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A neuromorphic event data
interpretation approach with
hardware reservoir

Hanrui Li, Dayanand Kumar and Nazek El-Atab*

SAMA Labs, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah

University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Event cameras have shown unprecedented success in various computer vision

applications due to their unique ability to capture dynamic scenes with high

temporal resolution and low latency. However, many existing approaches for

event data representation are typically algorithm-based, limiting their utilization

and hardware deployment. This study explores a hardware event representation

approach for event data utilizing a reservoir encoder implemented with

analog memristor. The inherent stochastic and non-linear characteristics

of the memristors enable the e�ective and low-cost feature extraction of

temporal information from event streams as a reservoir encoder. We propose

a simplified memristor model and memristor-based reservoir circuit specifically

for processing dynamic visual information and extracting feature in event data.

Experimental results with four event datasets demonstrate that our approach

achieves superior accuracy over other methods, highlighting the potential of

memristor-based event processing system.
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1 Introduction

Event cameras are bio-inspired vision sensors that operate differently from

conventional frame-based sensors. They are sensitive to detect the brightness change based

on scene dynamics rather than capturing image’s frame at a fixed rate for frame-based

camera (Gallego et al., 2020). The event behavior in individual pixel is triggered only when

the brightness intensity change exceeds the threshold without waiting for the command of

the global shutter (Furmonas et al., 2022). Unlike the conventional camera that outputs an

analog value in each pixel, the dynamic vision camera (DVS) produces a serials of events

or spikes, which weigh only 1 bit (Lichtsteiner et al., 2008). The unique properties of event

camera offer high temporal resolution and high dynamic range with better energy efficiency

and latency compared with traditional cameras. With faster motion of objects, more events

are generated as each pixel adjusts the delta modulator sampling rate according to the

change of the logarithm of optical intensity. This makes event cameras exceptionally fast

and efficient for edge applications, such as surveillance or monitoring, where only motion

or change relevant (Delbruck and Lang, 2013; Glover and Bartolozzi, 2016).

However, traditional computer vision algorithms cannot be directly used to process

event data as it only contains binary information of asynchronous brightness intensity

change. How to effectively process event data still remains an issue. These event data are

asynchronous spike behavior with microsecond-level resolution, which requires special

algorithm or specialized hardware for good representation or prepossessing. Many studies

have been proposed to realize good event data representation. Gehrig et al. (2019) proposed

differentiable operation method to convert event streams into grid-based representations.
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Sironi et al. (2018) introduced a local memory sharing method

with time surface, which converts event stream into an image

with function of the motion history at that location. The other

commonmethod is to integrate event behaviors to frames by slicing

a constant time window or fixed number of event packets (Everding

and Conradt, 2018). Nevertheless, these methods are mainly based

on the software level optimization without the implementation

of hardware.

Thememristor is an emerging non-volatile device, which shows

the dynamic conductance range with programming ability (Khalid,

2019). It is a two terminal device, which retains a state of resistance

with flexible response to varying electrical inputs. Many memristor

devices exhibit the short-term-memory (STM) behavior, which has

the non-linearity and memory decay characteristics in response

to a stimulus as optical or electrical input (Kumar et al., 2023;

Hu et al., 2021; Wu et al., 2023; Jo et al., 2010). It allows the

devices to map temporal input patterns into collective memristor

resistance states, which can be viewed as a dynamic reservoir node.

Many research studies have been proposed to implement hardware

reservoir computing based on memristor (Zhong et al., 2021, 2022;

Sun et al., 2021). Such properties can efficiently process event data

and extract information through the natural behavior of the device.

The memristor reservoir encoder takes advantage of both spike

neural network (SNN) and reservoir computing, which is effective

to capture features in high dimensional space and resembles the

processes of visual cognition (Chen et al., 2024). This approach

provides a solution for event representation at a low cost, which is

suitable for edge applications including robotic systems, real-time

monitoring, and complex signal processing.

In this study, we propose a neuromorphic approach for event-

based data interpretation (NEIR), which utilizes memristor-based

circuit as reservoir encoder to encode event data. The stochastic

nature and non-linear property enables the reservoir layer to

effectively extract the event-based information at a low cost. We

also propose a simplified memristor model based on the VTEAM

model with time-surface behavior to fit the non-linear property.

The state of memristor in reservoir circuit changes according to

the input of event streams, and the result of extracted information

is represented by the generated current. The reservoir layer allows

the effective feature extraction for the temporal information in

all prior spike inputs produced by the event camera without any

use of dedicated memory units and logic circuits for complex

preprocessing algorithms. Our design is triggered by the digital

signal with ON and OFF events, which eliminates the need for

Digital-to-Analog Converter (DAC) requirements. It is similar as

retina cells that can directly sense and encode raw, asynchronous

visual inputs at low cost. This scheme introduces a novel approach

for event-data encoding with memristor-based reservoir node,

which highlights the potential application in this field.

The contributions of this study are as follows:

1. We introduce a hardware system called NEIR which utilizes a

memristor-based circuit to encode event data. The memristor

array can effectively simulate the reservoir state as hardware

implementation with non-linear property.

2. We propose a simplified memristor model specifically designed

for the pulse behavior, which is suitable for non-linear behavior

modeling and event-based data representation. It is an intuitive

and easy-to-use framework derived by the VTEAM model to

capture the pulse stimulus with less parameters.

3. We compare our memristor encoding method with other event

representation methods with four event-based datasets. Our

evaluations demonstrate that our encoding method can achieve

the highest accuracy across the same bottleneck structure on

both spike and non-spike models.

The remainder of this study is organized as follows. We

introduce in Section 2 previous studies in both reservoir computing

andmemristor areas. In Section 3, we provide a detailed description

of our proposed method. The performance of this approach

is evaluated in Section 4. We then provide a discussion on

experimental results and performance in Section 5. Finally, the

study is concluded in Section 6.

1.1 Related work

Reservoir computing is a widely used machine learning

framework known for its non-linear and dynamic characteristics

(Yan et al., 2024). This approach facilitates the handling of complex

temporal patterns without the need for extensive retraining or

parameter adjustments inherent in traditional models (Cucchi

et al., 2022). By leveraging a fixed number of randomly generated

neurons in the reservoir to extract information in high dimensions,

it allows for efficient computation and robust performance across

a variety of temporal-spatial tasks (Tanaka et al., 2019). For

hardware implementation, the memristor is a popular candidate to

work as the physical reservoir due to its non-linear and dynamic

programming properties (Cao et al., 2022). The memristor has

shown its unique short-term or long-term memory with both

optical and electrical programming abilities. It can work as the

reservoir nodes to perform non-linear information transformation

(encoding) of the temporal input data into the stored reservoir

states (Zhang et al., 2023). In such systems, the reservoir

node encodes the spatiotemporal information naturally by device

dynamics, which eliminates the need for external memory or

arithmetic and logic units (ALUs). By implementing physical

reservoir with memristors, it can achieve outstanding energy

efficiency and power consumption as the number of nodes is fixed.

The STM characteristic of the memristor brings its non-

linear and time-dependent properties, which can serve as a

suitable hardware platform for the dynamics required for reservoir

computing. Many studies have shown the potential ability to

utilize memristor-based circuit as the reservoir node and take

advantage of the storage ability (Liang et al., 2024; Yan et al.,

2024; Yang et al., 2024). Wu et al. (2023) integrated organic

light-sensing materials into memristors to simulate an optical

reservoir system with a spike neuromorphic network for pattern

recognition. Yang et al. (2024) proposed a mask reservoir

computing circuit using memristor arrays to process analog

biomedical signals. Zhou et al. (2023) proposed light-responsive

vision sensors that convert dynamic motion into event signals

and extract features for efficient motion recognition. These studies

have integrated memristors into reservoir computing platforms,

offering potential opportunities for hardware-based reservoir

computing applications.
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FIGURE 1

NEIR structure: asynchronous spike inputs are directly sent to hardware reservoir layer to extract the feature. The neural network can be

implemented for further classification.

FIGURE 2

(A) The circuit diagram of DVS sensor. (B) The circuit diagram of memristor-based reservoir node. (C) The circuit diagram when ON signal is

activated. (D) The circuit diagram when OFF signal is activated.

However, most of the existing studies primarily concentrate

on device characteristics and software simulations. In this

study, we provide a general event representation method via

memristor modeling and circuit design for reservoir computing,

which enhances the event-based feature extraction with low

energy consumption.

2 Memristor model and reservoir
computing

Figure 1 shows the reservoir computing system implemented

for event data processing. For event data processing, the
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FIGURE 3

(A) Simulation result comparison between SPICE model and our simplified model. (B) The list of parameters for simulation. (C, D) Proposed simplified

memristor model with variable parameter c1 and c2.

memristor-based reservoir layer has the non-linear dynamic

property to respond to stimuli, where both optical and electrical

pulse can be viewed as potential stimuli (Pereira et al., 2023).

The asynchronous events generated by event camera can be

directly sensed and processed by the reservoir layer without

any configuration of external logic circuits. The bipolar terminal

in memristor enables the flexibility and reconfigurability of

programming to different conductance values with effective feature

extraction ability. The STM property of the memristor device offers

the superior ability to react with temporal information and decay

with time surface, which could work as the encoder for event

data to extract information (Moon et al., 2019). The feature map

extracted by the reservoir layer is sent to a classification bottleneck

network for identification. The network including convolutional

layer and fully connected layer can be easily implemented

by memristor crossbar with high energy efficiency and low

power consumption.

2.1 Memristor-based circuit unit

The memristor circuit unit plays as the basic element of

reservoir node for event data interpretation. It is used to extract

high dimension information and behave as non-linear state of

reservoir. The DVS camera measures output with event behavior

through the brightness change (Lichtsteiner et al., 2008). The

pixel circuit is shown in Figure 2A, where the brightness change

over threshold value of comparator is generated as ON and OFF

event. The asynchronous event behaviors can be directly fed and

processed by the proposed reservoir circuit as shown in Figure 2B.

The ON and OFF signal represents the digital control signal

of event data, while the Vin is the constant voltage supply for

memristor programming. By definition of event data, the ON

and OFF signal cannot be activated simultaneously as brightness

change can be either positive or negative. The schematic diagram is

shown in Figures 2C, D when ON and OFF signal is activated at a

high level. The event data can drive the switch control of voltage,

where the memristor state changes accordingly with the event

type and stores the previous integrated information. The bipolar

programming of the memristor device provides the flexibility of

reservoir state modification with non-linear dynamics. According

to the memristor readout, the multiplexer with clock control is

utilized to read the conductance of each memristor simultaneously.

During the read phase, a small voltage (<0.15 V) is applied across

the memristor to prevent any alteration of its conductance state.

A transimpedance amplifier (TIA) can be utilized to convert

the small input current into a proportional voltage signal for

further processing.
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Input:event_data (t, p, x, y), time_slices,

fitting parameters

Reservoir encoding scheme

Output : feature map : fs,

# Initialization

# Initialize parameters for pulse behavior

modeling: Ron, Roff , τ, p, c1, c2

while T = 0; T < (tend − tstart)//slices; T++ do

# Process event data in slices

for t← T ∗ slices to (T + 1) ∗ slices do

ON ←− 1 if p = 1, OFF←− 1 if p = -1

# Update memristor state at pixel (x, y)

R←− Reservoir(R) /Update via Equation 7

R←− R+ N(0, σ 2) /Introduce variation

R←− clip(Ron ,Roff )

end

# Read current after each time slice

fs ← readCurrent(R)

R← Roff /Reset the conductance

end

Return the extracted feature map fs for event

data.

Algorithm 1. The proposed encoding method.

2.2 A simplified memristor model

The VTEAM model is a popular voltage-controlled model

considering the threshold voltage phenomenon, which is

compatible with many window functions (Kvatinsky et al., 2015).

In addition, the VTEAM model has great flexibility to simulate

the non-linear dopant drift phenomenon. Considering the STM

behavior in many solid-state memory devices, we improve the

memristor model by adding a decay term below the threshold

value. The optimized VTEAMmodel is shown below:

dw(t)

dt
=















koff ·
(

v(t)
voff
− 1

)αoff
· f (x(t)), 0 < voff < v

−
w(t−1)

τ
, von < v < voff

kon ·
(

v(t)
von
− 1

)αon
· f (x(t)), v < von < 0

(1)

x(t) =
w(t)

W
(2)

R(t) = Ron + (Roff − Ron) · x(t) (3)

v(t) = R(t) · i(t) (4)

where w(t) is an internal state variable in [0, W], W is a constant

that represents the maximum value of w, x(t) is an internal state

variable in [0, 1], τ is the constant decay value, f (x) is the window

function, v(t) is the voltage applied to the memristor, i(t) is the

current passing through the memristor, R(t) is the resistance of

the memristor, and t is the time. The parameters von and voff are

threshold voltages, and Ron and Roff are resistance values of the

memristor in its ON and OFF states. The parameters kon, koff , αon,

and αoff are constants. The window function f (x) is applied to

model the non-linear drift behavior with scalable parameters (Soni

and Sahoo, 2022).

Considering the dynamic behavior in the time surface, the state

change with the memristor can be modeled as follows:

△R = (Roff − Ron) · △x = (Roff − Ron) ·
△w

W
(5)

In the VTEAM model, the memristor’s resistance change is

primarily governed by the direction and magnitude of the voltage.

When the memristor device is applied under serial constant voltage

pulses δspk(t) over than threshold von and voff, the internal state

variable w behaves as below:

△w =

{

−c1 · f (x), δspk(t) = 1

c2 · f (x), δspk(t) = −1
(6)

where c1 and c2 denote constants defining howmuch the resistance

changes within the time according to pulse state. The state change

△R is dependent on internal state w and can be expressed as below:

dR(t)

dt
=

R(t − 1)

τ
· 1δ(t)=0 + c · δspk(t) · f (x) (7)

where 1 is the indicator function that equals 1 if δspk(t) = 0 and

takes the value 0 in other cases, and f (x) is the appeid window

function. In this case, we consider the boundary effect and apply

Biolek’s window function (Biolek et al., 2009), which is given

by f (x) = 1 − (x− stp(−i))2p, where stp is the step function.

We substitute the parameter x with Equation 3, and the window

function can be expressed as follows:

f (x) = 1− (
R− Ron

Roff − Ron
− stp(−i))

2p

(8)

Our model in NEIR method is derived from the VTEAM

model yet it is significantly simplified. Compared with the other

existing memristor model, our model focuses exclusively on pulse

behavior instead of I-V behavior. It has the much simplified model

with less fitting parameters (4 in total), which is easy to use in

pulse simulation. This approach relies on the memristor’s response

under the pulse stimulus, which is a more intuitive framework

that prioritizes efficiency in electrical pulse manipulation. This

direct and effective method provides a particular advantage

for simulating the dynamic memristor property for reservoir

computing scenarios, where time-dependent spike data can be

treated as pulse stimulus. By mirroring the natural processing

mechanisms in biological neurons, this method allows for physical

implementation in memristors responding to electrical or optical

impulses over time.

2.3 Behavior simulation

To demonstrate the effectiveness and precision of modeling

the memristor device property, we conducted a comparative

simulation using serials of random pulses with SPICE-based model

and our simplified model as shown in Figure 3A. Based on the

proposed reservoir node circuit, the SPICE simulation is conducted
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TABLE 1 Comparison of event representation methods.

Event representation method Features Algorithm complexity Properties

Individual event Spatial Low Sparse/High data rate

Event packet Spatial Low Simple/Low precision

Time surface Spatial and temporal High Decay over time/Temporal

information

VoxelGrid Temporal better than spatial Moderate Avoid event collapse/High

precision

Ours Spatial and temporal High but hardware-friendly Energy-efficient/High precision

FIGURE 4

(A) Di�erent event representation result visualization: Raw event behavior, Integrate-to-frame, VoxelGrid, and our method. (B) T-SNE visualization of

NMNIST dataset before and after the proposed encoder.

with the modified VTEAM model. The simplified model aims to

capture the pulse behavior of the memristor state with simulation

frequency of 200 Hz. For demonstration purposes, we increase

the event frequency and decay penalty, whereas in real scenarios,

events usually fire at low rates with sparsity. The well-fitting

result indicates that our simplified model can accurately extract

spike-based features and retain critical dynamics, which makes it

a valuable tool for fast and efficient modeling. The parameters

of the simplified memristor behavior simulation in this study are

listed in Figure 3B. From Equation 7, it shows the strong non-linear

relationship between programming pulses and the resistance value

of the memristor, which is essential for the reservoir computing
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simulation due to the non-linearity and dynamics. The simulated

memristor model for a pair of positive and negative pulses is

shown in Figures 3C, D. The resistance change curve shows a

non-linear manner, where state variable x gradually increases with

positive pulses and decreases with negative pulses. The resistance

is limited between Ron and Roff with boundary effect constraint.

The non-linearity value of the curve can be easily modified by two

parameters c1 and c2 or through curve fitting with experimental

memristor data. The model is simplified and purely based on the

pulse mode with few parameters, which is easy to use in non-linear

fitting cases.

The event behavior can be described and transmitted with three

essential parameters, including time step, pixel coordinates (x, y

position), and event polarity (Leñero-Bardallo et al., 2018). The

event behavior can be expressed as

ei = {xi, yi, pi, ti} (9)

where xi and yi are the positions of an active pixel, pi represents

the polarity of an event, ti is the time step, and ei is the ith event

in the stream. For the reservoir encoding method, the memristor

array updates its conductance state according to the event streams.

We partition the event recordings into smaller chunks and perform

feature extraction by reading the current periodically at each

segment. These patterns in an analog state can be processed by

subsequent DNN/SNN blocks. The proposed encoding method is

shown in Algorithm 1.

2.4 Event-data representation methods
and result visualization

Event data are processed and transformed into alternative

representations to extract significant information and facilitate

specified algorithm processing. These representation methods

focus on converting raw event data into a format that is more

amenable to algorithmic processing, enabling efficient information

extraction and decision-making (Lakshmi et al., 2019). Our

reservoir layer serves as the encoder with the same purpose

but applying a memristor-based hardware framework with non-

linear dynamics. This is distinct from traditional methods and

aligns with our objective to optimize both performance and

hardware compatibility. In this study, we make a comparison of

existing popular representation methods for event data in Table 1.

This comparison presents the characteristics and storage feature

of each method, which highlight their suitability for different

computational scenarios. Our proposed memristor-based method

can extract both spatial and temporal features with the advantage

of being hardware-friendly and energy-efficient.

Figure 4A displays the visualization result of different event

representation methods for digit “9” in NMNIST dataset. The

visualization result contains four different methods, namely, raw

event, frame, VoxelGrid, and our method. The raw event data

consist of individual events plotted in space and time, resulting

in a sparse and scattered visualization. This method retains

all event information but lacks structure, making it difficult

to discern the underlying pattern of the digit “9.” The frame-

based representation method accumulates events over a fixed time

TABLE 2 Performance comparison of di�erent Encoding methods.

Dataset Encoding
method

Bottleneck
model

Accuracy
(DNN)

Accuracy
(SNN)

DVSGesture Frame VGG 11 77.27 72.43

Time

surface

VGG 11 87.11 69.30

VoxelGrid VGG 11 80.34 71.96

Ours VGG 11 88.42 74.18

DVSCIFAR10 Frame VGG 16 65.12 61.30

Time

surface

VGG 16 68.42 64.95

VoxelGrid VGG 16 66.10 60.78

Ours VGG 16 72.45 66.45

NMNIST Frame Three-layer

ANN

89.48 86.92

Time

surface

Three-layer

ANN

96.76 95.85

VoxelGrid Three-layer

ANN

97.48 94.84

Ours Three-layer

ANN

98.15 97.45

DVSLip Frame ResNet-18 38.54 33.97

Time

surface

ResNet-18 47.54 41.74

VoxelGrid ResNet-18 50.89 38.13

Ours ResNet-18 53.13 44.81

interval to create a frame, which could blur temporal information

and introduce motion artifacts. This VoxelGrid approach balances

both spatial and temporal information but may suffer from

quantization effects, which may lead to a loss of fine details. Our

method extracts both spatial and temporal information through

non-linear behavior of memristor device, maintaining clarity in

the contours. The event representation methods aim to capture

and retain essential features through sparse event behaviors,

enabling efficient processing and analysis of dynamic visual scenes.

Figure 4B shows the comparison result for raw event data and the

data after memritsor-based reservoir encoder. The visualization

result utilizes t-distributed stochastic neighbor embedding (t-SNE)

method for dimensionality reduction. It contains 2,000 samples

randomly chosen from test set of NMNIST dataset with the same

experimental setup. Samples from the same category are more

distinctly clustered after the proposed encoder, which indicates

the information extraction ability of proposed memristor reservoir

event representation method.

3 Numericial experiment

3.1 Experiments on DVS dataset

We evaluate the memristor encoding method in DNN/SNN

bottleneck structure through event-based datasets, including DVS

Gesture (Amir et al., 2017), DVS CIFAR10 (Li et al., 2017),
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FIGURE 5

(A) The e�ect of device conductance variation. (B) The e�ect of ADC resolutions.

TABLE 3 Performance comparison of proposed reservoir node.

References Power (µW) Normalized
energy
(µJ)

Propagation
delay (ns)

Supply
voltage
(V)

Classifier Task Accuracy

Zhong et al. (2021) 50 0.006 N/A 3.3 ANN Spoken Signal

processing

97.6%

Moon et al. (2019) 17.7× 106 a 54.6 N/A <2 CNN Time-series

forecasting

99.2%

Nowshin et al. (2024) 10.8 N/A 500 1.8 RNN-RC Image

recognition

MNIST: 98%

This work 137 b 0.69 280.19 3.3 SNN/DNN Event

representation

DVSGesture: 88.42%

NMNIST: 98.15

DVSCIFAR10: 72.45%

aPower evaluation for the entire system.
bPower evaluation with a single reservoir node.

NMNIST (Orchard et al., 2015), and DVSLip (Tan et al., 2022).

To integrate the information effectively, the encoder captures data

at a frequency of 30 Hz and sent to the subsequent layers. In

the simulation, the initial states of neurons in the reservoir are

drawn from a normal distribution with a mean of (Rmin+Rmax)/2.

The NEIR method allows efficient feature description of the

temporal information in all prior spike inputs with simple DNN

backpropagation rules across time steps. We compare the NEIR

with existing encoding approaches including frame, time surface,

and voxel grid. The comparison results are shown in Table 2. With

the same experiment setting, we evaluate the event representation

methods via spike and non-spike bottleneck network. For image

recognition on DVS Gesture dataset, our NEIR method reaches the

accuracy of 88.42% in VGG 11 model, which is much higher than

the other encoding method (87.11% for time surface).

We also apply spike-based bottleneck network to evaluate

the performance of encoding methods. To solve the non-

differentiability of spike behavior, we implement the spiking

activation function with an approximation of gradient (Wu et al.,

2019). We set the default time steps as 5 for each event sample and

conduct experiment with different encodingmethods.We observed

that our method achieved an accuracy of 66.45% on the DVS

CIFAR10 dataset using a spike-based VGG 16 model, compared

with 64.95% when employing time-surface techniques. The NEIR

method exhibits superior performance over other encodingmethod

in both spike and non-spike architecture. The ablation study

demonstrates that the NEIR method achieves high accuracy on

the test dataset, indicating its effectiveness in capturing essential

features from event data. The Pytorch platform and Tonic package

were used for all the experiments with methods described above.

3.2 E�ects of device variation and ADC
resolutions

Figures 5A, B provide a summary of the impact of non-

idealities on our system for image recognition on DVS Gesture

dataset. Each data point in the figure shows the mean and

standard deviation across five arbitrary seed values. Due to

the stochastic ion behavior and vacancy forming process, the

conductance of memristors displays variations and fluctuations
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from expected conductance value (Ielmini and Wong, 2018).

Figure 5A illustrates the impact of device conductance

variation. As device conductance variation increases, network

performance gradually declines, dropping from 88.45% at a

5% conductance range to 80.47% at a 25% conductance range,

with an increasing of accuracy variation. Figure 5B shows the

effect of ADC resolution. With the higher resolution ADC, the

precision of information improves and the network achieves

better performance.

3.3 Performance evaluation

Table 3 shows the hardware evaluation and comparison for the

proposed reservoir circuit node. We conduct the circuit simulation

via PSPICE in Cadence and explore critical performance metrics

including power consumption, energy usage, and latency. The

result shows an average power consumption of 137 µW and

normalized energy of 0.69 µJ per event with supply voltage of

3.3V, which highlights efficiency in information encoding at low

cost. The expected propagation delay of 280.19 ns represents the

total time delay across the critical path, where the memristor

crossbar analysis is evaluated in Lu et al. (2021). Compared to

other studies, our design demonstrates competitive performance.

Zhong et al. (2021) reports a lower power consumption of 50 µW

and a normalized energy of 0.006 µJ but emphasized on device

measurement. Our evaluation is based on the individual memristor

reservoir circuit and achieve competitive accuracies on multiple

event-based datasets, which is more complex task across others.

This circuit performance evaluation shows the requirements for

the memristor-based reservoir node, which reveals the potential

application for energy-efficient event sensing system.

4 Conclusion

In this study, we proposed NEIR, a neuromorphic

approach using memristors as reservoir encoders. We utilize

the stochastic and non-linear properties of memristors as

reservoir node for effective, low-cost feature extraction of

event data. Our design does not require a DAC component

and directly encode ON and OFF events triggered by digital

clock. We also present a simplified memristor model based

on the VTEAM model to accurately capture pulse behaviors

with fewer parameters. Comparative analyses across four

datasets demonstrate that our approach achieves superior

accuracy over other methods, illustrating the potential of

memristor-based systems in real-time data processing and

neuromorphic computing.
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