approach, and *2 indicating a cross-patient data 
partitioning approach. * indicates that the article only describes how 
the data are divided for non-independent patients and does not 
mention a specific way of partitioning the data. If the symbols 
(#2,*1,*2,*) are not indicated, it means that the method of partitioning 
the dataset is not applicable or not specified in the article.

CNNs prediction model based on evaluation criteria for epilepsy 
prediction: Truong et al. (2018) proposed a 2D-CNN model tested on 
both scalp and intracranial EEG data. Their model achieved a 
sensitivity greater than 89% across both datasets, though the Freiburg 
dataset exhibited a higher FPR. Ra and Li (2023) utilized Simultaneous 
Extractive Transform (SET) and Singular Value Decomposition (SET-
SVD) to enhance time-frequency resolution, achieving a sensitivity 
over 99.7% with a 1D-CNN model. Ozcan and Erturk (2019) explored 
spatiotemporal correlations in EEG signals using a 3D-CNN, which 
showed an 85.7% sensitivity and an FPR of 0.096/h on the CHB-MIT 
dataset. To improve interpretability: Prathaban and Balasubramanian 

(2021) developed a dynamic learning framework with a 3D-CNN 
model optimized by the Fletcher Reeves algorithm. Their phase-
transform-based method demonstrated precise real-time seizure 
prediction using scalp EEG data.

Table 7 presents CNN prediction models based on evaluation 
criteria such as sensitivity (Sen), FPR, SOP, and SPH, all measured in 
minutes. It also denotes data partitioning methods: # indicates that the 
article only describes how the data are divided for independent 
patients and does not mention a specific way of partitioning the data. 
If the # is not indicated, it means that the method of partitioning the 
dataset is not applicable or not specified in the article.

5.3 Recurrent neural networks

RNNs are designed to process time series data and consist of an 
input, hidden, and output layer. Unlike CNNs, RNNs allow neurons 
to receive information not only from other neurons but also from 
themselves, creating a network with loops. This loop structure enables 
RNNs to maintain a memory of previous inputs through hidden units, 
making them particularly suitable for processing EEG data. Figure 7 
illustrates the structure of an RNN, where ht represents the hidden 
state at time t, and the delay mechanism records the most recent 
hidden state. However, RNNs often struggle with the issue of vanishing 
gradients, which is mitigated by LSTM and GRU.

LSTM networks address this issue by using input and forget gates 
to manage memory. As shown in Figure  8A, LSTM cells use the 
external state ht − 1 at time t − 1 and the input xt at time tt to calculate the 
forget gate ft, input gate it, output gate ot, and candidate state ĉt. These 
elements are then combined with the memory unit ct − 1 to update the 
memory unit ct at time tt. Finally, the external state ht at time tt is 
derived from the memory unit ct and the output gate ot. While the 
complementary relationship between the forget and input gates 
enhances the LSTM’s memory management, it also introduces 
some redundancy.

TABLE 4 Feature extraction methods for epileptic EEG signals.

Author Feature extraction methods Feature extraction type Result

Sun and Chen 

(2022)

SampEn, PermEn, FuzzyEn Nonlinear dynamics Accuracy: 6.9% 

improvement, recall: 4.69% 

improvement

Fei et al. 

(2017)

FrFT, energy Time-frequency domain Accuracy, sensitivity, and 

specificity: 2.5% 

improvement
Adaptive Maximum Lyapunov Nonlinear dynamics

Zhang et al. 

(2024)

DWT Time-frequency domain Accuracy, sensitivity, and 

specificity of 99% or higherFuzzyEn Nonlinear dynamics

Standard deviation Time domain

band energy, PSD Frequency domain

Wang et al. 

(2019)

Teager energy entropy, curve length Time domain Results are better than 

normal energy entropyTeager-huang transform Time-frequency domain

Zhang et al. 

(2018)

Statistical Moments, Root Mean Square: eak, Minimum, Maximum, peak to 

Average Power Ratio, Form Factor, Hurst, Fischer Information

Time domain Accuracy: 25.65% 

improvement

Higuchi fractal dimension, Petrosian fractal dimension, Mandelbrot fractal 

dimension, Hjorth parameter, SampEn, PermEn, Spectral entropy, Singular Value 

Decomposition (SVD) entropy

Nonlinear dynamics

FIGURE 4

Schematic diagram of SPH and SOP concepts.
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GRU offers a simpler alternative to LSTM by consolidating the 
input and forget functions into a single gate. Figure 8B shows the 
structure of a GRU cell, where the reset gate rt controls the influence 
of the previous state ht − 1 on the candidate state ĥt. The update gate zt 
regulates the balance between retaining information from the 
historical state and incorporating new information from the candidate 
state. xt represents the input at time tt, and ht is the resulting state.

For epilepsy detection using RNNs, Hu et al. (2020) proposed a 
Bi-directional Long Short-Term Memory Network (Bi-LSTM) that 
classifies EEG data using 11 time-domain features extracted through 
Local Mean Decomposition (LMD). Their method achieved an 
average sensitivity of 93.61% and specificity of 91.85%. Zhang et al. 
(2022) also employed a Bi-directional Gated Recurrent Unit (Bi-GRU) 
for epilepsy detection. They utilized DWT and wavelet energy features, 
achieving an average sensitivity of 93% and specificity of 98.49%. 
Tuncer and Bolat (2022) used only instantaneous frequency and 
spectral entropy features with a Bi-LSTM network, obtaining an 
average classification accuracy of 97.78%, surpassing Hu’s results but 
using the Bonn dataset.

In terms of epilepsy prediction, Singh and Malhotra (2022) 
used a Two-Layer Long Short-Term Memory Network (2 L-LSTM), 
incorporating Fast Fourier Transform (FFT), spectral power, and 
mean spectral amplitude for feature extraction. Tsiouris et  al. 
(2018) employed a range of features, including statistical moments, 
time-domain features, and various transforms (FFT, SD, DWT), 

within a 2 L-LSTM framework. Their approach demonstrated 
sensitivity and specificity greater than 99%, outperforming 
Kuldeep’s results.

5.4 Generating adversarial networks

GANs were proposed by Goodfellow et al. (2020). GANs consist 
of two components: a generator and a discriminator. The generator 
creates synthetic data, which is then evaluated by the discriminator to 
determine its authenticity. Feedback from the discriminator helps 
both components improve their performance. The structure of GANs 
is shown in Figure 9. Some of the epileptic EEG datasets have less 
amount of data, e.g., New Delhi dataset, Bonn dataset, this situation 
leads to poor learning ability of the network and risk of overfitting. 
GANs are capable of generating simulated data that is very similar to 
the real data compared to the other data enhancement methods, 
which improves the performance of the model. GANs have recently 
been explored for epilepsy classification tasks.

Truong et al. (2019) were among the first to apply GANs to seizure 
prediction. They used a Deep Convolutional Generative Adversarial 
Network (DCGAN) to learn features from Time-Frequency domain 
signals processed with STFT. Despite their innovative approach, 
DCGAN is known for issues with gradient vanishing and instability 
(Fathallah et al., 2023).

FIGURE 5

Flowchart for determining FPRmax, SPH and SOP.

FIGURE 6

Diagram of CNN.
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5.5 Transfer learning

Transfer learning can be traced back to the late 20th century and 
the early 21st century (Burrello et  al., 2019; Pan and Yang, 2009). 

Transfer learning is the use of knowledge gained from one task to 
improve performance on a related task. First, a basic network is trained 
on the source dataset and task, and then the learned features (network 
weights) are applied to a new network trained on a different but related 

TABLE 6 CNN prediction model based on common classification method metrics.

Author Preprocessing
Feature 

extraction
Net Data set Acc Sen Spe PT

*1*2Shafiezadeh et al. (2024) Highpass, Lowpass, Notch - 2D-CNN

CHB-MIT
*1 82.17% 85.8% 74.02%

15
*2 69.35% 69.74% 69.90%

Non-public
*1 93.78% 93.61% 93.58%

*2 70.67% 75.37% 71.28%

*Zhang et al. (2021) - Autocorrelation Lightweight-2D-CNN CHB-MIT 89.98% 92.9% 87.04% 15

#2Jana and Mukherjee (2023) - - NSGA-II+CNN CHB-MIT 96.51% 96.55% 96.47% 10

*1*2Jemal et al. (2024) Notch, Bandpass - CDAN

Siena
*1 96.01% 97.24% 94.57%

60
*2 60.27% - -

CHB-MIT
*1 97.36% 98.31% 96.97%

*2 70.90% - -

TABLE 7 CNN prediction model based on evaluation criteria for epilepsy prediction.

Author Preprocessing Feature extraction Net Data set Sen FPR/h SPH SOP
#Ra and Li (2023) – SET, SVD 1D-CNN CHB-MIT 99.71% – 10 –

Bonn 100% –

#Truong et al. (2017) Bandpass STFT 2D-CNN CHB-MIT 81.2% 0.16 5 30

Freiburg 81.4% 0.06

Kaggle 82.3% 0.22

#Truong et al. (2018) Bandpass STFT 2D-CNN Freiburg 89.8% 0.17 5 30

CHB-MIT 89.1% 0.09

#Ozcan and Erturk 

(2019)

– Spectral band power, Statistical 

moments, Hjorth parameters

3D-CNN CHB-MIT 85.7% 0.096 1 30

Prathaban and 

Balasubramanian 

(2021)

SER – 3D-OCNN CHB-MIT Average: 

99.25%

0.045 68.89 –

Siena 0.05 68.19 –

Non-public 0.125 62.48 –

TABLE 5 Epilepsy detection model based on convolutional neural network.

Author Preprocessing Feature extraction Net Data set Acc Sen Spe

Acharya et al. (2018) – – 1D-CNN Bonn 88.7% 95% 90%

Ullah et al. (2018) – – P-1D-CNN Bonn 99.1% – –

Craley et al. (2019) Lowpass, Highpass, Notch Spectral features Line-length PGM-1DCNN CHB-MIT – 61% –

Non-public – 45% –

#1Wang et al. (2021) – – Stacked 1D-CNN SWEC-ETHZ 99.73% 90.06% 99.81%

CHB-MIT 99.54% 88.14% 99.62%

Avcu et al. (2019) – – 2D-CNN Non-public – 93.3% –

Chen et al. (2023) Bandpass DWT, Entropy, Variance 2D-CNN Bonn 99.9% 100% 99.8%

*1Das et al. (2024) EMD FI, Difference,SODP 2D-CNN CHB-MIT 99.78% – –

Pan et al. (2022) – DFT, STFT, DWT Lightweight 2D-CNN Bonn 97.89% – –

#2Xu et al. (2024) – STFT 3D-CNN CHB-MIT – 94.95% –

SWEC-ETHZ – 94.38% –
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dataset and task. This approach helps to address the problem of EEG 
data scarcity, and compared to other network models, transfer learning 
can reduce the resources and time required to train deep learning 
models (Yang et al., 2024; Weiss et al., 2016; Butt et al., 2024)

In the context of epilepsy detection and prediction, Liang et al. 
(2020) utilized a combination of the Visual Geometry Group network 
(VGG) and LSTM for analyzing EEG signals. Their method 
demonstrated strong results through cross-validation, though 
sensitivity for some patients was as low as 60%. Gao et al. (2020) 
employed three deep convolutional neural networks—Inception-
ResNet-v2 (Inception Residual Network Version 2), Inception-v3 

Network (Inception-v3), and Residual Network 152 (ResNet152)—to 
classify EEG data into various categories: interictal, reictal I, reictal II, 
and postictal. They set preictal I and II durations to 30 min and 10 min, 
respectively, to assess the importance of event duration. Takahashi 
et  al. (2020) proposed an Autoencoder-assisted VGG Network 
(AE-VGG-16) for seizure detection, which significantly reduced 
FPR. Toraman (2020) compared three pre-trained CNN models: 
VGG16, Residual Network (ResNet), and Densely Connected 
Network (DenseNet)—using spectrogram images to differentiate 
between pre-seizure and inter-seizure states. The study found that the 
ResNet model provided the best performance.

5.6 Fusion model

Fusion modeling combines different network types to leverage their 
strengths and mitigate their weaknesses. This approach enhances model 
performance by integrating various methodologies. Transformers and 
Residual blocks are commonly used in fusion models. The Transformer 
was first proposed in 2014 by Bahdanau (2014). A Transformer Network 
includes an input layer, encoder, decoder, and output layer, with a multi-
head attention mechanism added between the encoder and decoder 
(Wang et al., 2024; Zhang et al., 2024a; Cho et al., 2014). This mechanism 
effectively manages the performance of the model as EEG sequence 
length increases and improves processing efficiency for long sequences, 
thus reducing time complexity (De Santana Correia and Colombini, 2022; 

FIGURE 7

Structure and schematic diagram of RNNs.

FIGURE 8

Circular unit structure of LSTMs (A) and GRUs (B).

FIGURE 9

Structure of GANs.
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FIGURE 10

Transformer structure (A) and residual block structure (B).

Rukhsar and Tiwari, 2023). Figure 10A shows the Transformer structure. 
The ResNet was introduced in 2015 by He et al. (2016). The residual block 
helps to retain the data from the previous layers and solve problems such 
as overfitting of the EEG signal on other networks and gradient vanishing. 
Figure 10B shows the residual block structure.

In the field of epilepsy detection, Sunaryono et  al. (2022) 
introduced a hybrid model combining a 1D-CNN with majority 
voting and Deep Neural Networks (DNNs). This method achieved 
100% accuracy in detecting epilepsy from EEG signals, though its 
effectiveness may vary with datasets other than the University of 
Bonn dataset. Awais et al. (2024) proposed a Graph Convolutional 
Neural Network-Long Short-Term Memory Network (GCN-LSTM), 
which takes into account the spatial aspects of EEG signals. Huang 
et al. (2024) developed a Temporal Convolutional Neural Network 
with a Self-Attention (TCN-SA) layer to extract crucial features using 
self-attention. Zhu et al. (2024) introduced a Squeeze-and-Excitation 
Temporal Convolutional Network with Bidirectional Gated Recurrent 
Units (SE-TCN-Bi-GRU) that automatically selects important EEG 
channels, though it involves multiple parameters. Zhou et al. (2024) 
proposed a Lightweight Multi-Attention EEG Network 
(LMA-EEGNet) that reduces parameter count and network 
complexity while maintaining effective feature extraction.

Table  8 summarizes various detection algorithms based on 
hybrid models, detailing their accuracy (Acc), sensitivity (Sen), and 
specificity (Spe). Data partitioning methods are indicated, with #1 
indicating a segment-based data partitioning approach, #2 indicating 
an event-based data partitioning approach, *2 indicating a cross-
patient data partitioning approach. # indicates that the article only 
describes how the data are divided for independent patients and 

does not mention a specific way of partitioning the data; * indicates 
that the article only describes how the data are divided for 
non-independent patients and does not mention a specific way of 
partitioning the data. If the symbols (#1,#2,*2,#,*) are not indicated, 
it means that the method of partitioning the dataset is not applicable 
or not specified in the article.

Fusion Model Predictions Based on Common Classification 
Indicators: Aslam et al. (2022) employed a Convolutional Neural Network 
combined with Long Short-Term Memory (CNN-LSTM) to classify EEG 
signals and predict seizures. This approach yielded effective results in 
classifying temporal sequences. To enhance the handling of long-term 
temporal dependencies, Indurani and Vandana (2023) utilized a Time-
Attention Convolutional Neural Network with a Recurrent Neural 
Network (TA-CNN-LSTM). Meanwhile, Ma et al. (2023) introduced a 
Convolutional Bi-directional Long Short-Term Memory Network model 
based on Multi-Channel Feature Fusion (MCFF-CNN-Bi-LSTM). This 
model, which integrates an attention mechanism and channel fusion, 
effectively manages long-term temporal signals while reducing 
computational complexity.

Table 9 summarizes various hybrid models evaluated using predictive 
and categorical assessment methods. Accuracy (Acc), sensitivity (Sen), 
and specificity (Spe) are the primary metrics. Data partitioning methods 
are indicated, with #1 indicating a segment-based data partitioning 
approach, #2 indicating an event-based data partitioning approach, and 
*2 indicating a cross-patient data partitioning approach. # indicates that 
the article only describes how the data are divided for independent 
patients and does not mention a specific way of partitioning the data; * 
indicates that the article only describes how the data are divided for 
non-independent patients and does not mention a specific way of 
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TABLE 9 Hybrid models based on predictive and common assessment methods.

Author Preprocessing Feature 
extraction

Net Data set Acc Sen Spe PT

#Usman et al. (2020) Butterworth, Bandpass STFT CNN-SVM CHB-MIT – 92.7% 90.8% 21

*Hu et al. (2023) – Amplitude spectrum CNN-SVM CHB-MIT 86.25% – – 60

Aslam et al. (2022) Highpass: REP Pipeline, 

STFT

Statistical moments CNN-LSTM CHB-MIT 94% 93.8% 91.2% 19.5

#1Wei et al. (2019) ICA – LRCN Non-public 93.40% 91.88% 86.13% 30

*2Choi et al. (2022) Highpass, Lowpass, Notch – ACGRU Non-public 82.86% 80% 85.5% 10

#2Daoud and Bayoumi (2019) – – DCAE -Bi-

LSTM-CS

CHB-MIT 99.66% 99.72% 99.60% 60

Indurani and Vandana (2023) – – CGAN- 

TACNN-LSTM

CHB-MIT 94.6% 94.5% – –

Bonn 94.8% 94.9% –

Ma et al. (2023) – – MCFF-CNN-

Bi-LSTM

CHB-MIT 94.83% 94.94% <0.01

Bonn 77.62% 77.62%

partitioning the data. If the symbols (#1,#2,*2,#,*) are not indicated, it 
means that the method of partitioning the dataset is not applicable or not 
specified in the article.

Fusion Model Predictions Based on Epilepsy-Specific Evaluation 
Criteria: Wei et al. (2019) used a CNN-LSTM model to predict epileptic 
seizures, focusing on its effectiveness in handling EEG signals. Yan et al. 

TABLE 8 Detection algorithms based on hybrid models.

Author Preprocessing
Feature 

extraction
Net Data set Acc Sen Spe

Sunaryono et al. (2022) - DFT, DWT CNN-DNN Bonn 100% - -

#Hussain et al. (2021) - FFT, DWT CNN-LSTM Freiburg 99.19% 99.3% 98.93%

*2Yang et al. (2021) - - CNN-LSTM Non-public (Video data) - 88% 92%

Mallick and Baths (2024) Butterworth CNN-Bi-LSTM Bonn >99%

#1#2Li et al. (2024) Butterworth - CNN-BiLSTM-SCL CHB-MIT
#1 97.36% 98.97% 97.36%

#2 - 99.71% -

#*Awais et al. (2024) -
Statistical moments,

Entropy
GCN-LSTM CHB-MIT

# 96.54% 91.61% 99.15%

* 99.73% 98.56% 98.74%

#Jibon et al. (2024) Bandpass

Line length, 

Autocorrelation, 

Periodogram

SGCN-DeepRNN

TUH-EEG 98.08% 95.13% 94.99%

CHB-MIT 99.01% 98.06% 95.03%

Wang et al. (2024) - FFT, STFT
ID-CNN+2D-

CNN+LSTM

Bonn 99.69% - -

New Delhi 97.5% - -

Huang et al. (2024)
Highpass,Lowpass, 

Bandpass
- TCN-SA

Non-public 95.50% 91.22% 98.72%

Bonn 97.37% 94.88% 99.91%

#*2Zhu et al. (2024)

DWT

- SE-TCN-Bi-GRU

CHB-MIT
# 98.77% 95.88% 99.44%

*2 93.78% 93.31% 92.65%

FIR filter, DWT Non-public
# 93.61% 94.1% 91.62%

*2 91.37% 84.85% 93.16%

Wen and Zhang (2018) - - AE-1D-CNN Non-public 95.26% - -

#Yang et al. (2024) Bandstop, PCA - LTY-CNN
Non-public 99.9% 99.9% 98.8%

CHB-MIT 99.0 % 99.1% 93.2%

Zhou et al. (2024) Bandpass PSD LMA-EEGNet Helsinki 93.29% 94.43% 92.14%

Zhao et al. (2024) - - Res-BiLSTM
Bonn 98.88% - -

TUH 95.03% - -

Li et al. (2023) Butterworth STFT ResNet-BiGRU Non-public 92% 92.43% 99.99%
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(2022) proposed a three-transformer tower model to address the spatial 
and temporal characteristics of EEG signals. However, this model may 
suffer from parameter redundancy and insufficient representation of 
spatial structures. Liu et  al. (2024) introduced a Pseudo 3D-CNN 
combined with Directed Convolutional Long Short-Term Memory (P3D 
BiConvLstm3D), which employs Max-Relevance and Min-Redundancy 
(mRMR) and a 3D channel attention mechanism to enhance feature 
selection and reduce redundancy.

Table 10 provides a summary of hybrid models based on predictive 
and epilepsy-specific evaluation criteria. Sensitivity (Sen), FPR, SOP, SPH 
are key metrics. Data partitioning methods are indicated, with #1 
indicating a segment-based data partitioning approach, #2 indicating an 
event-based data partitioning approach. # indicates that the article only 
describes how the data are divided for independent patients and does not 
mention a specific way of partitioning the data.

Ngiam et al. (2011) pioneered the use of deep learning techniques 
to integrate and learn from multiple types of data. Multimodal 
learning in deep learning extends beyond EEG signals, incorporating 
various data types to enhance model performance in real-time 
epilepsy detection. By integrating diverse data sources, these models 
achieve more accurate and comprehensive results.

Ahmedt-Aristizabal et al. (2018) utilized a CNN-LSTM model to 
combine features from facial, body, and hand movements, effectively 
distinguishing between Mesial Temporal Lobe Epilepsy (MTLE) and 
Extratemporal Lobe Epilepsy (ETLE). This approach highlights the 
effectiveness of incorporating multiple types of input data in improving 
diagnostic accuracy. Sirpal et al. (2019) integrated Functional Near-
Infrared Spectroscopy (fNIRS) with EEG in a multimodal EEG-fNIRS-
LSTM-RNN model, achieving up to an 8% improvement in 
classification accuracy. This model demonstrates the benefits of 
combining different data modalities for enhanced seizure detection. 
Hosseini et al. (2020) proposed a model combining Long Short-Term 
Memory-Support Vector Machine (LSTM-SVM) with edge computing, 
using both resting state-functional Magnetic Resonance Imaging 
(rs-fMRI) and EEG data. This approach allows for autonomous 
localization of epileptic foci and improved prediction capabilities. 
Martini et al. (2021) employed Stereo Electroencephalogram (SEEG) 
and video electroencephalogram data in a self-supervised LSTM-based 
network. This model’s use of self-supervised dynamic thresholding 
enhanced robustness and efficiency, significantly improving sensitivity 
in real-time epilepsy prediction. Aluvalu et al. (2024) introduced a 
Multimodal Convolutional Neural Network (MMFCNN) utilizing a 
cross-attention mechanism. By filtering data through a cognitive 
framework and analyzing patient movements, gestures, and facial 

expressions, the MMFCNN achieved an impressive accuracy rate 
of 99.2%.

6 Discussion

Among the publicly available datasets for epilepsy detection 
and prediction, the CHB-MIT dataset is the most widely used. This 
preference is due to several advantages of the CHB-MIT dataset: 
Large Volume of Data: CHB-MIT provides a substantial amount of 
data, which supports effective model training. Flexible Data 
Structure: The dataset is organized by patient, with each patient’s 
data stored in separate folders. It includes continuous recordings 
of both seizure and non-seizure phases, making it suitable for 
various analytical needs. Researchers can utilize the data for both 
detection and prediction tasks, with the flexibility to employ both 
patient-independent and non-patient-independent data partitions. 
Additionally, it allows for customization of seizure periods, inter-
ictal, and pre-ictal phases, enabling more precise model analysis.

Despite its benefits, the CHB-MIT dataset, like other publicly 
available datasets, has notable limitations. The scope of epilepsy datasets 
is limited, and the data are collected under controlled conditions that may 
not capture the full complexity of real-life epilepsy occurrences. For 
instance, epilepsy can manifest during diverse activities such as walking, 
eating, or exercising, where EEG signals can be highly variable. Current 
public datasets may not fully address these real-world scenarios, leaving 
gaps in the comprehensiveness of available data.

Most research in the field employs patient-independent data 
partitioning, with only a few studies using non-patient-independent 
methods. While non-patient-independent partitioning is less 
common, it is an essential approach for certain analyses. Additionally, 
some studies do not clearly specify their data segmentation methods, 
which can lead to confusion among readers. This paper argues that 
explicitly stating the data segmentation approach is crucial for 
enhancing the clarity and understanding of the literature.

EEG preprocessing and data enhancement methods vary widely in 
the literature. Many researchers employ basic filtering techniques for EEG 
signals. The artifact removal methods such as WT, EMD, and BSS can 
improve the data quality, but they require the use of reasonable thresholds. 
Some researchers, on the other hand, have achieved satisfactory 
classification results by using raw data directly. This practice may 
be dictated by the nature of overt epileptic EEG signals, which are usually 
collected under controlled conditions where subjects try to remain as 
motionless as possible, making the partial noise very faint. However, 

TABLE 10 Hybrid model based on predictive and epilepsy prediction evaluation criteria.

Author Preprocessing Feature 
extraction

Net Data set Sen FPR/h SPH SOP

#2Wei et al. (2019) ICA – LRCN Non-public 91.88% 0.04 5 30

#2Sun et al. (2021) Bandpass STFT CADCNN CHB-MIT 97.1% 0.029 3 30

#Ji et al. (2023) Bandpass STFT GAM-BiGRU CHB-MIT 88.09% 0.053 5 30

#Rasheed et al. (2021) Butterworth STFT DCGAN+CNN+transfer learning CHB-MIT 88.21% 0.03 10 30

#1Yan et al. (2022) Bandpass STFT 3 Transformers CHB-MIT 96.01% 0.047 3 30

#2Shi and Liu (2023) Bandpass STFT B2-ViT CHB-MIT 93.3% 0.057 5 30

Kaggle 85.2% 0.013

#Liu et al. (2024) Bandpass, ICA FuzzyEn P3D-BiConvLstm3D CHB-MIT 98.13% – 5 ~ 15 15
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FIGURE 11

Analysis of machine learning and deep learning methods for EEG-based epilepsy detection and prediction.

real-world conditions differ, as epileptic patients may not stay stationary. 
Data augmentation using GANs involves complex training processes with 
high computational demands. A more accessible approach is window 
overlapping, which segments data to enhance its volume effectively. 
Combining multiple publicly available EEG datasets is also common, as 
it not only increases the volume of data but also demonstrates the model’s 
generalization capability and reliability.

Given the strengths and limitations of various feature extraction 
methods, feature fusion techniques have become popular. Feature 
fusion combines EEG features of different dimensions to provide a 
more comprehensive view of the data. However, an excessive number 
of features can lead to information redundancy. To address this issue, 
several feature selection methods have been proposed, including the 
Fisher score, Group Search Algorithm, Crow Search Algorithm, and 
Optimal Feature Selection Algorithm (Kapoor et al., 2023; Subasi 
et al., 2019). Traditional manual feature extraction methods often 
suffer from low generalization and suboptimal performance. To 
overcome these limitations, researchers have increasingly integrated 
manual feature extraction with deep learning techniques (Cao et al., 
2019; Yuan et  al., 2018). This combined approach leverages the 
strengths of both methods, enhancing model performance and 
accuracy in epileptic seizure detection and prediction.

Currently, evaluation criteria for epilepsy detection tasks are relatively 
standardized, focusing primarily on classification metrics. For epilepsy 
prediction tasks, evaluation methods are categorized into two main types: 
those based on classification metrics and those specific to epilepsy 
prediction. Despite their widespread use, these criteria have notable 
shortcomings: particularly in the definition and application of the 
FPR. Most studies define FPR as the number of false positives recorded 
within an hour of EEG monitoring. However, there is variation in this 

definition across the literature. For instance, one approach uses confusion 
matrices to determine FPR, while another defines it as the number of false 
positives during the event interval (Wei et al., 2018; Khan et al., 2017). 
This latter method can be problematic because, with varying intervals 
between episodes, longer intervals result in a lower FPR, while shorter 
intervals lead to a higher FPR. This inconsistency makes it challenging to 
compare results across different studies and datasets.

Deep learning algorithms for epilepsy detection and prediction have 
seen a wide range of approaches. For our study, we reviewed more than 
2,000 research papers on machine learning and deep learning techniques 
for detecting and predicting epileptic events using EEG signals. These 
papers are from ScienceDirect and Springer databases and span from 
2020 to 2024. We conducted a keyword visualization analysis of the trends 
in these papers using VOSviewer software. The results of the analysis 
show that deep learning, as a subset of machine learning: lays an 
important role in processing EEG signals for epilepsy detection and 
prediction, as shown in Figure 11. CNNs are the most commonly used 
models in this field. In contrast, RNNs, GANs, and transfer learning 
models are less frequently employed. GANs, initially used primarily for 
data augmentation, were first applied to epilepsy prediction in 2019, 
highlighting their potential for further development in this area (Truong 
et al., 2019). Multimodal deep learning methods offer the advantage of 
learning features from various perspectives, enabling real-time detection 
and prediction. However, these methods require substantial data and 
advanced hardware, which can be limiting. Spiking Neural Networks 
(SNNs), which model biological neuron dynamics and offer high capacity 
with low energy consumption, are less commonly used due to their 
training difficulties (Akopyan et al., 2015; Sengupta et al., 2019). Zhang 
et al. (2024b) have addressed this issue by introducing a biologically 
inspired impulse recurrent neural network that performs well in 
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cross-patient epilepsy detection, potentially expanding the practical 
applications of SNNs. In response to the high memory consumption and 
redundancy issues associated with traditional CNNs, Liu et al. (2024) 
proposed a Cosine Convolutional Neural Network (CosCNN) that 
reduces memory cost by nearly 75% with minimal loss in accuracy. 
Another innovation, the Capsule Network introduced by Sabour et al. 
(2017), overcomes the limitation of CNNs in capturing feature 
relationships and has been successfully applied to epilepsy detection and 
prediction (Li et al., 2022; Toraman, 2021).

Fusion models, which combine various algorithms, generally yield 
better results. Attention mechanisms are frequently employed in these 
models due to their ability to handle long time series data efficiently, 
making them well-suited for epileptic EEG signals. Combining CNNs 
with RNNs is also common, leveraging CNNs for feature extraction 
and RNNs for time series processing to capture both deep features and 
temporal aspects of EEG data. With the increasing availability of 
publicly accessible datasets, researchers are now combining multiple 
datasets to enhance model generalization and recognition. However, 
it is crucial to differentiate between validation and test sets: validation 
data can be used for model training, while test data should remain 
unseen during training to ensure accurate evaluation.

Overall, algorithms for epilepsy detection tend to outperform 
those for epilepsy prediction. This discrepancy may be attributed to 
dataset characteristics, such as those found in the CHB-MIT and 
Freiburg datasets. The fixed seizure periods in detection tasks create a 
more distinct contrast between ictal and interictal states, making 
classification easier compared to the subtler differences between 
pre-ictal and interictal periods.

Evaluation criteria for epilepsy prediction often involve stricter 
requirements aligned with clinical judgments. Typical pre-seizure 
windows are defined as less than 1 h, with specific periods such as 
1–15 min for SPH and 30 min for SOP. These criteria reflect the challenges 
of aligning predictive algorithms with practical clinical needs.

7 Conclusion

Epilepsy is a chronic neurological disorder that significantly 
affects both the physical and mental health of patients, potentially 
leading to conditions such as anxiety and depression (Watanabe et al., 
2024). For healthcare providers, manually analyzing a large volume of 
epileptic EEG signals is extremely challenging, with detection 
accuracy heavily reliant on individual expertise. As technology 
advances, employing deep learning techniques for epilepsy.

Significant progress has been made in improving algorithms for 
preprocessing, feature extraction, and neural networks. Nevertheless, 
several limitations remain. First, there is a scarcity of diverse, publicly 
available datasets for different types of epilepsy, with most data collected 
under specific conditions that may not reflect real-world scenarios. 
Second, data preprocessing methods are often limited and lack variety. 
Third, there is inconsistency in the evaluation of FPR. Fourth, no 
standard evaluation criteria exist for epilepsy prediction models. Fifth, 

the ability to distinguish between interictal and preictal periods needs 
further refinement. Sixth, many studies rely on empirical definitions for 
seizure prediction and evaluation, with inconsistent settings for SPH 
and SOP. Seventh, high computational and time complexity of current 
models hampers real-time detection capabilities.

To address these issues, future research should focus on: (1) 
expanding the dataset to include more diverse epilepsy cases; (2) 
integrating methods like temporal and feature thresholding to enhance 
interpretability and segmentation between interictal and preictal periods; 
(3) utilizing advanced seizure prediction features to optimize parameters 
such as SPH, SOP, and FPRmax; (4) refining algorithmic models to 
minimize memory and computational demands, thus facilitating real-
time detection; and (5) exploring models from other research areas to 
enhance the effectiveness of epilepsy detection and prediction systems.

Author contributions

XizZ: Writing – original draft, Writing – review & editing. XiaZ: 
Writing – review & editing. QH: Writing – review & editing. FC: 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by the Natural Science Foundation of Gansu Province 
[Grant no. 22JR5RA002].

Acknowledgments

I want to thank my tutor for his patient guidance, gratitude for my 
tutor and classmates for their advice and encouragement.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H. (2018). Deep 

convolutional neural network for the automated detection and diagnosis of seizure using 
EEG signals. Comput. Biol. Med. 100, 270–278. doi: 10.1016/j.compbiomed.2017.09.017

Ahmedt-Aristizabal, D., Fookes, C., Denman, S., Nguyen, K., Fernando, T., 
Sridharan, S., et al. (2018). A hierarchical multimodal system for motion analysis in 
patients with epilepsy. Epilepsy Behav. 87, 46–58. doi: 10.1016/j.yebeh.2018.07.028

https://doi.org/10.3389/fnins.2024.1468967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.yebeh.2018.07.028


Zhang et al. 10.3389/fnins.2024.1468967

Frontiers in Neuroscience 17 frontiersin.org

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al. 
(2015). Truenorth: design and tool flow of a 65 mw 1 million neuron programmable 
neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557. 
doi: 10.1109/TCAD.2015.2474396

Aluvalu, R., Aravinda, K., Maheswari, V. U., Kumar, K. J., Rao, B. V., and Prasad, K. M. 
(2024). Designing a cognitive smart healthcare framework for seizure prediction using 
multimodal convolutional neural network. Cogn. Neurodyn. 1, 1–13. doi: 10.1007/
s11571-023-10049-x

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E. 
(2001). Indications of nonlinear deterministic and finite-dimensional structures in time 
series of brain electrical activity: dependence on recording region and brain state. Phys. 
Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907

Aslam, M. H., Usman, S. M., Khalid, S., Anwar, A., Alroobaea, R., Hussain, S., et al. 
(2022). Classification of EEG signals for prediction of epileptic seizures. Appl. Sci. 
12:7251. doi: 10.3390/app12147251

Avcu, M. T., Zhang, Z., and Shih Chan, D. W. (2019). Seizure detection using least 
EEG channels by deep convolutional neural network. arxiv 2019:3229. doi: 10.1109/
ICASS2019.8683229

Awais, M., Belhaouari, S. B., and Kassoul, K. (2024). Graphical insight: revolutionizing 
seizure detection with EEG representation. Biomedicines 12:1283. doi: 10.3390/
biomedicines12061283

Bahdanau, D. (2014). Neural machine translation by jointly learning to align and 
translate. arxiv:0473. doi: 10.48550/arXiv.1409.0473

Bari, M. F., and Fattah, S. A. (2020). Epileptic seizure detection in EEG signals using 
normalized IMFs in CEEMDAN domain and quadratic discriminant classifier. Biomed. 
Signal Process. Control 58:101833. doi: 10.1016/j.bspc.2019.101833

Bbrinkm Sbaldassano Will Cukierski. (2014). Data from: UPenn and Mayo Clinic's 
seizure detection challenge. Kaggle. Available at: https://kaggle.com/competitions/
seizure-detection.

Becker, H., Albera, L., Comon, P., Kachenoura, A., and Merlet, I. (2015). A penalized 
semialgebraic deflation ICA algorithm for the efficient extraction of interictal epileptic 
signals. IEEE J. Biomed. Health Inform. 21, 94–104. doi: 10.1109/JBHI.2015.2504126

Brinkmann, B. H., Wagenaar, J., Abbot, D., Adkins, P., Bosshard, S. C., Chen, M., et al. 
(2016). Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. 
Brain 139, 1713–1722. doi: 10.1093/brain/aww045

Burrello, A., Cavigelli, L., Schindler, K., Benini, L., and Rahimi, A. (2019). Laelaps: an 
energy-efficient seizure detection algorithm from long-term human iEEG recordings 
without false alarms. In: 2019 design, Automation and Test in Europe Conference and 
Exhibition (DATE), IEEE, pp. 752–757.

Burrello, A., Schindler, K., Benini, L., and Rahimi, A. (2018). One-shot learning for 
iEEG seizure detection using end-to-end binary operations: local binary patterns with 
hyperdimensional computing. In: 2018 IEEE biomedical circuits and systems conference 
(BioCAS), pp. 1–4.

Butt, U. M., Letchmunan, S., Hassan, F. H., and Koh, T. W. (2024). Leveraging transfer 
learning with deep learning for crime prediction. PLoS One 19:e0296486. doi: 10.1371/
journal.pone.0296486

Cao, J., Zhu, J., Hu, W., and Kummert, A. (2019). Epileptic signal classification with 
deep EEG features by stacked CNNs. IEEE Trans. Cogn. Dev. Syst. 12, 709–722. doi: 
10.1109/tcds.2019.2936441

Chandani, M., and Kumar, A. (2018). EEG signal processing for epileptic seizure 
prediction by using MLPNN and SVM classifiers. Am. J. Inf. Sci. Technol. 2, 36–41. doi: 
10.11648/j.ajist.20180202.12

Chen, X., Wang, Q., Hu, C., and Wang, C. (2024). A stock market decision-making 
framework based on CMR-DQN. Appl. Sci. 14:6881. doi: 10.3390/app14166881

Chen, W., Wang, Y., Ren, Y., Jiang, H., Du, G., Zhang, J., et al. (2023). An automated 
detection of epileptic seizures EEG using CNN classifier based on feature fusion with 
high accuracy. BMC Med. Inform. Decis. Mak. 23:96. doi: 10.1186/s12911-023-02180-w

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties 
of neural machine translation: encoder-decoder approaches. arxiv:4012. doi: 10.3115/
v1/W14-4012

Choi, W., Kim, M. J., Yum, M. S., and Jeong, D. H. (2022). Deep convolutional gated 
recurrent unit combined with attention mechanism to classify pre-ictal from interictal 
EEG with minimized number of channels. J. Pers. Med. 12:763. doi: 10.3390/
jpm12050763

Craley, J., Johnson, E., and Venkataraman, A. (2019). Integrating convolutional neural 
networks and probabilistic graphical modeling for epileptic seizure detection in 
multichannel EEG. In: information processing in medical imaging: 26th international 
conference, IPMI 2019, Hong Kong, China, June 2–7, 2019: roceedings 26. Springer 
International Publishing, pp. 291–303.

Daoud, H., and Bayoumi, M. A. (2019). Efficient epileptic seizure prediction based on 
deep learning. IEEE Trans. Biomed. Circuits Syst. 13, 804–813. doi: 10.1109/
TBCAS.2019.2929053

Das, S., Mumu, S. A., Akhand, M. A. H., Salam, A., and Kamal, M. A. S. (2024). 
Epileptic seizure detection from decomposed EEG signal through 1D and 2D feature 
representation and convolutional neural network. Information 15:256. doi: 10.3390/
info15050256

De Santana Correia, A., and Colombini, E. L. (2022). Attention: lease! A survey of 
neural attention models in deep learning. Artif. Intell. Rev. 55, 6037–6124. doi: 10.1007/
s10462-022-10148-x

De Vos, M., Deburchgraeve, W., Cherian, P. J., Matic, V., Swarte, R. M., Govaert, P., 
et al. (2011). Automated artifact removal as preprocessing refines neonatal seizure 
detection. Clin. Neurophysiol. 122, 2345–2354. doi: 10.1016/j.clinph.2011.04.026

Detti, D. (2020). Siena scalp EEG Database (version 1.0.0): hysioNet. Available at: 
https://physionet.org/content/siena-scalp-eeg/1.0.0/.

Du, Y., Li, G., Wu, M., and Chen, F. (2024). Unsupervised multivariate feature-based 
adaptive clustering analysis of epileptic EEG signals. Brain Sci. 14:342. doi: 10.3390/
brainsci14040342

Ein Shoka, A. A., Dessouky, M. M., El-Sayed, A., and Hemdan, E. E. D. (2023). EEG 
seizure detection: concepts, techniques, challenges, and future trends. Multimed. Tools 
Appl. 82, 42021–42051. doi: 10.1007/s11042-023-15052-2

Fathallah, M., Sakr, M., and Eletriby, S. (2023). Stabilizing and improving training of 
generative adversarial networks through identity blocks and modified loss function. 
IEEE Access 11, 43276–43285. doi: 10.1109/ACCESS.2023.3272032

Fei, K., Wang, W., Yang, Q., and Tang, S. (2017). Chaos feature study in fractional 
Fourier domain for preictal prediction of epileptic seizure. Neurocomputing 249, 
290–298. doi: 10.1016/j.neucom.2017.04.019

Francois, C. (2022). “Machine learning fundamentals” in The Python Deep Learning. 
ed. T. Xie (Beijing: People’s Post and Telecommunications Press), 124–125.

Ganti, B., Chaitanya, G., Balamurugan, R. S., Nagaraj, N., Balasubramanian, K., and 
Pati, S. (2022). Time-series generative adversarial network approach of deep learning 
improves seizure detection from the human thalamic SEEG. Front. Neurol. 13:755094. 
doi: 10.3389/fneur.2022.755094

Gao, Y., Gao, B., Chen, Q., Liu, J., and Zhang, Y. (2020). Deep convolutional neural 
network-based epileptic electroencephalogram (EEG) signal classification. Front. 
Neurol. 11:375. doi: 10.3389/fneur.2020.00375

Gao, B., Zhou, J., Yang, Y., Chi, J., and Yuan, Q. (2022). Generative adversarial 
network and convolutional neural network-based EEG imbalanced classification 
model for seizure detection. Biocybern. Biomed. Eng. 42, 1–15. doi: 10.1016/j.
bbe.2021.11.002

Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, C., Mark, R., et al. (2000). 
PhysioBank: hysioToolkit, and PhysioNet: components of a new research resource for 
complex physiologic signals. Circulation 101, e215–e220. doi: 10.1161/01.cir.101.23.e215

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. 
(2014). Generative adversarial nets. ArXiv [Preprint]. Available at: https://arxiv.org/
pdf/1406.2661v1 (Accessed September 27, 2024).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. 
(2020). Generative adversarial networks. Commun. ACM 63, 139–144. doi: 10.1145/3422622

Harati, A., Lopez, S., Obeid, I., Jacobson, M., Tobochnik, S., and Picone, J. Data from: 
The TUH EEG CORPUS: A big data resource for automated EEG interpretation. (2014). 
Available at: https://www.researchgate.net/publication/276921148_The_TUH_EEG_
CORPUS_A_big_data_resource_for_automated_EEG_interpretation.

Hassan, J., Reza, M. S., Ahmed, S. U., Anik, N. H., and Khan, M. O. (2024). EEG 
workload estimation and classification: a systematic review. J. Neural Eng. 16:705. doi: 
10.1088/1741-2552/ad705e

Hassan, A. R., Subasi, A., and Zhang, Y. (2020). Epilepsy seizure detection using 
complete ensemble empirical mode decomposition with adaptive noise. Knowl.-Based 
Syst. 191:105333. doi: 10.1016/j.knosys.2019.105333

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image 
recognition. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 770–778.

Hosseini, M. P., Tran, T. X., Pompili, D., Elisevich, K., and Soltanian-Zadeh, H. (2020). 
Multimodal data analysis of epileptic EEG and rs-fMRI via deep learning and edge 
computing. Artif. Intell. Med. 104:101813. doi: 10.1016/j.artmed.2020.101813

Hu, W., Cao, J., Lai, X., and Liu, J. (2023). Mean amplitude spectrum based epileptic state 
classification for seizure prediction using convolutional neural networks. J. Ambient. Intell. 
Humaniz. Comput. 14, 15485–15495. doi: 10.1007/s12652-019-01220-6

Hu, X., Yuan, S., Xu, F., Leng, Y., Yuan, K., and Yuan, Q. (2020). Scalp EEG 
classification using deep bi-LSTM network for seizure detection. Comput. Biol. Med. 
124:103919. doi: 10.1016/j.compbiomed.2020.103919

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). 
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis. Proc. R. Soc. London A Math Phys Eng Sci 454, 903–995. 
doi: 10.1098/rspa.1998.0193

Huang, L., Zhou, K., Chen, S., Chen, Y., and Zhang, J. (2024). Automatic detection of 
epilepsy from EEGs using a temporal convolutional network with a self-attention layer. 
Biomed. Eng. Online 23:50. doi: 10.1186/s12938-024-01244-w

Hussain, W., Sadiq, M. T., Siuly, S., and Rehman, A. U. (2021). Epileptic seizure 
detection using 1 D-convolutional long short-term memory neural networks. Appl. 
Acoust. 177:107941. doi: 10.1016/j.apacoust.2021.107941

Ihle, M., Feldwisch-Drentrup, H., Teixeira, C. A., Witon, A., Schelter, B., Timmer, J., 
et al. (2012). EPILEPSIAE–A European epilepsy database. Comput. Methods Prog. 
Biomed. 106, 127–138. doi: 10.1016/j.cmpb.2010.08.011

Indurani, P., and Vandana, S. (2023). Improving deep learning for seizure detection 
using GAN with Cramer distance and a temporal-spatial- frequency loss function. Int. 
J. Recent Innov. Trends Comput. Commun. 11, 424–432. doi: 10.17762/ijritcc.v11i6s.6949

https://doi.org/10.3389/fnins.2024.1468967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s11571-023-10049-x
https://doi.org/10.1007/s11571-023-10049-x
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.3390/app12147251
https://doi.org/10.1109/ICASS2019.8683229
https://doi.org/10.1109/ICASS2019.8683229
https://doi.org/10.3390/biomedicines12061283
https://doi.org/10.3390/biomedicines12061283
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1016/j.bspc.2019.101833
https://kaggle.com/competitions/seizure-detection
https://kaggle.com/competitions/seizure-detection
https://doi.org/10.1109/JBHI.2015.2504126
https://doi.org/10.1093/brain/aww045
https://doi.org/10.1371/journal.pone.0296486
https://doi.org/10.1371/journal.pone.0296486
https://doi.org/10.1109/tcds.2019.2936441
https://doi.org/10.11648/j.ajist.20180202.12
https://doi.org/10.3390/app14166881
https://doi.org/10.1186/s12911-023-02180-w
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3390/jpm12050763
https://doi.org/10.3390/jpm12050763
https://doi.org/10.1109/TBCAS.2019.2929053
https://doi.org/10.1109/TBCAS.2019.2929053
https://doi.org/10.3390/info15050256
https://doi.org/10.3390/info15050256
https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.1016/j.clinph.2011.04.026
https://physionet.org/content/siena-scalp-eeg/1.0.0/
https://doi.org/10.3390/brainsci14040342
https://doi.org/10.3390/brainsci14040342
https://doi.org/10.1007/s11042-023-15052-2
https://doi.org/10.1109/ACCESS.2023.3272032
https://doi.org/10.1016/j.neucom.2017.04.019
https://doi.org/10.3389/fneur.2022.755094
https://doi.org/10.3389/fneur.2020.00375
https://doi.org/10.1016/j.bbe.2021.11.002
https://doi.org/10.1016/j.bbe.2021.11.002
https://doi.org/10.1161/01.cir.101.23.e215
https://arxiv.org/pdf/1406.2661v1
https://arxiv.org/pdf/1406.2661v1
https://doi.org/10.1145/3422622
https://www.researchgate.net/publication/276921148_The_TUH_EEG_CORPUS_A_big_data_resource_for_automated_EEG_interpretation
https://www.researchgate.net/publication/276921148_The_TUH_EEG_CORPUS_A_big_data_resource_for_automated_EEG_interpretation
https://doi.org/10.1088/1741-2552/ad705e
https://doi.org/10.1016/j.knosys.2019.105333
https://doi.org/10.1016/j.artmed.2020.101813
https://doi.org/10.1007/s12652-019-01220-6
https://doi.org/10.1016/j.compbiomed.2020.103919
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1186/s12938-024-01244-w
https://doi.org/10.1016/j.apacoust.2021.107941
https://doi.org/10.1016/j.cmpb.2010.08.011
https://doi.org/10.17762/ijritcc.v11i6s.6949


Zhang et al. 10.3389/fnins.2024.1468967

Frontiers in Neuroscience 18 frontiersin.org

Islam, M. S., El-Hajj, A. M., Alawieh, H., Dawy, Z., Abbas, N., and El-Imad, J. (2020). EEG 
mobility artifact removal for ambulatory epileptic seizure prediction applications. Biomed. 
Signal Process. Control 55:101638. doi: 10.1016/j.bspc.2019.101638

Jana, G. C., Agrawal, A., Pattnaik, K., and Sain, M. (2022). DWT-EMD feature level 
fusion based approach over multi and single channel EEG signals for seizure detection. 
Diagnostics 12:324. doi: 10.3390/diagnostics12020324

Jana, R., and Mukherjee, I. (2023). Efficient seizure prediction and EEG channel 
selection based on multi-objective optimization. IEEE Access 11, 54112–54121. doi: 
10.1109/ACCESS.2023.3281450

Jemal, I., Abou-Abbas, L., Henni, K., Mitiche, A., and Mezghani, N. (2024). Domain 
adaptation for EEG-based, cross-subject epileptic seizure prediction. Front. Neuroinform. 
18:1303380. doi: 10.3389/fninf.2024.1303380

Ji, H., Xu, T., Xue, T., Xu, T., Yan, Z., Liu, Y., et al. (2023). An effective fusion model 
for seizure prediction: GAMRNN. Front. Neurosci. 17:1246995. doi: 10.3389/
fnins.2023.1246995

Jibon, F. A., Jamil Chowdhury, A. R., Miraz, M. H., Jin, H. H., Khandaker, M. U., 
Sultana, S., et al. (2024). Sequential graph convolutional network and DeepRNN based 
hybrid framework for epileptic seizure detection from EEG signal. Digit. Health 
10:49874. doi: 10.1177/20552076241249874

Kapoor, B., Nagpal, B., Jain, P. K., Abraham, A., and Gabralla, L. A. (2023). Epileptic 
seizure prediction based on hybrid seek optimization tuned ensemble classifier using 
EEG signals. Sensors 23:423. doi: 10.3390/s23010423

Karabiber Cura, O., Kocaaslan Atli, S., Türe, H. S., and Akan, A. (2020). Epileptic 
seizure classifications using empirical mode decomposition and its derivative. Biomed. 
Eng. Online 19, 1–22. doi: 10.1186/s12938-020-0754-y

Khan, H., Marcuse, L., Fields, M., Swann, K., and Yener, B. (2017). Focal onset seizure 
prediction using convolutional networks. IEEE Trans. Biomed. Eng. 65, 2109–2118. doi: 
10.1109/TBME.2017.2785401

Klatt, J., Feldwisch-Drentrup, H., Ihle, M., Navarro, V., Neufang, M., Teixeira, C., et al. 
(2012). The EPILEPSIAE database: An extensive electroencephalography database of 
epilepsy patients. Epilepsia 53, 1669–1676. doi: 10.1111/j.1528-1167.2012.03564.x

Lakehal, M. R., and Ferdi, Y. (2024). Baseline wander and power line interference 
removal from physiological signals using fractional notch filter optimized through 
genetic algorithm. Arab. J. Sci. Eng. 1, 1–21. doi: 10.1007/s13369-024-09145-9

Lan, C., Zhao, S., Chen, H., Zhang, L., Yang, Y., Fan, Z., et al. (2024). Single-channel 
speech enhancement algorithm based on ME-MGCRN in low signal-to-noise scenario. 
IEEE Access.

Li, H., Dong, X., Zhong, X., Li, C., Cui, H., and Zhou, W. (2024). End-to-end model 
for automatic seizure detection using supervised contrastive learning. Eng. Appl. Artif. 
Intell. 133:108665. doi: 10.1016/j.engappai.2024.108665

Li, L., Zhang, H., Liu, X., Li, J., Li, L., Liu, D., et al. (2023). Detection method of 
absence seizures based on Resnet and bidirectional GRU. Acta Epileptol. 5:7. doi: 
10.1186/s42494-022-00117-w

Li, C., Zhao, Y., Song, R., Liu, X., Qian, R., and Chen, X. (2022). Patient-specific 
seizure prediction from electroencephalogram signal via multichannel feedback capsule 
network. IEEE Trans. Cogn. Dev. Syst. 15, 1360–1370. doi: 10.1109/tcds.2022.3212019

Liang, W., Pei, H., Cai, Q., and Wang, Y. (2020). Scalp EEG epileptogenic zone 
recognition and localization based on long-term recurrent convolutional network. 
Neurocomputing 396, 569–576. doi: 10.1016/j.neucom.2018.10.108

Liu, Y. H., Chen, L., Li, X. W., Wu, Y. C., Liu, S., Wang, J. J., et al. (2022). Epilepsy 
detection with artificial neural network based on as-fabricated neuromorphic chip 
platform. AIP Adv. 12:761. doi: 10.1063/5.0075761

Liu, X., Li, C., Lou, X., Kong, H., Li, X., Li, Z., et al. (2024). Epileptic seizure prediction 
based on EEG using pseudo-three-dimensional CNN. Front. Neuroinform. 18:1354436. 
doi: 10.3389/fninf.2024.1354436

Liu, G., Tian, L., Wen, Y., Yu, W., and Zhou, W. (2024). Cosine convolutional neural 
network and its application for seizure detection. Neural Netw. 174:106267. doi: 
10.1016/j.neunet.2024.106267

Liu, X., Wang, J., Shang, J., Liu, J., Dai, L., and Yuan, S. (2022). Epileptic seizure 
detection based on variational mode decomposition and deep forest using EEG signals. 
Brain Sci. 12:1275. doi: 10.3390/brainsci12101275

Liu, G., Xiao, R., Xu, L., and Cai, J. (2021). Minireview of epilepsy detection techniques 
based on electroencephalogram signals. Front. Syst. Neurosci. 15:685387. doi: 10.3389/
fnsys.2021.685387

Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Dümpelmann, M., 
et al. (2021). Automatic electroencephalogram artifact removal using deep 
convolutional neural networks. IEEE Access 9, 149955–149970. doi: 10.1109/
ACCESS.2021.3125728

Ma, Y., Huang, Z., Su, J., Shi, H., Wang, D., Jia, S., et al. (2023). A multi-channel feature 
fusion CNN-BI-LSTM epilepsy EEG classification and prediction model based on attention 
mechanism. IEEE Access 11, 62855–62864. doi: 10.1109/ACCESS.2023.3287927

Maillard, L., and Ramantani, G. (2017). New recommendations of the IFCN: from 
scalp EEG to electrical brain imaging. Clin. Neurophysiol. 128, 2068–2069. doi: 10.1016/j.
clinph.2017.07.413

Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H. U., 
Schulze-Bonhage, A., and Timmer, J. (2004). Comparison of three nonlinear seizure 
prediction methods by means of the seizure prediction characteristic. Phys D 194, 
357–368. doi: 10.1016/j.physd.2004.02.013

Mallick, S., and Baths, V. (2024). Novel deep learning framework for detection of 
epileptic seizures using EEG signals. Front. Comput. Neurosci. 18:1340251. doi: 10.3389/
fncom.2024.1340251

Martini, M. L., Valliani, A. A., Sun, C., Costa, A. B., Zhao, S., Panov, F., et al. (2021). 
Deep anomaly detection of seizures with paired stereoelectroencephalography and video 
recordings. Sci. Re 11:7482. doi: 10.1038/s41598-021-86891-y

Moctezuma, L. A., and Molinas, M. (2020). Classification of low-density EEG for 
epileptic seizures by energy and fractal features based on EMD. J. Biomed. Res. 34:180. 
doi: 10.7555/JBR.33.20190009

Nasiri, S., and Clifford, G. D. (2021). Generalizable seizure detection model using 
generating transferable adversarial features. IEEE Signal Process. Lett. 28, 568–572. doi: 
10.1109/LS2021.3060967

Nasreddine, W. (2021). Epileptic EEG Dataset. Mendeley Data, V1.
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal deep 

learning. In: Proceedings of the 28th international conference on machine learning 
(ICML-11), pp. 689–696.

Osorio, I., Frei, M. G., and Wilkinson, S. B. (1998). Real-time automated detection 
and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 
39, 615–627. doi: 10.1111/j.1528-1157.1998.tb01430.x

Ozcan, A. R., and Erturk, S. (2019). Seizure prediction in scalp EEG using 3D 
convolutional neural networks with an image-based approach. IEEE Trans. Neural Syst. 
Rehabil. Eng. 27, 2284–2293. doi: 10.1109/TNSRE.2019.2943707

Palanisamy, K. K., and Rengaraj, A. (2024). Early detection of stress and anxiety based 
seizures in position data augmented EEG signal using hybrid deep learning algorithms. 
IEEE Access 12, 35351–35365. doi: 10.1109/ACCESS.2024.3365192

Pan, S. J., and Yang, Q. (2009). A survey on transfer learning. IEEE Trans. Knowl. Data 
Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Pan, Y., Zhou, X., Dong, F., Wu, J., Xu, Y., and Zheng, S. (2022). Epileptic seizure 
detection with hybrid time-frequency EEG input: a deep learning approach. Comput. 
Math. Methods Med. 2022, 1–14. doi: 10.1155/2022/8724536

Parija, S., Dash, P. K., and Bisoi, R. (2020). Multi-kernel-based random vector 
functional link network with decomposed features for epileptic EEG signal classification. 
IET Signal Process. 14, 162–174. doi: 10.1049/iet-spr.2019.0277

Pelkonen, A., Mzezewa, R., Sukki, L., Ryynänen, T., Kreutzer, J., Hyvärinen, T., et al. (2020). 
A modular brain-on-a-chip for modelling epileptic seizures with functionally connected 
human neuronal networks. Biosens. Bioelectron. 168:112553. doi: 10.1016/j.bios.2020.112553

Peng, J., Xue-Jun, Z., and Zhi-Xin, S. (2021). eEpileptic electroencephalogram signal 
classification method based on elastic variational mode decomposition. Acta Phys. Sin. 
70:018702. doi: 10.7498/aps.70.20200904

Perucca, E. (2021). The pharmacological treatment of epilepsy: recent advances and 
future perspectives. Acta Epileptol. 3:22. doi: 10.1186/s42494-021-00055-z

Pham, T. D. (2021). Time–frequency time–space LSTM for robust classification of 
physiological signals. Sci. Re 11:6936. doi: 10.1038/s41598-021-86432-7

Prathaban, B. P., and Balasubramanian, R. (2021). Dynamic learning framework for 
epileptic seizure prediction using sparsity based EEG reconstruction with optimized 
CNN classifier. Expert Syst. Appl. 170:114533. doi: 10.1016/j.eswa.2020.114533

Puka, K., Widjaja, E., and Smith, M. L. (2017). The influence of patient, caregiver, and 
family factors on symptoms of anxiety and depression in children and adolescents with 
intractable epilepsy. Epilepsy Behav. 67, 45–50. doi: 10.1016/j.yebeh.2016.12.011

Qin, Y. F., Fu, X., Li, X. K., and Li, H. J. (2024). ADAMS simulation and HHT feature 
extraction method for bearing faults of coal shearer. PRO 12:164. doi: 10.3390/
pr12010164

Qiu, Y., Zhou, W., Yu, N., and Du, P. (2018). Denoising sparse autoencoder-based ictal 
EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1717–1726. doi: 10.1109/
TNSRE.2018.2864306

Ra, J. S., and Li, T. (2023). A novel epileptic seizure prediction method based on 
synchroextracting transform and 1-dimensional convolutional neural network. Comput. 
Methods Prog. Biomed. 240:107678. doi: 10.1016/j.cmpb.2023.107678

Raghu, S., Sriraam, N., Vasudeva Rao, S., Hegde, A. S., and Kubben, P. L. (2020). 
Automated detection of epileptic seizures using successive decomposition index and 
support vector machine classifier in long-term EEG. Neural Comput. & Applic. 32, 
8965–8984. doi: 10.1007/s00521-019-04389-1

Rasheed, K., Qadir, J., O’Brien, T. J., Kuhlmann, L., and Razi, A. (2021). A generative 
model to synthesize EEG data for epileptic seizure prediction. IEEE Trans. Neural Syst. 
Rehabil. Eng. 29, 2322–2332. doi: 10.1109/TNSRE.2021.3125023

Rukhsar, S., and Tiwari, A. K. (2023). Lightweight convolution transformer for cross-
patient seizure detection in multi-channel EEG signals. Comput. Methods Prog. Biomed. 
242:107856. doi: 10.1016/j.cmpb.2023.107856

Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules. 
Adv. Neural Inf. Proces. Syst. 30:11. doi: 10.48550/arXiv.1710.09829

Sardouie, S. H., Shamsollahi, M. B., Albera, L., and Merlet, I. (2014). Denoising 
of ictal EEG data using semi-blind source separation methods based on time-
frequency priors. IEEE J. Biomed. Health Inform. 19, 839–847. doi: 10.1109/
JBHI.2014.2336797

Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., 
et al. (2017). ILAE classification of the epilepsies: position paper of the ILAE 
Commission for Classification and Terminology. Epilepsia 58, 512–521. doi: 10.1111/
epi.13709

https://doi.org/10.3389/fnins.2024.1468967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.bspc.2019.101638
https://doi.org/10.3390/diagnostics12020324
https://doi.org/10.1109/ACCESS.2023.3281450
https://doi.org/10.3389/fninf.2024.1303380
https://doi.org/10.3389/fnins.2023.1246995
https://doi.org/10.3389/fnins.2023.1246995
https://doi.org/10.1177/20552076241249874
https://doi.org/10.3390/s23010423
https://doi.org/10.1186/s12938-020-0754-y
https://doi.org/10.1109/TBME.2017.2785401
https://doi.org/10.1111/j.1528-1167.2012.03564.x
https://doi.org/10.1007/s13369-024-09145-9
https://doi.org/10.1016/j.engappai.2024.108665
https://doi.org/10.1186/s42494-022-00117-w
https://doi.org/10.1109/tcds.2022.3212019
https://doi.org/10.1016/j.neucom.2018.10.108
https://doi.org/10.1063/5.0075761
https://doi.org/10.3389/fninf.2024.1354436
https://doi.org/10.1016/j.neunet.2024.106267
https://doi.org/10.3390/brainsci12101275
https://doi.org/10.3389/fnsys.2021.685387
https://doi.org/10.3389/fnsys.2021.685387
https://doi.org/10.1109/ACCESS.2021.3125728
https://doi.org/10.1109/ACCESS.2021.3125728
https://doi.org/10.1109/ACCESS.2023.3287927
https://doi.org/10.1016/j.clinph.2017.07.413
https://doi.org/10.1016/j.clinph.2017.07.413
https://doi.org/10.1016/j.physd.2004.02.013
https://doi.org/10.3389/fncom.2024.1340251
https://doi.org/10.3389/fncom.2024.1340251
https://doi.org/10.1038/s41598-021-86891-y
https://doi.org/10.7555/JBR.33.20190009
https://doi.org/10.1109/LS2021.3060967
https://doi.org/10.1111/j.1528-1157.1998.tb01430.x
https://doi.org/10.1109/TNSRE.2019.2943707
https://doi.org/10.1109/ACCESS.2024.3365192
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1155/2022/8724536
https://doi.org/10.1049/iet-spr.2019.0277
https://doi.org/10.1016/j.bios.2020.112553
https://doi.org/10.7498/aps.70.20200904
https://doi.org/10.1186/s42494-021-00055-z
https://doi.org/10.1038/s41598-021-86432-7
https://doi.org/10.1016/j.eswa.2020.114533
https://doi.org/10.1016/j.yebeh.2016.12.011
https://doi.org/10.3390/pr12010164
https://doi.org/10.3390/pr12010164
https://doi.org/10.1109/TNSRE.2018.2864306
https://doi.org/10.1109/TNSRE.2018.2864306
https://doi.org/10.1016/j.cmpb.2023.107678
https://doi.org/10.1007/s00521-019-04389-1
https://doi.org/10.1109/TNSRE.2021.3125023
https://doi.org/10.1016/j.cmpb.2023.107856
https://doi.org/10.48550/arXiv.1710.09829
https://doi.org/10.1109/JBHI.2014.2336797
https://doi.org/10.1109/JBHI.2014.2336797
https://doi.org/10.1111/epi.13709
https://doi.org/10.1111/epi.13709


Zhang et al. 10.3389/fnins.2024.1468967

Frontiers in Neuroscience 19 frontiersin.org

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking 
neural networks: VGG and residual architectures. Front. Neurosci. 13:95. doi: 10.3389/
fnins.2019.00095

Shafiezadeh, S., Duma, G. M., Mento, G., Danieli, A., Antoniazzi, L., Del Popolo 
Cristaldi, F., et al. (2024). Calibrating deep learning classifiers for patient-
independent electroencephalogram seizure forecasting. Sensors 24:2863. doi: 
10.3390/s24092863

Sharma, R. K. (2017). EEG signal denoising based on wavelet transform. In: 2017 
international conference of electronics, communication and aerospace technology 
(ICECA), 1, pp. 758–761.

Shi, S., and Liu, W. (2023). B2-ViT net: broad vision transformer network with broad 
attention for seizure prediction. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 178–188. doi: 
10.1109/TNSRE.2023.3245654

Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection 
and treatment Doctoral dissertation, Massachusetts Institute of Technology.

Singh, K., and Malhotra, J. (2022). Two-layer LSTM network-based prediction of 
epileptic seizures using EEG spectral features. Complex Intell. Syst. 8, 2405–2418. doi: 
10.1007/s40747-021-00627-z

Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D. K., and Lesage, F. (2019). fNIRS improves 
seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24, –051408. 
doi: 10.1117/1.JBO.24.5.051408

Song, T., Wang, J., Huo, J., Wei, W., Han, R., Xu, D., et al. (2023). Prediction of 
significant wave height based on EEMD and deep learning. Front. Mar. Sci. 10:1089357. 
doi: 10.3389/fmars.2023.1089357

Stevenson, N. J. (2019). Data from: a dataset of neonatal EEG recordings with seizure 
annotations. Sci. Data 6:190039. doi: 10.1038/sdata.2019.39

Subasi, A., Jukic, S., and Kevric, J. (2019). Comparison of EMD, DWT and WPD for 
the localization of epileptogenic foci using random forest classifier. Measurement 146, 
846–855. doi: 10.1016/j.measurement.2019.07.026

Sun, Y., and Chen, X. (2022). Automatic detection of epilepsy based on entropy feature 
fusion and convolutional neural network. Oxidative Med. Cell. Longev. 2022:1322826. 
doi: 10.1155/2024/9847185

Sun, B., Lv, J. J., Rui, L. G., Yang, Y. X., Chen, Y. G., Ma, C., et al. (2021). Seizure 
prediction in scalp EEG based channel attention dual-input convolutional neural 
network. Phys. A Stat. Mech. Appl. 584:126376. doi: 10.1016/j.physa.2021.126376

Sunaryono, D., Sarno, R., Siswantoro, J., Purwitasari, D., Sabilla, S. I., Susilo, R. I., et al. 
(2022). Hybrid one-dimensional CNN and DNN model for classification epileptic 
seizure. Int. J. Intell. Eng. Syst. 16, 492–502. doi: 10.22266/ijies2022.1231.44

Swami, S., Panigrahi, B., Nara, S., and Bhatia, M. (2016). Gandhi T. Data from: EEG 
Epilepsy Datasets. Available at: https://www.researchgate.net/publication/308719109_
EEG_Epilepsy_Datasets.

Takahashi, H., Emami, A., Shinozaki, T., Kunii, N., Matsuo, T., and Kawai, K. (2020). 
Convolutional neural network with autoencoder-assisted multiclass labelling for seizure 
detection based on scalp electroencephalography. Comput. Biol. Med. 125:104016. doi: 
10.1016/j.compbiomed.2020.104016

The SWEC-ETHZ iEEG Database and Algorithms Overview. (2024). Available at: 
http://ieeg-swez.ethz.ch/ (Accessed August 16, 2024).

Toraman, S. (2020). Preictal and Interictal recognition for epileptic seizure 
prediction using pre-trained 2DCNN models. Traitement Signal 37:617. doi: 10.18280/
ts.370617

Toraman, S. (2021). Automatic recognition of preictal and interictal EEG signals using 
1D-capsule networks. Comput. Electr. Eng. 91:107033. doi: 10.1016/j.
compeleceng.2021.107033

Truong, N. D., Kuhlmann, L., Bonyadi, M. R., Querlioz, D., Zhou, L., and Kavehei, O. 
(2019). Epileptic seizure forecasting with generative adversarial networks. IEEE Access 
7, 143999–144009. doi: 10.1109/ACCESS.2019.2944691

Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., Ippolito, S., et al. 
(2018). Convolutional neural networks for seizure prediction using intracranial and 
scalp electroencephalogram. Neural Netw. 105, 104–111. doi: 10.1016/j.
neunet.2018.04.018

Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., and Kavehei, O. 
(2017). A generalised seizure prediction with convolutional neural networks for 
intracranial and scalp electroencephalogram data analysis. arxiv 2017:01976. doi: 
10.48550/arXiv.1707.01976

Tsiouris, Κ. Μ., Pezoulas, V. C., Zervakis, M., Konitsiotis, S., Koutsouris, D. D., and 
Fotiadis, D. I. (2018). A long short-term memory deep learning network for the 
prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 99, 24–37. doi: 
10.1016/j.compbiomed.2018.05.019

Tuncer, E., and Bolat, E. D. (2022). Classification of epileptic seizures from 
electroencephalogram (EEG) data using bidirectional short-term memory (bi-LSTM) 
network architecture. Biomed. Signal Process. Control 73:103462. doi: 10.1016/j.
bspc.2021.103462

Uddin, Z., Altaf, M., Ahmad, A., Qamar, A., and Orakzai, F. A. (2023). Isolation of 
multiple electrocardiogram artifacts using independent vector analysis. PeerJ Comput. 
Sci. 9:e1189. doi: 10.7717/peerj-cs.1189

Ullah, I., Hussain, M., and Aboalsamh, H. (2018). An automated system for epilepsy 
detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. 
107, 61–71. doi: 10.1016/j.eswa.2018.04.021

Usman, S. M., Khalid, S., and Aslam, M. H. (2020). Epileptic seizures prediction using 
deep learning techniques. IEEE Access 8, 39998–40007. doi: 10.1109/
ACCESS.2020.2976866

Wan, S., Dong, F., Zhang, X., Wu, W., and Li, J. (2023). Fault voiceprint signal 
diagnosis method of power transformer based on Mixup data enhancement. Sensors 
23:3341. doi: 10.3390/s23063341

Wang, D., Lian, J., Cheng, H., and Zhou, Y. (2024). Music-evoked emotions 
classification using vision transformer in EEG signals. Front. Psychol. 15:1275142. doi: 
10.3389/fpsyg.2024.1275142

Wang, Z., Song, X., Chen, L., Nan, J., Sun, Y., Pang, M., et al. (2024). Research 
progress of epileptic seizure prediction methods based on EEG. Cogn. Neurodyn. 
1, 1–20.

Wang, X., Wang, X., Liu, W., Chang, Z., Kärkkäinen, T., and Cong, F. (2021). One 
dimensional convolutional neural networks for seizure onset detection using long-term 
scalp and intracranial EEG. Neurocomputing 459, 212–222. doi: 10.1016/j.
neucom.2021.06.048

Wang, B., Xu, Y., Peng, S., Wang, H., and Li, F. (2024). Detection method of epileptic 
seizures using a neural network model based on multimodal dual-stream networks. 
Sensors 24:3360. doi: 10.3390/s24113360

Wang, C., Yi, H., Wang, W., and Valliappan, P. (2019). Lesion localization algorithm 
of high-frequency epileptic signal based on Teager energy operator. Biomed. Signal 
Process. Control 47, 262–275. doi: 10.1016/j.bspc.2018.08.033

Watanabe, R. G. S., Thais, M. E. R., Marmentini, E. L., Freitas, T. G., Wolf, P., and 
Lin, K. (2024). Theory of mind in epilepsy. Epilepsy Behav. 158:109910. doi: 10.1016/j.
yebeh.2024.109910

Wei, L., Boutouil, H., Gerbatin, R. R., Mamad, O., Heiland, M., Reschke, C. R., et al. 
(2021). Detection of spontaneous seizures in EEGs in multiple experimental mouse 
models of epilepsy. J. Neural Eng. 18:056060. doi: 10.1088/1741-2552/ac2ca0

Wei, X., Zhou, L., Chen, Z., Zhang, L., and Zhou, Y. (2018). Automatic seizure 
detection using three-dimensional CNN based on multi-channel EEG. BMC Med. 
Inform. Decis. Mak. 18, 71–80. doi: 10.1186/s12911-018-0693-8

Wei, X., Zhou, L., Zhang, Z., Chen, Z., and Zhou, Y. (2019). Early prediction of 
epileptic seizures using a long-term recurrent convolutional network. J. Neurosci. 
Methods 327:108395. doi: 10.1016/j.jneumeth.2019.108395

Wei, Z., Zou, J., Zhang, J., and Xu, J. (2019). Automatic epileptic EEG detection using 
convolutional neural network with improvements in time-domain. Biomed. Signal 
Process. Control 53:101551. doi: 10.1016/j.bspc.2019.04.028

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning. J. 
Big Data 3, 1–40. doi: 10.1186/s40537-016-0043-6

Wen, T., and Zhang, Z. (2018). Deep convolution neural network and autoencoders-
based unsupervised feature learning of EEG signals. IEEE Access 6, 25399–25410. doi: 
10.1109/ACCESS.2018.2833746

World Health Organization. (2024). Epilepsy. Available at: https://www.who.int/news-
room/fact-sheets/detail/epilepsy (Accessed August 12, 2024)

Xin, Q., Hu, S., Liu, S., Zhao, L., and Zhang, Y. D. (2022). An attention-based wavelet 
convolution neural network for epilepsy EEG classification. IEEE Trans. Neural Syst. 
Rehabil. Eng. 30, 957–966. doi: 10.1109/TNSRE.2022.3166181

Xu, Y., Yang, J., Ming, W., Wang, S., and Sawan, M. (2024). Shorter latency of real-time 
epileptic seizure detection via probabilistic prediction. Expert Syst. Appl. 236:121359. 
doi: 10.1016/j.eswa.2023.121359

Xu, X. F., Zhuang, X. N., Xue, C., Chen, Z. Y., Wu, Y. C., and Guo, G. P. (2024). An 
efficient quantum algorithm for independent component analysis. New J. Phys. 
26:073030. doi: 10.1088/1367-2630/ad5e16

Yan, J., Li, J., Xu, H., Yu, Y., and Xu, T. (2022). Seizure prediction based on 
transformer using scalp electroencephalogram. Appl. Sci. 12:4158. doi: 10.3390/
app12094158

Yan, Y., Wu, X., Li, C., He, Y., Zhang, Z., Li, H., et al. (2022). Topological EEG 
nonlinear dynamics analysis for emotion recognition. IEEE Trans. Cogn. Dev. Syst. 15, 
625–638. doi: 10.1109/tcds.2022.3174209

Yang, Y., Luan, T., Yu, Z., Zhang, M., Li, F., Chen, X., et al. (2024). Technological 
vanguard: the outstanding performance of the LTY-CNN model for the early 
prediction of epileptic seizures. J. Transl. Med. 22:162. doi: 10.1186/
s12967-024-04945-x

Yang, Y., Sarkis, R. A., El Atrache, R., Loddenkemper, T., and Meisel, C. (2021). Video-
based detection of generalized tonic-clonic seizures using deep learning. IEEE J. Biomed. 
Health Inform. 25, 2997–3008. doi: 10.1109/JBHI.2021.3049649

Yang, W., Xue, L., Chen, J., Wang, Y., Ding, S., and Zhang, H. (2024). Classification of 
recurrent depression using brain CT images through feature fusion. J. Radiat. Res. Appl. 
Sci. 17:100986. doi: 10.1016/j.jrras.2024.100986

Yedurkar, D. P., and Metkar, S. P. (2020). Multiresolution approach for artifacts 
removal and localization of seizure onset zone in epileptic EEG signal. Biomed. Signal 
Process. Control 57:101794. doi: 10.1016/j.bspc.2019.101794

https://doi.org/10.3389/fnins.2024.1468967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3390/s24092863
https://doi.org/10.1109/TNSRE.2023.3245654
https://doi.org/10.1007/s40747-021-00627-z
https://doi.org/10.1117/1.JBO.24.5.051408
https://doi.org/10.3389/fmars.2023.1089357
https://doi.org/10.1038/sdata.2019.39
https://doi.org/10.1016/j.measurement.2019.07.026
https://doi.org/10.1155/2024/9847185
https://doi.org/10.1016/j.physa.2021.126376
https://doi.org/10.22266/ijies2022.1231.44
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://doi.org/10.1016/j.compbiomed.2020.104016
http://ieeg-swez.ethz.ch/
https://doi.org/10.18280/ts.370617
https://doi.org/10.18280/ts.370617
https://doi.org/10.1016/j.compeleceng.2021.107033
https://doi.org/10.1016/j.compeleceng.2021.107033
https://doi.org/10.1109/ACCESS.2019.2944691
https://doi.org/10.1016/j.neunet.2018.04.018
https://doi.org/10.1016/j.neunet.2018.04.018
https://doi.org/10.48550/arXiv.1707.01976
https://doi.org/10.1016/j.compbiomed.2018.05.019
https://doi.org/10.1016/j.bspc.2021.103462
https://doi.org/10.1016/j.bspc.2021.103462
https://doi.org/10.7717/peerj-cs.1189
https://doi.org/10.1016/j.eswa.2018.04.021
https://doi.org/10.1109/ACCESS.2020.2976866
https://doi.org/10.1109/ACCESS.2020.2976866
https://doi.org/10.3390/s23063341
https://doi.org/10.3389/fpsyg.2024.1275142
https://doi.org/10.1016/j.neucom.2021.06.048
https://doi.org/10.1016/j.neucom.2021.06.048
https://doi.org/10.3390/s24113360
https://doi.org/10.1016/j.bspc.2018.08.033
https://doi.org/10.1016/j.yebeh.2024.109910
https://doi.org/10.1016/j.yebeh.2024.109910
https://doi.org/10.1088/1741-2552/ac2ca0
https://doi.org/10.1186/s12911-018-0693-8
https://doi.org/10.1016/j.jneumeth.2019.108395
https://doi.org/10.1016/j.bspc.2019.04.028
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/ACCESS.2018.2833746
https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://doi.org/10.1109/TNSRE.2022.3166181
https://doi.org/10.1016/j.eswa.2023.121359
https://doi.org/10.1088/1367-2630/ad5e16
https://doi.org/10.3390/app12094158
https://doi.org/10.3390/app12094158
https://doi.org/10.1109/tcds.2022.3174209
https://doi.org/10.1186/s12967-024-04945-x
https://doi.org/10.1186/s12967-024-04945-x
https://doi.org/10.1109/JBHI.2021.3049649
https://doi.org/10.1016/j.jrras.2024.100986
https://doi.org/10.1016/j.bspc.2019.101794


Zhang et al. 10.3389/fnins.2024.1468967

Frontiers in Neuroscience 20 frontiersin.org

Yuan, Y., Xun, G., Jia, K., and Zhang, A. (2018). A multi-view deep learning framework 
for EEG seizure detection. IEEE J. Biomed. Health Inform. 23, 83–94. doi: 10.1109/
JBHI.2018.2871678

Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., and Zomaya, A. Y. (2021). A 
lightweight solution to epileptic seizure prediction based on EEG synchronization 
measurement. J. Supercomput. 77, 3914–3932. doi: 10.1007/s11227-020-03426-4

Zhang, Z., Lin, B. S., Peng, C. W., and Lin, B. S. (2024a). Multi-modal sleep stage 
classification with two-stream encoder-decoder. IEEE Trans. Neural Syst. Rehabil. Eng. 
32, 2096–2105. doi: 10.1109/TNSRE.2024.3394738

Zhang, Z., and Parhi, K. K. (2016). Low-complexity seizure prediction from iEEG/
sEEG using spectral power and ratios of spectral power. IEEE Trans. Biomed. Circuits 
Syst. 10, 693–706. doi: 10.1109/TBCAS.2015.2477264

Zhang, Z., Xiao, M., Ji, T., Jiang, Y., Lin, T., Zhou, X., et al. (2024b). Efficient and 
generalizable cross-patient epileptic seizure detection through a spiking neural network. 
Front. Neurosci. 17:1303564. doi: 10.3389/fnins.2023.1303564

Zhang, Y., Yang, S., Liu, Y., Zhang, Y., Han, B., and Zhou, F. (2018). Integration of 24 
feature types to accurately detect and predict seizures using scalp EEG signals. Sensors 
18:1372. doi: 10.3390/s18051372

Zhang, Y., Yao, S., Yang, R., Liu, X., Qiu, W., Han, L., et al. (2022). Epileptic seizure 
detection based on bidirectional gated recurrent unit network. IEEE Trans. Neural Syst. 
Rehabil. Eng. 30, 135–145. doi: 10.1109/TNSRE.2022.3143540

Zhang, J., Zheng, S., Chen, W., Du, G., Fu, Q., and Jiang, H. (2024). A scheme 
combining feature fusion and hybrid deep learning models for epileptic seizure 
detection and prediction. Sci. Re 14:16916. doi: 10.1038/s41598-024-67855-4

Zhao, Y., Li, C., Liu, X., Qian, R., Song, R., and Chen, X. (2022). Patient-specific 
seizure prediction via adder network and supervised contrastive learning. IEEE 
Trans. Neural Syst. Rehabil. Eng. 30, 1536–1547. doi: 10.1109/TNSRE.2022.31 
80155

Zhao, W., Wang, W. F., Patnaik, L. M., Zhang, B. C., Weng, S. J., Xiao, S. X., et al. 
(2024). Residual and bidirectional LSTM for epileptic seizure detection. Front. Comput. 
Neurosci. 18:1415967. doi: 10.3389/fncom.2024.1415967

Zhou, Y., You, J., Zhu, F., Bragin, A., Engel, J., and Li, L. (2021). Automatic 
electrophysiological noise reduction and epileptic seizure detection for 
Stereoelectroencephalography. In: 2021 43rd annual international conference of the IEEE 
engineering in Medicine and Biology Society (EMBC), pp. 107–112.

Zhou, W., Zheng, W., Feng, Y., and Li, X. (2024). LMA-EEGNet: a lightweight multi-
attention network for neonatal seizure detection using EEG signals. Electronics 13:2354. 
doi: 10.3390/electronics13122354

Zhu, P., Zhou, W., Cao, C., Liu, G., Liu, Z., and Shang, W. (2024). A novel SE-TCN-
BiGRU hybrid network for automatic seizure detection. IEEE Access 1. doi: 10.1109/
ACCESS.2024.3406909

https://doi.org/10.3389/fnins.2024.1468967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1007/s11227-020-03426-4
https://doi.org/10.1109/TNSRE.2024.3394738
https://doi.org/10.1109/TBCAS.2015.2477264
https://doi.org/10.3389/fnins.2023.1303564
https://doi.org/10.3390/s18051372
https://doi.org/10.1109/TNSRE.2022.3143540
https://doi.org/10.1038/s41598-024-67855-4
https://doi.org/10.1109/TNSRE.2022.3180155
https://doi.org/10.1109/TNSRE.2022.3180155
https://doi.org/10.3389/fncom.2024.1415967
https://doi.org/10.3390/electronics13122354
https://doi.org/10.1109/ACCESS.2024.3406909
https://doi.org/10.1109/ACCESS.2024.3406909

	A review of epilepsy detection and prediction methods based on EEG signal processing and deep learning
	1 Introduction
	2 Epileptic EEG signals
	2.1 Partitioning of epileptic EEG signal states
	2.2 Data presentation

	3 Techniques for pre-processing EEG signals in epilepsy
	3.1 Thermal noise processing of EEG signals
	3.2 Removal of artifacts in EEG signals
	3.3 Data enhancement

	4 Feature extraction techniques for epileptic EEG signals
	5 Algorithms for detection and prediction of epileptic EEG signals
	5.1 Assessment of indicators
	5.2 Convolutional neural networks
	5.3 Recurrent neural networks
	5.4 Generating adversarial networks
	5.5 Transfer learning
	5.6 Fusion model

	6 Discussion
	7 Conclusion

	References

