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Objective: Explore alterations in topological features of gray matter volume 
(GMV) and structural networks in non-cognitive impairment end-stage renal 
disease (Non-CI ESRD).

Materials and methods: Utilizing graph theory, we  collected structural 
magnetic resonance imaging (sMRI) data from 38 Non-CI ESRD patients and 
50 normal controls (NC). We compared, and extracted the GMV across subject 
groups, constructed corresponding structural covariance networks (SCNs), and 
investigated the alterations in SCNs feature parameters between groups.

Results: In Non-CI ESRD patients, The GMV were reduced in several brain 
regions, predominantly on the left side (p  <  0.05, FWE correction). The small-
world network characteristics of the patient group’s brain networks showed 
a tendency toward regular. In a few densities, global network parameters, 
transitivity, (p  <  0.05) was significantly increased in the ESRD group. Regional 
network measurements revealed inconsistent changes in regional efficiency 
across different brain areas. In the analysis of network hubs, the right temporal 
pole is likely a compensatory hub for Non-CI ESRD patients. The SCNs in Non-
CI ESRD patients demonstrated reduced topological stability against targeted 
attacks.

Conclusion: This study reveals that patients with renal failure exhibited subtle 
changes in brain network characteristics even before a decline in cognitive 
scores. These changes involve compensatory activation in certain brain regions, 
which enhances network transitivity to maintain the efficiency of whole-brain 
network information integration without significant loss. Additionally, the SCNs 
characteristics can serve as a neuroanatomical marker for brain alterations in 
Non-CI ESRD patients, offering new insights into the mechanisms of early brain 
injury in ESRD patients.
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1 Introduction

Chronic kidney disease (CKD) is a pathological state 
characterized by persistent and progressive deterioration of renal 
function, manifested by albuminuria or a glomerular filtration rate 
(GFR) of less than 60 mL/min/1.73 m2 for at least 3 months. A 
reduction in GFR to 30 or 15 mL/min/1.73 m2 indicates advanced or 
ESRD (Kalantar-Zadeh et al., 2021). In 2017, the number of patients 
across all stages of CKD reached 700 million, with 1.2 million deaths 
attributable to the diagnosis of CKD. It is projected that by 2040, this 
number will rise to 2.2 million at best and could reach 4 million at 
worst (GBD Chronic Kidney Disease Collaboration, 2020). Effective 
preventive and therapeutic measures are crucial to mitigate the rising 
prevalence rate, given the growing public health concern.

It is widely recognized that CKD is one of the major risk factors 
for cognitive impairment (CI) (Scheppach et al., 2023). Early-stage 
manifestations may include cognitive decline in various domains such 
as orientation, attention, and language (Li et al., 2022). Consequently, 
there is a focus on researching cerebrovascular and morphological 
changes in the brains of ESRD patients.

The pathophysiological mechanisms underlying CI in ESRD 
patients remain unclear (Yue et al., 2021), and there are limited data 
regarding its etiology and brain morphological manifestations 
(Scheppach et al., 2023). The multi-dimensional cognitive decline 
observed in ESRD patients is currently thought to be associated with 
factors such as metabolite deposition (particularly urotoxin), 
oxidative stress, cerebrovascular inflammation, and electrolyte and 
fluid imbalances (Rosner et al., 2021). These factors may exert diffuse 
effects on brain structures. Vogels et al. (2012) have shown that CKD 
is likely associated with brain lesions including white matter (WM) 
lesions, silent cerebral infarction (SCI), and cerebral atrophy (CA). 
Regarding brain gray matter morphology, ESRD patients exhibit a 
significant reduction in volume within the limbic system (LS) and 
the default mode network (DMN) (Zhang et al., 2013). Investigating 
potential imaging biomarkers in patients with early-stage Non-CI 
ESRD is of paramount importance for early identification, 
prevention, and the development of intervention strategies.

Nowadays, the convergence of network and neuroscience has given 
rise to the field of brain network analysis. This field categorizes different 
cortical regions into structural or functional networks based on their 
macroscopic connections or correlated functional activities (Richmond 
et  al., 2016), Presented by structural MRI (sMRI)/diffusion tensor 
imaging (DTI) and functional MRI (fMRI) respectively. The application 
of graph-theoretic models to brain imaging techniques for brain 
network analysis is a current hotspot in brain science research. As a 
common framework, these models facilitate the comparison of results 
across different modalities of research, and they only require deriving 
a few simple metrics to describe the structural or topological properties 
of brain networks holistically (Rubinov and Sporns, 2010).

Resting-state functional magnetic resonance (Rs-fMRI) studies have 
indicated that ESRD patients not only show abnormal regional brain 
functional activity but also exhibit a decrease in both intra and inter 
regional functional connectivity. For instance, the study by Yue et al. 
(2021) shows reduced node betweenness in regions such as the DMN 
and bilateral superior frontal gyrus (SFGmed), likely contributing to the 
decline in cognitive test performance observed in ESRD patients with 
CI. Changes in brain regions related to the DMN are most pronounced 
(Liang et al., 2013; Luo et al., 2016; Ni et al., 2014; Zheng et al., 2014). 

These alterations in neurofunctional networks highly overlap with 
regions experiencing a reduction in cortical structural volume.

The research by Seeley et al. (2009) further corroborates that 
large-scale distributed structural networks tend to converge with 
intrinsic functional networks. This finding suggests that structural 
covariance networks can macroscopically reflect changes in 
functional networks. Such a marker can intuitively and effectively 
represent the alterations in cognitive brain morphology of ESRD 
patients, thereby providing robust support for the early identification 
and management of cognitive deficits associated with the disease.

SCNs represent a methodology that elucidates the organizational 
patterns of brain networks by assessing the covariance of morphological 
imaging indices across brain regions within a population. SCNs are 
constructed through the computation of morphological data correlations 
between different brain areas in a cohort, thereby highlighting the 
co-variance of brain morphological traits (Alexander-Bloch et al., 2013). 
These networks capture the impact of unique environmental factors and 
chronic disease states on the brain’s network architecture, offering stable 
metrics indicative of long-term network properties. The application of 
SCNs has been extensive in the investigation of diverse neurological and 
psychiatric conditions, including Alzheimer’s disease, multiple sclerosis, 
dyslexia, and the morphogenesis of the fetal brain (He et al., 2008; Wang 
et al., 2022; Hosseini et al., 2013; He et al., 2009).

In this study, leveraging MRI and graph-theoretic analysis with 
cortical volume parameters, we compared the large-scale cortical 
structural networks between ESRD patients and NC. We hypothesized 
that ESRD patients might exhibit abnormal changes in cortical 
volume and speculated the presence of shared or distinct structural 
covariance network patterns. Building on this hypothesis, we further 
examined the differences in connectivity of network hubs (highly 
connected nodes) and in regional network efficiency, focusing on 
node betweenness and degree separately. Although foundational 
research exists on Rs-fMRI and white matter structural networks DTI 
imaging (Yue et al., 2021; Hu et al., 2024; Chou et al., 2019), we offers 
a rarer exploration into the large-scale cortical volumetric covariance 
networks in Non-CI ESRD patients compared with NC. This 
comparison aids in a deeper understanding of the precise and 
coordinated histomorphic changes in the brain’s structural networks 
of Non-CI ESRD patients and provides an anatomical foundation for 
the interconnections among pathological alterations.

2 Materials and methods

2.1 Participants

Between January 2023 and January 2024, 38 Non-CI ESRD patients 
(ESRD group) and 50 NC group, demographically matched for age, 
gender, were enrolled at the Second Affiliated Hospital of Guangzhou 
Medical University for participation in this study. All participants were 
fully capable of independently administering the MMSE, MoCA. The 
inclusion criteria for the ESRD group: (1) clinically diagnosed ESRD 
patients meeting the Kidney Disease Outcome Quality Initiative’s 
(KDOQI) 2003 criteria for CKD (Levey et al., 2003); (2) age between 30 
and 60 years; (3) MMSE scores ≥27, MoCA scores ≥26 (Folstein et al., 
1975; Nasreddine et al., 2005); and (4) right-handed.

The exclusion criteria for ESRD group: (1) patients with unstable 
conditions or those who had undergone renal transplantation; (2) acute 
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renal failure or acute infectious disorders; (3) organic or functional 
lesions of brain such as severe traumatic brain injury, cerebral infarction, 
brain tumour, and cerebral hemorrhage, schizophrenia, etc.; (4) severe 
heart failure, liver disease, etc.; (5) a history of substance dependence or 
abuse including drugs, alcohol, or illicit substances; and (6) 
contraindications for MRI scanning such as the presence of a pacemaker, 
internal metallic foreign bodies, or claustrophobia.

The study was approved by the Ethics Committee of the Second 
Affiliated Hospital of Guangzhou Medical University. Prior to the 
commencement of the research, the trial procedures were thoroughly 
explained to the participants and their legal guardians, who provided 
consent through a signed informed consent form.

2.2 MRI data acquisition and 
pre-processing

3D-T1WI and associated plain scan sequence images were 
collected using a Philips Ingenia 3.0 T MRI device (Philips Ingenia 
Elition, AMS). 3D-T1WI scans were performed using a 3D-spoiled 
gradient echo sequence with acquisition parameters: echo time (TE) 
=3.5 ms, repetition time (TR) = 7.9 ms, field of view = 250 mm × 199 
mm × 170 mm, flip angle = 8 degrees, matrix = 252 × 200, slice 
thickness = 1 mm, number of slices = 170, interslice gap = 0 mm, and 
number of excitations = 1, with a scan duration of 4 min 41 s.

The raw 3D-T1WI image data underwent voxel-based 
morphometry (VBM) analysis on the MATLAB R2018a data 
processing platform.1 Preprocessing of all subjects’ 3D-T1WI images 
was conducted using the CAT12 tool. The specific steps included:

 (1) Image format conversion: Converting the original 3D-T1WI 
MRI data files from .dcm to .nii format.

1 https://www.mathworks.com/products/matlab.html

 (2) Spatial normalization: Refining the converted .nii format data 
using the SPM12 and CAT12 toolkits for segmentation, 
reconstruction, correction, and alignment, registering to the 
Montreal Neurological Institute (MNI) standard space 
template. The automated anatomical labeling (AAL) template 
was used to segment the cortical volume, with the 90 cortical 
and subcortical regions defined by the AAL template 
designated as regions of interest (ROIs) for VBM analysis.

 (3) Image quality control and consistency assessment: Utilizing the 
CAT12 tool for an extensive quality check of the grey matter 
volume data to identify and exclude any substandard data.

2.3 Construction of structural covariance 
networks

Using the graph analysis toolbox (GAT), the 90 grey matter volumes 
of the cerebral cortex and subcortical regions of each subject were extracted 
with the AAL template and input to GAT to construct SCNs of grey matter 
volume. The 90 regions of interest in the AAL atlas were defined as nodes, 
and the edge strength of the SCNs was determined by the Pearson 
correlation between the grey matter volume values in corresponding brain 
regions across all subjects, with age, gender, and total intracranial volume 
(TIV) as covariates. Each entry rij was defined as the Pearson correlation 
coefficient between the grey matter volumes of regions i and j. The 
correlation matrix was transformed into a binary matrix, with entries being 
1 or 0. The threshold of 0.1 is a standard choice in the field (Yang et al., 
2021), confirmed suitable for this study via backpropagation. An entry aij 
is 1 if rij exceeds 0.1, otherwise it is 0. Finally, two sets of 90 × 90 binary 
correlation matrices were output, with the diagonal elements of the 
constructed matrices also set to 0 (Figure 1). When applying absolute 
thresholds to threshold the correlation matrices of different groups, 
variation in node count and degree distribution may occur, affecting 
network measurements and reducing the interpretability of inter-group 
comparison results. We  therefore set the threshold for each group’s 
correlation matrix to achieve a binary adjacency matrix with a network 

FIGURE 1

Binary matrices of ESRD group (A) and NC group (B) over a range of densities (D  =  0.33–0.50, 0.01).
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density of D. The network density D is defined as the number of edges in 
the graph divided by the maximum possible number of edges. Comparing 
graph measurements requires a minimum density of graph to ensure full 
connectivity and non-fragmentation. For structural networks, densities 
exceeding 50% may have questionable biological significance. The network 
density is calculated as D = E/[(N*(N − 1))/2], where E is the number of 
edges and N represents 90 nodes (Hosseini et al., 2012). The minimum 
density of both networks is calculated to be  0.33, so the lower limit 
Dmin = 0.33 is defined as the minimum density of the non-fragmented 
network and the upper limit of the density range Dmax = 0.50 represents the 
maximum density of the network without exceeding the biological 
significance. Therefore the density range was taken from 0.33 to 0.50 and 
verified to be statistically significant and the optimal operating density 
interval of the network was 0.01, so the density range of the network was 
determined in increments of 0.01.

2.4 Network analysis

2.4.1 Small-world network
The concepts of clustering coefficient (Cp) and characteristic path 

length (Lp) describing the properties of a small-world network were 
initially introduced by Watts and Strogatz (1998). Cp is the average of the 
clustering coefficients of all nodes in the network and measures the 
tendency of a node’s neighboring nodes to connect with each other, 
reflecting the degree of local clustering (Maslov and Sneppen, 2002; Liao 
et al., 2017). The Lp of a network represents the average shortest path 
length between any two nodes. To address issues arising from networks 
comprising more than one component, Newman and Girvan (2004) and 
Sporns (2013) proposed measuring Lp using the harmonic mean distance 
between pairs of nodes. Lp (in the form of 1/Lp) quantifies the ability to 
propagate information in parallel or assess global efficiency (Watts and 
Strogatz, 1998; Latora and Marchiori, 2001). To evaluate the brain’s 
topology, these parameters must be compared against the average values 
of a benchmark random graph (Maslov and Sneppen, 2002; Milo et al., 
2002). The small-world metric of the network is obtained from [C/Crand]/
[L/Lrand], where Crand and Lrand are the average clustering coefficient and 
characteristic path lengths, respectively, of m random networks (Milo 
et al., 2002). m represents the number of null networks used for the 
standardization of clustering and path lengths, with a default value of 20. 
Cp that are significantly higher than random networks (C/Crand, denoted 
by γ in this paper, >1) and Lp that are comparable to random networks 
(L/Lrand, denoted by λ in this paper, ≈1) are considered to satisfy the 
small-world network property ([C/Crand]/[L/Lrand], denoted by σ in this 
paper, i.e., γ/λ > 1)(Maslov and Sneppen, 2002; Liao et al., 2017).

2.4.2 Regional network characteristics
The nodal characteristics of regionally structured networks were 

correlated with changes in RE, including node betweenness centrality 
and node degree. Analyze the node characteristics, including node 
betweenness centrality and node degree, of the regionally structured 
cortical networks. Calculate the normalized regional network 
measures for each node at a threshold of minimum density D = 0.33 
to identify between-group differences in these metrics. This approach 
aims to explore whether there are statistically significant differences 
between groups regarding regional network metrics. The chosen 
threshold D = 0.33 ensures the inclusion of all regions within the 
cortical network, effectively reducing the number of false positive 

connections. By restricting the network in this manner, the 
correlation strength between regions is optimized, which is 
considered reasonable for the purposes of this study (Wu et al., 2018).

2.4.3 Network hubs
Network hubs are defined as those nodes with a node 

betweenness that exceeds the average network node betweenness by 
more than 2 standard deviations (Hosseini et al., 2012; Yang et al., 
2021). They are the most connected regions of the whole-brain 
network, playing a crucial role in coordinating brain functions 
through their extensive connections. Network hubs are considered to 
be important regulators of information flow and, in addition, are key 
to the network’s resilience to brain injury.

2.4.4 Network robustness
This paper conducts separate analyses for targeted and random 

attacks. Targeted attacks are a strategy that selectively removes the 
most critical nodes in the network, ranked by node degree. This 
strategy models an assault on the most influential elements of the 
network. In contrast, random attacks indiscriminately remove nodes, 
chosen completely at random. This simulates scenarios of random 
failures or attacks (Hosseini et al., 2012). Robustness is the capacity 
of a system, model, network, or structure to retain its functionality 
and performance in the face of changes, disturbances, errors, or 
attacks. In essence, robustness assesses a system’s stability and 
reliability under adverse conditions (Liao et al., 2017).

2.5 Statistical analysis

2.5.1 Demographic and clinical data
To compare the clinical data differences between the ESRD and NC 

groups, this study utilized SPSS 27.0 for statistical analysis. Age, education 
level, MoCA, MMSE, scores of both groups underwent normality and 
homogeneity of variances testing. Metric data conforming to normal 
distribution characteristics were evaluated for group differences using the 
two-independent sample t-test. Data not conforming to these characteristics 
were examined using the Mann–Whitney U test, a non-parametric 
alternative. For categorical variables, the chi-square test was performed to 
assess distribution between the two groups. A p-value of less than 0.05 was 
considered statistically significant.

2.5.2 VBM analysis
In the statistical analysis of VBM data, age, gender, and total brain 

volume were included as covariates in the analysis to control for 
potential confounding factors. Two-sample t-tests between groups 
were performed using SPM12 software to compare voxel-wise GMV 
between the ESRD and HC groups. VBM data processing incorporated 
family-wise error (FWE) correction with a cluster size threshold of 
>300 voxels, and differences were considered statistically significant 
when p < 0.05. Finally, the xjView toolbox was utilized to visualize 
regions of significant difference in brain maps post-VBM analysis.

2.5.3 Analysis of SCNs data
Intergroup comparisons of network metrics were conducted using 

GAT, focusing on values at Dmin and AUC across the density range from 
Dmin to Dmax. The statistical significance of differences in global and region 
network metrics was assessed using permutation tests with 1,000 cycles. 

https://doi.org/10.3389/fnins.2024.1467791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1467791

Frontiers in Neuroscience 05 frontiersin.org

Results were adjusted for false discovery rate (FDR) at a threshold of 
p < 0.05, two-tailed. A node was deemed a network hubs if its node 
mediativity was at least 2 standard deviations above the network’s average 
node betweenness (Hosseini et al., 2012).

3 Result

3.1 Comparison of demographic and 
clinical information

A total of 38 cases were included in the ESRD group and 50 in the NC 
group (Table 1). Differences in gender, age, MoCA and MMSE scores 
between the two groups were not statistically significant (p > 0.05).

3.2 Statistical comparison of cortical 
volumes

The analysis of the VBM data using two-sample t-tests revealed 
that, compared with the NC group, the ESRD group exhibited 
decreased GMV in multiple brain regions, with significant reductions 
in the left temporal pole: superior temporal gyrus, right gyrus rectus, 
right calcarine fissure and surrounding cortex, bilateral insulae, right 
parahippocampal gyrus, left superior temporal gyrus, left anterior 
cingulate and paracingulate gyri, and left fusiform gyrus 
(FWE-corrected, p < 0.05, cluster size>300, t-value = 4.96). Specific 
brain regions, with their MNI spatial coordinates, p-values, and 
associated volume differences, were visualized in three-dimensional 
images (Table 2 and Figure 2).

FIGURE 2

Brain regions with significant differences in grey matter volume comparison between ESRD and NC groups.
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TABLE 2 Brain regions with differences in grey matter volume in ESRD group compared to NC group.

Brain region 
(acronyms)

Voxel (mm3) MNI coordinates p

X coordinate Y coordinate Z coordinate

TPOsup.L 738 −27 6 −21 <0.001

REC.R 1,884 3 38 −14 <0.001

CAL.R 1,066 16 −69 16 <0.001

INS.R 1,102 42 3 8 <0.001

INS.L 375 −38 22 2 <0.001

FFG.L 943 −28 −62 −14 <0.001

PHG.R 308 20 6 −21 <0.001

STG.L 544 −56 −24 12 <0.001

ACG.L 366 −4 33 26 <0.00

Full names of the corresponding brain regions are provided in Supplementary Table S1.

3.3 Differences between the global 
networks

First, binary correlation matrices were output for each group, 
revealing significant correlations in the brain region structures within 
both groups (Figure 1).

According to the values of the γ, λ, and σ parameters for both 
groups (Figure 3), the cortical volume SCNs of both the ESRD group 
and the NC group exhibited small-world network properties. 
Although there are no significant differences between the two groups, 
in the ESRD group, the normalized clustering coefficient (γ) and the 
small-world attribute (σ) decrease under a majority of densities, while 
the normalized characteristic path length (λ) increases.

The global network metrics (Figure 4) were further compared 
within a defined range of densities (0.33–0.5, 0.01 intervals), 
including the Cp, Lp, global efficiency, local efficiency, assortativity, 
transitivity, and modularity. Only at D = 0.42, was the transitivity 
significantly higher in the ESRD group compared to the NC 
group. No other indicators showed significant differences between 
the two groups. However, compared to the NC group, the Cp, Lp, 
and assortativity increased in the ESRD group, while global 
efficiency, local efficiency, and modularity decreased across 
most densities.

AUC analysis of the global network metrics indicated that the 
transitivity of the ESRD group was significantly higher than that 

of the NC group (p = 0.036). The differences in the remaining 
metrics between the two groups were not statistically significant 
(p > 0.05).

3.4 Differences between the regional 
networks

We studied each index of the regional network between the two 
groups, i.e., the node network attribute indexes, including local 
clustering coefficient, degree, and node betwenness, and performed 
AUC analysis on them separately. The standardised local clustering 
coefficient of the ESRD group was obtained to be  significantly 
lower than that of the NC group in the left Heschl gyrus, and 
significantly higher than that of the NC group in the left middle 
frontal gyrus, right rolandic operculum, and right precuneus. The 
degree of the ESRD group was significantly smaller than that of the 
NC group in the right precuneus, and significantly greater than 
that of the NC group in the right superior frontal gyrus, medial, 
and left Heschl gyrus. The node betweenness of the ESRD group 
was significantly smaller than that of the NC group in the left 
middle frontal gyrus, right precuneus, and significantly greater 
than that of the NC group in the right temporal pole (Figure 5, 
p < 0.05).

3.5 Network hubs

Hubs were quantified by the AUC values of node betweenness 
centrality, with hubs defined as regions where the node 
betweenness centrality was greater than two times the standard 
deviation above the network’s average node betweenness centrality. 
The hubs in the ESRD group included the left middle frontal 
gyrus, orbital part, the left olfactory cortex, the left median 
cingulate and paracingulate gyri, the right lingual gyrus, the left 
postcentral gyrus, and the right temporal pole: superior temporal 
gyrus. In the NC group, the hubs included the left middle frontal 
gyrus, the right insula, the right median cingulate and 
paracingulate gyri, the right precuneus, and the left superior 
temporal gyrus (Figure 6).

TABLE 1 Demographic and clinical characteristics and 
neuropsychological test scores.

Variables ESRD 
group 
n =  38

NC 
group 
n =  50

Statistic 
value

p

Gender (Female/male) 18F/20M 28F/22M χ2 = 0.645 0.422

Years of education (year) 12.47 ± 3.46 13.62 ± 2.79 χ2 = 7.772 0.169

Age (year) 47.13 ± 9.77 46.82 ± 10.97 Z = −0.004 0.997

MoCA 27.21 ± 2.42 28.06 ± 2.01 Z = −1.682 0.093

MMSE 28.11 ± 1.18 28.06 ± 1.71 Z = −0.298 0.766

The chi-square test was applied to gender and years of education, while the nonparametric rank sum 
test was applied for age and the rest of the scores. χ2, chi-square test; Z, Wilcoxon rank sum test.
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3.6 Network robustness results

Both populations achieved network resilience in response to random 
and targeted attacks (Figure 7), and the network resilience in response to 
targeted attacks showed some degree of diminution at certain 
network sparsities.

4 Discussion

The study explored the altered structure of cortical volume SCNs 
in Non-CI ESRD patients by analysing sMRI data from a specific 
sample of ESRD patients. The study found a series of alterations in 
the topological properties of SCNs in Non-CI ESRD patients. 

FIGURE 3

Metrics of small-world properties of the cortical volume SCN for the NC and ESRD groups. [Normalized clustering coefficient (γ: gamma) (A,B); 
normalized path length (λ: lambda) (C,D); small-world property (σ: sigma) (E,F)].
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FIGURE 4 (Continued)

https://doi.org/10.3389/fnins.2024.1467791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1467791

Frontiers in Neuroscience 09 frontiersin.org

Currently, no studies have demonstrated the presence of clearly 
targeted brain regions of injury in patients with renal failure, and 
relatively few macroscopic cerebral cortical structural network 
alterations have been explored in patients with renal failure. To 
progress in exploring macroscopic network relationships between 
neuroanatomical regions in patients with renal failure, we performed 
SCNs analysis of cortical volumes.

4.1 Analysis of cortical volume

The VBM-based study findings indicate that, compared to the 
normal control group, the cortical volume reduction in ESRD patients 

involves various brain regions, including the central executive network 
(CEN), the limbic association system, the salience network (SN), and 
the dorsal attention network (DAN). These regions exert influential 
roles in functions such as sensation, emotional regulation, and 
memory (Yeo et al., 2011; Androulakis et al., 2018).

4.2 Analysis of global networks

Brain networks are designed for effective information transfer and 
processing by striking a balance between separation and integration. 
Graph theoretic analysis can quantitatively analyse the separation and 
integration of brain networks (Rubinov and Sporns, 2010). In this 

FIGURE 4

Intergroup differences in global network metrics of the cortical volume SCN between the NC and ESRD groups. [Assortativity (A,B); Lp (C,D); Cp (E,F); 
global efficiency (Eglob) (G,H); local efficiency (MLocEff) (I,J); modularity (K,L); transitivity (M,N). Blue triangle indicates statistically significant differences in 
network metrics between the two groups at a particular density].
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paper, we found that although the SCN of Non-CI ESRD patients still 
retains the small-world topology property, the characteristic path 
lengths and clustering coefficients increase in most density 
distributions, and the network characteristics of Non-CI ESRD patients 

are gradually converging to regular networks (Latora and Marchiori, 
2001). Similar alterations in the topological properties of rules are also 
seen in brain networks of people with AD or schizophrenia disorders 
(Bullmore and Sporns, 2009). This shift indicates that the structural 
covariance network in Non-CI ESRD patients shows reduced 
segregation between various brain regions and compromised 
segregation function. This can result in outcomes like lower efficiency 
in regional information processing, higher cognitive load, and 
diminished neural network plasticity. It suggests that brain regions that 
previously processed information independently may now interfere 
with each other, and the brain requires extra resources to differentiate 
and process information from different regions effectively.

Transitivity is a metric used to quantify network segregation; 
therefore, greater transitivity indicates that ROIs tend to form highly 
interconnected clusters. The presence of significantly reduced transitivity 
has been found in studies of brain network alterations in people with 
systemic lupus erythematosus (Preziosa et al., 2020), cortical dysplasia 
(Lee et al., 2021), and those at risk for high-risk psychiatric disorders 
(Prasad et al., 2023). In a study of the effect of structural connectivity on 
cognitive performance in multiple sclerosis, Lopez-Soley et al. found that 
measures of transitivity of brain structural networks were positively 
correlated with cognitive scores (Lopez-Soley et al., 2020), suggesting that 
patients with multiple sclerosis with increased transitivity have better 
cognitive performance, and thus suggesting that increased transitivity is 
an enhancement of the efficacy of the whole-brain network, and that 
increased transitivity may act as a structural reorganisation of the brain 
in ESRD patients. The increased transitivity may act as a compensatory 
mechanism for the reorganisation of brain structures in ESRD patients 
to ensure that the transmission efficiency of the whole-brain network is 
not significantly altered.

In conclusion, this study demonstrates that the SCNs pattern of 
overall grey matter volume in ESRD patients is shifting from a small-
world to a regular network. Certain genetic and immunological factors, 
such as apolipoprotein E (APOE), a complex protein crucial for 
neuronal repair and plasticity following injury (Samatovicz, 2000), may 
significantly influence brain structural network alterations. A study by 
Bijkerk et al. (2022) has confirmed that circulating angiopoietin-2 and 
decreased levels of specific microRNAs (particularly miR-132) may 
serve as important biomarkers in elderly ESRD patients. They are 
correlated with quantitative changes in white matter hyperintensities 
(WMH) volume and cognitive decline in the brain. These factors could 
lead to changes in the connectivity of the SCNs in ESRD patients, 
causing a reorganization of the network structure.

4.3 Analysis of regional networks

Analysis of node betweenness and degree measures can assess 
differences in brain centrality interactions between two groups. This 
study found significant decreases of RE in the right precuneus and the 
left middle frontal gyrus of the ESRD group, wherein the right precuneus 
showed a more pronounced decrease, resulting in a severe network loss 
and a significant reduction in network bridges. Many neurofunctional 
connectivity studies have also reported that ESRD patients have 
significantly reduced node mediation in the right precuneus and middle 
frontal gyrus, and that these regions may also be  associated with 
neurovascular coupled NVC dysfunction, which correlates with 
cognitive impairment in ESRD patients (Yue et al., 2021; Hu et al., 2024). 

FIGURE 5

Differences in regional network metrics between the NC and 
ESRD groups. [(A) Normalized Cp; (B) node degree; (C) node 
betweenness centrality; in plots A–C, the horizontal axes 
represent the corresponding ordinal numbers of brain cortical 
ROIs as delineated by the AAL atlas (Supplementary Table S1). The 
blue triangle signifies a significant difference in regional network 
metrics between the two groups].
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FIGURE 6

Hubs of the ESRD group and the NC group cortical volume SCN. (Green dots indicate hubs in the NC group and red dots indicate hubs in the ESRD 
group). Full names of the corresponding brain regions are provided in Supplementary Table S1.

FIGURE 7

Stability of SCNs in ESRD group and NC group under random attack (A) and targeted attack (B).
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In in patients with Non-CI ESRD, the precuneus serves multiple roles, 
including involvement in the core of the DMN and its situational 
memory network as well as the paracentral gyrus network, which are 
critical for complex cognitive functions (Dadario and Sughrue, 2023).

The middle frontal gyrus, a highly interconnected cortical area 
implicated in attentional processing, working memory, and language 
generation and comprehension, plays a key role in the frontoparietal 
network (FPN) (Briggs et al., 2021). In conclusion, our study offers a 
macroscopic perspective on the markedly reduced covariation network 
capacity in the right precuneus and the left middle frontal gyrus of ESRD 
patients, providing a basis for the earlier detection of cognitive changes 
and macroscopic alterations in brain structure and network.

Non-CI ESRD patients also exhibit regions of significantly increased 
RE, such as the right superior medial frontal gyrus, left transverse 
temporal gyrus, and right temporal pole. The mechanisms behind these 
high centrality regions remain unclear but may be  associated with 
protective factors identified in existing research. Aerobic exercise during 
dialysis sessions has been shown to reduce the incidence of cardiovascular 
diseases in ESRD patients, and high-volume hemodiafiltration enhances 
hemodynamic stability and better preserves cerebral perfusion, 
potentially mitigating the accelerated cognitive decline and progression 
of white matter lesions in ESRD patients (Isnard-Rouchon and Coutard, 
2017; Kim, 2018). Further research into the relationship between brain 
structure or functional connectivity and clinical indicators in ESRD could 
elucidate the contributing causes. The current findings also indicate that 
potential secondary neuroendocrine factors may impact the connectivity 
of large-scale brain structural networks (Hosseini et al., 2012).

4.4 Analysis of network hubs

In the NC group, hubs were predominantly partly overlapped with 
the hubs observed in the brain networks of healthy adults (Ni et al., 2014).

The presence of brain reorganizational plasticity predisposes the 
right temporal pole and right superior temporal gyrus to serve as focal 
points for altered compensatory networks in ESRD patients. A recent 
diffusion tensor imaging DTI investigation into ESRD patients revealed 
a reduction in average white matter fiber tracts across the board. Notably, 
however, there was a significant increase in white matter fiber tracts 
within the bilateral superior temporal gyri (Ma et al., 2022), indicating a 
compensatory mechanism for white matter fibers in these regions among 
ESRD patients. Previous research on the diffusion tensor imaging DTI 
network in long-term hemodialysis patients with ESRD revealed nodes 
exhibiting elevated clustering coefficients (Chou et  al., 2019). This 
increased connectivity among local nodes and enhanced efficiency of 
information transfer imply the existence of compensatory mechanisms 
in ESRD patients. This phenomenon was further supported by the 
analysis of functional brain networks in ESRD patients via fMRI, which 
identified areas of enhanced connectivity within the DMN and the 
SN. These findings suggest that specific connectivity changes and 
neuropathological alterations may be linked to cognitive compensation 
in ESRD patients (Chang et al., 2021; Huang et al., 2018; Wu et al., 2020).

4.5 Network robustness analysis

The dynamic behaviour of a network may be closely related to its 
underlying topology (Kaiser and Hilgetag, 2004). Recent studies have 

indicated that a modular architecture is associated with the 
maintenance of the brain’s robustness (Chen et  al., 2021). Thus, 
variations in network parameters reflect disruptions to the network’s 
general performance. This study demonstrates that compared to the 
control group, brain networks of Non-CI ESRD patients showed a 
more pronounced decrease in topological stability in the face of target 
attacks, which may be related to histopathological changes in the 
brain cortex of Non-CI ESRD patients.

4.6 Limitations and prospects

This study is accompanied by certain limitations. Initially, it 
was a cross-sectional design, precluding the assessment of the 
direct dissociated effects of ESRD on network measures. Future 
research should consider longitudinal assessments of network 
metrics in patients with ESRD to mitigate this limitation. 
Furthermore the brain structural network changes observed in 
ESRD patients at the individual level merit further investigation. 
Concurrently, correlation analyses should be  performed in 
tandem with pertinent clinical markers to delve into the impact 
of these markers on brain network alterations.
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