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Traditional Di�usion Tensor Imaging (DTI) metrics are a�ected by crossing fibers

and lesions. Most of the previous tractometry works use the single di�usion

tensor, which leads to limited sensitivity and challenging interpretation of the

results in crossing fiber regions. In this work, we propose a tractometry pipeline

that combines white matter tractography with multi-tensor fixel-based metrics.

These multi-tensors are estimated using the stable, accurate and robust to

noise Multi-Resolution Discrete Search method (MRDS). The spatial coherence

of the multi-tensor field estimated with MRDS, which includes up to three

anisotropic and one isotropic tensors, is tractography-regularized using the

TrackOrientationDensity Imagingmethod. Our end-to-end tractometry pipeline

goes from raw data to track-specific multi-tensor-metrics tract profiles that are

robust to noise and crossing fibers. A comprehensive evaluation conducted in

a phantom simulating healthy and damaged tissue with the standard model,

as well as in a healthy cohort of 20 individuals scanned along 5 time points,

demonstrates the advantages of using multi-tensor metrics over traditional

single-tensor metrics in tractometry. Qualitative assessment in a cohort of

patients with relapsing-remitting multiple sclerosis reveals that the pipeline

e�ectively detects white matter anomalies in the presence of crossing fibers

and lesions.
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1 Introduction

Advancements in diffusion magnetic resonance imaging (dMRI) have facilitated our

understanding of the brain’s intricate architecture and organization (Le Bihan, 2003).

By measuring the diffusion of water molecules within the brain tissue, dMRI provides

valuable information to investigate the connectivity and assess the white matter (WM)

microstructure of pathways in the brain. Voxels in the WM can contain different axonal

fiber populations with complex configurations (Jeurissen et al., 2013). Each one of these

populations is called fixel, which denotes the discrete component of a fiber element (Raffelt

et al., 2015; Tournier et al., 2019). Fixels and their properties, like orientation and tissue

metrics, are fully determined by the voxel in which they reside. Local modeling allows for
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estimating these fixel properties at each voxel of the dMRI data

(Alexander et al., 2017; Jelescu and Budde, 2017). Tractography

can use these locally estimated fixel orientations to reconstructs the

trajectories of the WM, which are often called streamlines (Behrens

et al., 2007; Jeurissen et al., 2017). Additionally, tractometry

(Jones et al., 2005; Yeatman et al., 2012) has emerged as a

useful method for quantitative analysis of the WM pathways. It

encompasses the streamlines obtained with tractography at the

macroscopic level with the metrics obtained from a local modeling

method at the microscopic level. This combination enables the

analysis of microstructural changes by extracting quantitative

metrics along specific WM anatomical tracts. Tractometry insights

could potentially serve as a valuable tool for investigating WM

characterization and degeneration associated with neurological

disorders, such as multiple sclerosis (MS) (Winter et al., 2021;

Beaudoin et al., 2021), Alzheimer’s disease (Lee et al., 2015), and

traumatic brain injury (Huang et al., 2022), among others.

Diffusion Tensor Imaging (DTI) (Basser et al., 1994) is a single

fiber method traditionally used to estimate properties of the fixels,

averaging the diffusion properties of all the fixels within a voxel.

Thus, DTI results in a loss of important information of the fixels,

especially when different fiber populations with different properties

or lesions are present within the same voxel. This presents an

important problem in estimation because WM tissue contains

between 66% to 90% of voxels with crossing fibers (Descoteaux,

2008; Jeurissen et al., 2013; Schilling et al., 2017). DTI Limitations

motivated the development of more advanced acquisition and

local modeling techniques. Multi-shell High Angular Resolution

Diffusion Imaging (HARDI) (Tuch et al., 2002) was originally

developed to provide anisotropy measures beyond DTI metrics

(Tournier et al., 2011) that are more robust to crossing fibers and

sensitive to WM alterations, making also tractography more robust

(Descoteaux, 2015). HARDI allowed to develop techniques that

estimate multiple fixels within a voxel. Notable examples of these

techniques are: Q-ball Imaging (QBI) (Tuch, 2004; Descoteaux

et al., 2007), the Multi-Tensor Model (MTM) (Tuch et al., 2002),

and Constrained Spherical Deconvolution (CSD) (Tournier et al.,

2007). In particular, MTM is a straightforward extension of DTI

that represents each one of the fiber populations in the voxel

by a different diffusion tensor. However, the estimation of MTM

parameters is an ill-posed challenging problem, that requires very

high SNR data and large computational resources, restricting it’s

routine clinical use.

The dMRI signal arising from the WM is composed of

several compartments. Thus, taking advantage of HARDI, several

techniques were developed to decompose the dMRI data into

contributions from various compartments. An example of these

multi-compartment methods procedures is the model in Novikov

et al. (2019), which depicts the dMRI data as a combination

of Intra-Cellular (IC), Extra-Cellular (EC) and ISOtropic (ISO)

contributions. Other hybrid methods are based in the MTM like

the Free-Water DTI (FW-DTI) (Pasternak et al., 2009), which fits

for each voxel a bi-tensor model including an anisotropic tensor

for tissue compartment and an isotropic tensor for a free water

compartment. The DIstribution of Anisotropic MicrO-structural

eNvironments with Diffusion-weighted imaging (DIAMOND)

(Scherrer et al., 2015) and the Multi-Resolution Discrete-Search

(MRDS) (Coronado-Leija et al., 2017) are more general MTM-

based methods, which fits up to three restricted anisotropic tensors

for the restricted and hindered diffusion compartments and one

isotropic tensor for the free diffusion compartment.

DTI (Basser et al., 1994) metrics are the most widely

used metrics for tractometry (Jones et al., 2005). Although

DTI metrics have the potential to be biomarkers, they have

inconsistent sensitivity to characterize the WM as they are

easily biased. For example, the common Fractional Anisotropy

(FA) metric is informative about changes in WM microstructure

caused by pathology, but crossing fibers bias it. FA decreases

in fiber crossing voxels because oblate tensors are obtained,

which leads to an alteration in the resulting FA tract profile

in the tractometry as shown in Figure 1. These alterations can

be confused with alterations derived from WM degeneration,

which is also illustrated in Figure 1, leading to erroneous or

ambiguous interpretations. Moreover, in the presence of crossing

fibers together with pathology, FA increases, which could seem

counterintuitive. However, this could happen, when only one of

the fiber populations in the crossing is affected by the pathology,

then the resulting single-tensor may become sharper, see Figure 2.

Approaches that have studied other DTI metrics, like the radial

diffusivity (RD) metric, have shown that RD is a promising

biomarker for demyelination (Song et al., 2002, 2005; de Vries,

2010). However, they have reported that RD can be inconsistent,

presenting challenges in its reliability and reproducibility and

resulting in misleading results. Besides, co-existing inflammation,

edema, and crossing fibers can significantly impact on the DTI

metrics at the same time (Ye et al., 2020).

Multi-fixel methods have further expanded the scope of

tractometry, resulting in tract-specific analyses less impacted by

crossing fibers. Remarkable examples are the Automated Fiber-

tract Quantification (Yeatman et al., 2012; Kruper et al., 2021),

the Connectivity-based Fixel Enhancement (Raffelt et al., 2015),

the Fixel-Based Analysis framework (Dhollander et al., 2021), the

Tractometry_flow pipeline (Cousineau et al., 2017; Kurtzer et al.,

2017; Di Tommaso et al., 2017) and, recently, the UNRAVEL

framework (Delinte et al., 2023). Other tractometry frameworks

have combined DTI metrics with other metrics including fixel-

based metrics like theApparent FiberDensity (AFD). For example,

the framework called Profilometry (Dayan et al., 2015) performs a

simultaneous analysis of DTI metrics and other metrics, resulting

in tract profiles as parameterized curves in a multi-dimensional

space. Nonetheless, the crossing fibers bias in DTI metrics still

limits it. Besides, these types of multi-fixel methods face several

challenges and limitations. As example, frameworks informed

with CSD metrics such as AFD, while sensitive, do not have a

straightforward biological interpretation; moreover, they could be

biased as CSD employ a fixed response function across the entire

WM (Dell’Acqua et al., 2007; Jones et al., 2013). On the other

hand, previous tractometry results using MTM fixel-based metrics

are not free of limitations. For instance, they need more complex

multi-shell dMRI acquisitions (Scherrer and Warfield, 2012) and

are limited to a maximum of 2 fixels per voxel (Delinte et al.,

2023). This is insufficient in many brain regions, e.g. the centrum

semiovale, where 3 fiber populations cross from the corticospinal

tract, corpus callosum, and superior longitudinal tract intersect.
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FIGURE 1

Illustration of an FA tract profile in 4 di�erent scenarios showing the limitation of DTI-based tractometry. All FA tract profiles are generated through

the same bundle (orange streamlines). Blue, green, pink tensor fields exhibit a single fixel in each voxel estimated with DTI, while purple tensor field

exhibits a multi-fixel estimation with MTM. (blue tensors) A control case with healthy tissue and only one fiber population. This scenario is expected

to have high FA values in the tract profile (blue curve). (green tensors) A single fiber with demyelination resulted in an increased RD and decreased FA

(green curve). (gray and pink tensors) Tensors are estimated using DTI, where FA is a�ected in the intersection as oblate tensors are obtained (pink

curve). (gray and purple tensors) Tensors are estimated using MTM, which can estimate a di�erent tensor for each fixel at the intersection. This case is

expected to have normal FA values as the tractometry only considers FA values of the tensors aligned with the streamlines (purple curve). From this

scheme, it is clear that a single-fixel analysis is limited when di�erentiating between demyelination and crossing fibers based only on the alterations

in the tract profiles.

Additionally, fixel-FA estimation has shown to be affected by high

levels of noise and inconsistent through scan-rescan experiments

(Mishra et al., 2014) as a consequence of MTM fitting being

numerically unstable (Tuch et al., 2002). MTM-based methods

generally struggle to accurately estimate the required number of

tensors per voxel (N). Thesemethods tend to overestimate the value

of N as a direct consequence that a single diffusion tensor does

not properly represent the dMRI signal (even when a single fixel is

present) for b-values higher than 1ms/µm2, needing more tensors

to fit the per voxel signal (Karaman et al., 2023).

Between the MTM-based methods, MRDS offers a balanced

trade-off in terms of model complexity and accuracy when using

short-acquisition-time clinical multi-shell dMRI data (Coronado-

Leija et al., 2017). MRDS has proven to be a noise-robust

and accurate multi-fixel method for estimating the directions

of the fixels and their metrics. In addition, MRDS has been

histologically validated in a rat model of unilateral retinal ischemia

in which only one of the optic nerves was damaged. This nerve

lesion was correctly detected by MRDS at the region where

the optic nerves cross (optic chiasm) (Rojas-Vite et al., 2019).

Moreover, MRDS has shown to be capable of recognizing 3

fiber populations in regions-of-interest (ROI) like the centrum

semioval (Hernandez-Gutierrez et al., 2021) when using clinical

in vivo multi-shell dMRI data. A recent work (Karaman et al.,

2023) has proposed to use the Track Orientation Density Imaging

(TODI) (Dhollander et al., 2014) as a useful spatial regularizer

for a more accurate and robust estimation of N in MRDS. The

TrackOrientationDistribution (TOD) image estimated with TODI

presents an increased amount of spatial consistency compared

with the fiber orientation distribution (FOD) image obtained with

constrained spherical deconvolution (CSD) (Dhollander et al.,

2014).

In this paper, we propose a novel tractometry pipeline to

address several current limitations of tractometry informed with

multi-fixed methods. Our proposed pipeline combines multi-

tensor fixel-basedmetrics estimatedwithMRDS and the Tractoflow

(Theaud et al., 2020) and Tractometry_flow (Cousineau et al.,

2017; Kurtzer et al., 2017; Di Tommaso et al., 2017) pipelines.

The proposed pipeline provides fixel-based tensor metrics that

are robust to crossing fibers and noise. Provided fixel-based

metrics have the potential to be biomarkers for pathologies like

demyelination and can be useful for the characterization and study

of underlying WM anomalies in patients with pathologies such

as MS. Most of the previous tractometry studies in pathology

used DTI metrics, then, our multi-tensor pipeline results can

be straightforwardly situated in their context and compared

with them. Finally, the pipeline is tested on both synthetic

phantom dMRI data and clinical dMRI in vivo data from a large

healthy control and MS groups with a scan-rescan experiment,

highlighting the robustness and potential of our approach when

studying WM anomalies in patients with such neurological

disorders.
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FIGURE 2

Example of how DTI can lead to counter-intuitive results in the

presence of a lesion and crossing fibers. (A) Represents a MTM fitting

showing the presence of crossing fibers in two scenarios: healthy

(left) and damaged (right) tissue. Left scenario exhibits two healthy

fiber populations. Right scenario shows a healthy fiber population

and another with lesion. (B) Represents a tensor obtained with DTI

in the healthy and damaged scenarios. In the presence of lesion DTI

shows a sharper tensor, leading to a higher FA compared with the

healthy scenario. This is a consequence of a lesion only in one of

the underlying fiber populations for which DTI is not sensitive.

2 Methods

In this section, we describe the simulation of the synthetic

phantom and the acquired in-vivo dMRI data. We also explain each

step in the proposed pipeline.

2.1 Synthetic data

A synthetic phantom was generated based on the geometry

of a previously published dMRI phantom (Caruyer et al., 2014),

see Figure 3. The size of the phantom is 50 × 50 × 50 voxels

with an isotropic dimension of 1.0mm. Similar to Caruyer et al.

(2014), our synthetic phantom has 20 distinct bundles showing a

complex fiber crossing configuration and volume contamination

with CerebroSpinal Fluid (CSF). Each bundle in the phantom

exhibits unique diffusivities and axonal dispersion characteristics.

The diffusivities of each bundle were tuned to mimic those found

in healthy human brains (Coelho et al., 2022).

We have simulated a phantom dMRI signal for each individual

bundle and the whole volume signal without noise and without

dispersion. Then, DTI was fitted to each individual bundle signal

as well as the whole dMRI signal, and the tensor metrics were

extracted. This simulated dataset was employed as Gold Standard

(GS) to compare results with the experiments on in-vivo dMRI data.

A multi-compartment model also known as Standard Model (SM)

(Ferizi et al., 2016; Novikov et al., 2019), was adopted to simulate

this phantom signal by including three types of microstructural

environments: intracellular (IC), extracellular (EC), and isotropic

(ISO). Each environment was simulated with a given volume

fraction denoted by fic, fec and fiso, respectively. The IC space was

modeled with cylinders of zero radius (sticks), the EC space with a

cylindrically symmetric tensor (zeppelin), and finally, the ISO space

was modeled as a free diffusion compartment (ball) (Panagiotaki

et al., 2012; Ferizi et al., 2013a,b).

Three datasets were generated with known GS. The radial

EC diffusivities were simulated based on Fieremans et al. (2012).

Thus, the EC space tortuosity D0/D
⊥
ec, which quantifies how the

diffusion is affected by cellular and extracellular structures within

tissue, was defined as the ratio of free diffusivity D0 = 2µm2/ms

over the EC diffusivity D⊥
ec. Therefore, the intracellular volume

fraction fic was most sensitive to axonal loss. Besides, it was

most sensitive to demyelination. The first dataset incorporated

D
‖
ic and D

‖
ec diffusivities within a healthy range sampling a

Gaussian distribution with a mean of 2µm2/ms and variance

of 0.01µm2/ms, while D⊥
ec = 0.48µm2/ms, fic = 0.65 and

fec = 1 − fic. On the other hand, the second dataset simulated,

in some bundles, conditions associated with demyelination on

MS. Specifically, in regions with demyelination fic = 0.55 and

D⊥
ec = 0.71µm2/ms, while in regions without damage, the values

remained the same as in the first dataset. Finally, our third dataset

simulated conditions related to axonal loss. For this case, fic = 0.35

andD⊥
ec = 0.59µm2/ms in regions with lesion and regions without

lesion maintained the same control values as the first dataset. All

datasets were generated with a high and realistic noise level (SNR =

12). The isotropic diffusivity Diso and volume fraction fiso were

fixed equal to 3µm2/ms and 0.05, respectively. Axonal dispersion

was modeled with a Watson distribution (Jespersen et al., 2012,

2018). The κ value of each bundle used as the parameter for the

Watson distribution was sampled from a Gaussian distribution

with mean 20 and variance 0.01. Lastly, we used the same protocol

of the in-vivo data described below.

The 13th bundle of the phantom was selected to compare the

three scenarios above because bundle 13 crosses with 2 and 3

bundles at different places. In the datasets simulating damages, the

lesion was simulated in a spot of the bundle represented by the red

region, while the diffusivities outside the lesion remained the same

as in the control case.

2.2 In-vivo data

Two groups of participants were recruited from the University

of Sherbrooke (UdS) and the Center Hospitalier Universitaire of

Sherbrooke (CHUS) community. The first group was a healthy

control (HC) group with 26 adults, and the second group has

22 relapsing-remitting MS patients. Both groups had a gender

proportion of 75% women and 25% men. Diffusion MRI data

was acquired using a clinical 3T MRI scanner (Ingenia, Philips

Healthcare) using a 32-channel head coil. Each subject was scanned

5 times over 6 months and a 4-week interval (±1 week) with a total

acquisition time of 20 minutes for each session. MRI acquisitions

were obtained for each subject at roughly the same time daily to
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FIGURE 3

This figure illustrates the geometry of the di�usion MRI (dMRI) phantom, the multi-compartment model employed for signal generation, and the

resulting signal. The geometric structure of the phantom is composed of 20 bundles, highlighting each bundle with a di�erent color. The

multi-compartment model (intracellular, extracellular, and free water compartments) that is used to generate the shown dMRI signal at each voxel

includes axonal dispersion. The figure illustrates the orientations of fixels, depicting the crossing fiber configuration and distribution.

mitigate potential diurnal impacts, i.e. morning subjects underwent

all sessions in the morning with a permissible 2-3-hour variation.

Finally, 6 of the 26 healthy control subjects were discarded

for several reasons, including problems during the scan or

processing. Thus, the HC group employed for the experiments had

20 subjects.

All MRI images were aligned respect to the anterior

commissure-posterior commissure plane (AC-PC), which is an

anatomical reference defined by two small bundles in the brain.

One bundle located in the front part of the brain, and the other in

the back. This ensured consistency in the orientation and position

of the images when analyzing them across scans and subjects. In

addition, 3 type of data were included:

• Anatomical 3D T1-weighted image (T1): an MPRAGE image

was acquired axially at 1.0mm isotropic resolution.

• Multi-shell diffusion-weighted images (DWI): these images

were acquired with a single-shot EPI spin-echo sequence at

2.0mm isotropic resolution. The acquisition scheme included

100 unique gradient directions uniformly distributed over and

across 3 shells at b-values b = 0.3ms/µm2 (8 directions), b =

1ms/µm2 (32 directions) and b = 2ms/µm2 (60 directions)

with 7 non-diffusion-weighted images (b = 0) for a total of

107 diffusion volumes. An additional reversed phase-encoded

b = 0 image was acquired after the DWI acquisition with the

same geometry to correct EPI distortions.

• Inhomogeneous magnetization transfer images (ihMT): these

images were acquired using a 3D segmented-EPI gradient-

echo sequence with different magnetization transfer (MT)

preparation pulses. They have 2 × 2 mm resolution and 65

slices with 2.0 mm thickness.

Finally, all images have been subjected to visual quality

assessment. A detailed and more extensive data description can be

found in Edde et al. (2023).

2.3 Pipeline

The data processing pipeline consists of 6 key steps described in

sequential order in the following subsections, see Figure 4:

2.3.1 Preprocessing
The preprocessing of the dMRI data was performed using the

Tractoflow pipeline (Theaud et al., 2020). This includes the brain

and WMmasks extraction, T1 registration and tractography.

The dMRI data was denoised using the MP-PCA (Veraart

et al., 2016) method. Brain deformation induced by magnetic

field susceptibility artifacts was corrected (Andersson et al., 2003).

Motion artifacts corrections and slice-wise outlier detection were

performed (Andersson and Sotiropoulos, 2016). Image intensities

were normalized to reduce the bias by the magnetic field (Tustison

et al., 2010). The brain mask was obtained from the bet command

from FSL (Smith, 2002). Specifically, Tractoflow performed an

extraction on the b = 0 image. Then, the obtained mask was applied

to the whole DWI to remove the skull and prepare the DWI for

the T1 Registration. Tractoflow performed brain extraction after

Eddy/Topup correction to have a distortion-free brain mask.

Tractoflow processed the T1 image using eight different steps.

First, Tractoflow preprocessed the T1 image including denoising,

correcting and resampling steps for the T1 image. Then, the T1

image was registered on the b = 0 and FA images using the
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FIGURE 4

Proposed pipeline to extract the tract profiles using the MRDS fixel-based multi-tensor metrics. (1) Input data is denoised, aligned, corrected,

normalized, cropped, and resampled. Brain, WM, and lesion masks are extracted. (2) The CSD method is fitted to obtain an FOD image, and a local

tracking technique is used to estimate the streamlines. The WM mask is used to seed the streamlines. (3) TODI maps the tractogram into a NuFO

map, which MRDS exploits as a model selection map in the MTM fitting. (4.1) MTM is fitted to the dMRI data using MRDS. MTM parameters are

estimated for N = 1, N = 2, and N = 3, resulting in 3 MTFs. (4.2) The TODI NuFO map is used on the estimated MTFs to choose a value of N that

better describes the di�usion signal at each voxel. TODI helps to refine the MTF with the spatial information provided by the tractogram (Karaman

et al., 2023). Multi-tensor fixel-based metrics are computed from the MTF derived from the model selection. (5) The tractogram is segmented into

major fiber bundles using the RecoBundlesX pipeline. (6) Segmented bundles and estimated fixel-metrics are the input of the Tractometry_flow

pipeline to assess a tract profile for every combination of the bundles and metrics.

nonlinear SyN ANTs (antsRegistration) multivariate option, where

the T1 image is set as moving image and the b0 and FA images are

set as target images. After registration, Tractoflow extracted gray

matter (GM), white matter (WM) and cerebrospinal fluid (CSF)

partial volume masks using fast from FSL. These maps were used to

compute the exclusion and inclusionmaps for tractography (Girard

et al., 2014), which are anatomical constraints for the tracking

(Smith et al., 2012; Girard et al., 2014).

2.3.2 Fiber tracking
The fiber tracking was also done using the Tractoflow

pipeline. The seeding mask employed in the tractography was the

obtained WM mask. The tractogram was generated employing the

anatomically constrained particle filter tracking (PFT) algorithm

(Girard et al., 2014). This algorithm utilized the FOD image

obtained with the Multi-Shell Multi-Tissue Constrained Spherical

Deconvolution (MSMT-CSD) (Jeurissen et al., 2014), along with

the inclusion map, exclusion map, and a seeding mask to guide

the tractography process. The seeding mask employed in the

tractography was the extracted WM mask. A fully detailed

explanation of the whole Tractoflow pipeline can be found in

Theaud et al. (2020).

Additionally, Tractoflow includes strategies to avoid premature

track termination when tracking MS patients. The seeding mask in

MS patients was filled using a lesion-corrected WM mask. During

the tracking process, if a peak in the FOD image is coherent and

well-defined, the tracking continues even if the voxel is inside

a WM lesion, increasing anatomical accuracy and consistency in

obtained tractograms for MS patients. This step can be omitted as

the tractogram can be generated with any fiber tracking technique.

2.3.3 TODI as model selector
The tractogram from fiber tracking was then processed with the

TODI method to obtain a TOD image. Subsequently, the resulting

TOD image was segmented to produce discrete fixels (Smith et al.,

2013). Then, the fixel-based image was converted into a Number

of Fiber Orientations (NuFO) scalar image, where the number of

fixels was counted in each voxel. A threshold peak amplitude was

utilized to prune the spurious peaks, such that any lobe for which

the maximal peak amplitude was smaller than 0.1 was omitted.
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Finally, this NuFO image was used as input MOSEMAP in MRDS,

which is better described in the next step (Section 2.3.4).

2.3.4 Multi-tensor Fitting
The MTM represents the diffusion signal Si at each voxel as:

Si/S0 =

N
∑

j=1

αjexp
(

−big
T
i Djg i

)

, i = 1, . . .M, (1)

where M is the number of unitary gradient orientations g i, N is

the number of tensors, and αj is the fraction of the j-th diffusion

tensor Dj. Assuming axial symmetry, then Dj is parameterized by

the unitary principal diffusion direction (PDD) θj, the axial (λ
‖
j )

and radial (λ⊥j ) diffusivities, such that:

gTi Djg i = λ
‖
j

(

θj · g i
)2

+ λ⊥j

[

1−
(

θj · g i
)2

]

(2)

The bundle-specific parameters of the MTM were non-linearly

estimated using the MRDS (Coronado-Leija et al., 2017) method

for N = 1, N = 2, and N = 3, resulting in 3 multi-tensor

fields (MTFs), see Figure 4. More than three fixels can be estimated,

albeit with increased computation time and reduced precision for

the estimated parameters. Besides, N ≤ 3 has been reported to be

a reasonable threshold (Jeurissen et al., 2013). Initial diffusivities

for the non-linear estimation of parameters in Equation 2 were

obtained from DTI at brain WM voxels with a high probability of

containing only one fiber.

Given that high b-value diffusion signals are not fully

represented with the diffusion tensor, causing an overestimation in

N. Thus, the original statistical model selection in MRDS, which

provides a model selection map (MOSEMAP) with the value of N

that better describes the diffusion signal at each voxel, is replaced

for the NuFO scalar map obtained with TODI in step 2.3.3. The

TODI NuFO scalar map merges the 3 MTFs into a reevaluated

and refinedMTFwith the spatially smoothed information provided

by the tractogram (Karaman et al., 2023), see Figure 4. From this

improved MTF, fixel-FA, fixel-MD, fixel-AD, and fixel-RD maps

were generated. The fixel-FA map maintains the same spatial

dimensions as the original DWI Each voxel may contain multiple

tensors. Then, an extra layer was added to store the multiple fixel-

FA values obtained at each voxel. The scalar fixel-FA value was

obtained for every tensor within a voxel, computed as the standard

FA (Basser et al., 1994). This resulted in a 4D-dimensional fixel-FA

map. The computation of fixel-RD, fixel-AD and fixel-MD maps

was analogous to the computation of the fixel-FA map. Similarly, a

map storing the PPDs of the MTF was computed. These maps were

used as input for the tractometry step.

2.3.5 Tractogram segmentation
The tractogram was segmented into major bundles employing

the RecoBundlesX (St-Onge et al., 2023, 2020; Kurtzer et al., 2017;

Di Tommaso et al., 2017) pipeline, see Figure 4. RecoBundlesX

recognizes bundles by comparing the subject’s tractogram with

a template (or atlas) through a similarity metric based on

their shapes. This algorithm is re-evaluated multiple times with

parameter variations and label fusion because RecoBundlesX

is a multi-atlas and multi-parameter approach. We used the

atlas in Rheault (2023), which is designed specifically to be

used with RecoBundlesX, and it was built from delineation

informed with anatomical priors (Catani and Thiebaut de

Schotten, 2008). After RecoBundlesX identified a large number

of WM bundles, tracks were visually inspected to ensure their

quality. The Superior Longitudinal Fasciculus (SLF), Arcuate

Fasciculus (AF), Pyramidal Tract (PYT), Inferior Longitudinal

Fasciculus (ILF), Inferior Fronto-Occipital Fasciculus (IFOF),

Middle Cerebellar Peduncle (MCP) and Cingulum (CG) bundles

were selected to showcase the pipeline’s capabilities. Selected

bundles comprise a large set covering most of the brain,

showing complex crossing fiber configurations, which is why they

are frequently studied in the literature (Yeatman et al., 2012;

Mishra et al., 2014; Chamberland et al., 2019; Winter et al.,

2021).

In the experiments with MS patients, we have chosen the

AF, ILF, IFOF and PYT bundles, which have clinical implications

in the context of MS studies (Filippi and Rocca, 2011). The AF

bundle connects the frontal and temporal lobes, crucial in speech

communication. On the other hand, the ILF bundle connects

the occipital and temporal lobes. Its functionality includes visual

processing, tracking and recognition of objects and obstacles. Like

AF and ILF, the IFOF bundle is involved in speech communication

and visual processing tasks, transporting signals from the frontal

to occipital and temporal lobes. The PYT connects the spinal

cord with the cerebral cortex. It is essential in voluntary control

movements. Therefore, when MS lesions appear in the AF, ILF,

IFOF, and PYT bundles, several symptoms are experienced by

MS patients. These symptoms include difficulties in speech and

comprehension, visual deterioration, visual memory problems,

attention issues, and affected motor coordination.

2.3.6 Tractometry with fixel-based metrics
The proposed pipeline employed the Tractometry_flow

(Cousineau et al., 2017; Kurtzer et al., 2017; Di Tommaso

et al., 2017) pipeline, which delivers metric maps along each

individual input bundle. Then, each metric map was projected

through every bundle to obtain a tract profile. We adapted the

Tractometry_flow pipeline to support multi-tensor fixel-based

metrics. The closest-fixel-only (Raffelt et al., 2015) strategy was used

to map the contribution of the multi-fixels estimated by MRDS to

a given streamline.

2.4 Experiments

We designed three experiments to study the behavior of the

pipeline:

• Experiment I: our proposed pipeline is tested on the three

synthetic phantom datasets described before, simulating

healthy tissue, demyelination and axonal degeneration.

Estimated multi-tensor fixel-based metrics and tractometry

results are compared with the known GS of the phantom.
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FIGURE 5

Violin plots of the estimated tensor and multi-tensor fixel-based metric maps along each bundle of the control synthetic dataset (control values

without lesions). Tensor metrics are estimated with DTI (blue violin) and multi-tensor fixel-based metrics with MRDS (green violins). Obtained metrics

are compared with the GS (red line). The bundle’s average crossing fibers composition in the GS is indicated in the proportions containing N = 1

fiber, N = 2, or N = 3 fibers at the top of the figure.

Relative errors obtained using the formula error =
|valuereal−valueestimated|

valuereal
are reported in the results.

• Experiment II: the pipeline is used to study the robustness

to crossing fibers of the tract profiles in the in-vivo healthy

control group. Obtained tract profiles informed with multi-

tensor fixel-based metrics of the 100 total scans (20 subjects

scanned 5 times each one) are group-averaged and compared

to DTI-derived tract profiles.

• Experiment III: the pipeline is employed to study variations

of metrics across the AF, ILF, IFOF and PYT, which are

relevant bundles in the study of relapsing-remittingMS. As the

location and severity of the MS lesions are different for every

individual patient, it is irrelevant to make a group-averaged

study of the MS group of patients. Instead, we have manually

selected patients 004 and 022 because they have the most

severe and larger white matter coverage of lesions present in

the WM. These particular patients are chosen in an effort to

maximize the difference between the healthy control group

and the MS patient tract profiles. Individual patient tract

profiles informed with multi-tensor fixel-based metrics are

compared with the group-averaged tract profiles in order to

exhibit differences.

3 Results

3.1 Experiments on synthetic data

In Figure 5, we show violin plots comparing single-tensor

(blue) and multi-tensor (green) metrics. Horizontal lines refer to

the GS (red) and the mean of each distribution. Single-tensor

metrics exhibit several discrepancies with respect to the GS, most

DTI distributions are bimodal, such that one of the peaks is close

to the GS, while the other is underestimated for FA and AD, and

overestimated for RD.

For each bundle, we accounted for the proportion of voxels

containing 1, 2, and 3 fiber populations using the NuFO map

obtained with TODI, i.e., we accounted for the proportions of

N. These proportions are at the top of Figure 5. By inspecting

percentages of N shown in Figure 5, it is reasonable to assume

that DTI bimodality is caused by crossing fiber biases. In Figure 5,

bundles with a high proportion of N = 2 and N = 3 have

a more pronounced bimodality; this is particularly evident for

the 13th bundle. In contrast, it can be seen in Figure 5 that the

mean of the estimated fixel-FA and fixel-AD are similar to the GS

value in all bundles. The relative error of fixel-FA and fixel-AD is
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TABLE 1 Relative errors of the violin plots for the tensor (blue) and

multi-tensor (green) metric maps estimated with DTI and MRDS,

respectively.

Metric FA Fixel-
FA

RD Fixel-
RD

AD Fixel-
AD

Label

1 19.4% 2.7% 89.0% 26.7% 23.9% 4.2%

2 17.6% 31.5% 82.0% 46.9% 22.5% 33.2%

3 15.1% 3.4% 74.1% 28.4% 20.2% 4.2%

4 17.6% 3.0% 83.9% 26.7% 22.8% 4.2%

5 11.3% 3.2% 58.1% 26.8% 16.0% 3.9%

6 16.7% 4.3% 75.1% 27.9% 20.6% 5.9%

7 14.5% 3.9% 71.1% 27.5% 20.1% 4.7%

8 10.9% 2.7% 54.9% 25.8% 15.1% 3.8%

9 15.9% 2.7% 80.3% 26.0% 21.6% 3.4%

10 2.2% 2.7% 18.0% 27.5% 5.3% 4.4%

11 23.1% 3.3% 102.9% 29.0% 27.7% 5.6%

12 12.1% 3.7% 63.0% 26.1% 17.7% 4.7%

13 25.4% 7.5% 112.5% 30.0% 29.7% 9.1%

14 15.8% 2.8% 75.9% 28.2% 20.3% 5.1%

15 13.4% 4.5% 68.1% 25.9% 18.5% 5.5%

16 13.6% 7.4% 66.6% 28.3% 18.5% 9.2%

17 15.8% 3.7% 75.0% 26.1% 20.5% 5.1%

18 7.6% 10.2% 43.2% 32.1% 12.2% 11.3%

19 27.0% 4.9% 121.8% 27.8% 32.0% 6.5%

20 18.6% 5.3% 85.5% 29.2% 22.7% 6.8%

Mean 15.6% 5.6% 75.0% 28.6% 20.3% 7.0%

around 10% as it is reported in Table 1, reaching a relative error

as low as 2.7% in some bundles where the average relative error

is 5.6%. It is important to note that, for fixel-based metrics, the

relative error of bundles with a high count of 2 and 3 crossing

fibers is similar to the relative error in bundles exposing mostly

single fiber composition. As an example, percentages shown in

Figure 5 exhibit that bundles 5 and 10 mainly have no crossing

fibers, while bundle 11 has, for the most part, crossing fibers.

However, the relative error of fixel-FA for bundles 5, 10, and 11

in Table 1 are around 3%. Even for the bundle 13, which is one of

the most challenging bundle as it has a high proportion of crossing

fibers, the relative error remains at 7%. Values in Table 1 exhibit a

higher relative error for fixel-RD compared with fixel-AD and fixel-

FA, but still less relative error than RD in general. Additionally,

bundle 2 shows abnormal relative errors compared to the

other bundles.

Looking at the obtained tractogram, the streamline count for

bundle number 2 after segmentation is 104, which is insufficient

to cover the whole bundle’s volume, resulting in an increased

relative error. Thus, results in bundle 2 should be interpreted

with caution because of the low number of streamlines. Bundle 10

has almost 100% single fiber composition. It is the only bundle

where the relative error of RD is less than the one reported in

fixel-RD. This suggests that, in the absence of crossing fibers,

DTI’s RD may be more accurate than fixel-RD. Besides, fixel-RD

violin plots in Figure 5 indicate that, in general, fixel-RD tends to

underestimate the GS value, which is congruent with the relative

errors reported in Table 1. In the MTM fitting with MRDS the

isotropic volume fraction is overestimated, see Appendix A. Since

the synthetic data was generated using a multi-compartment model

and MTM does not fully represent the signal for the b-values in our

protocol, then the ISO compartment may be partially explaining

the contribution of the EC compartment (see Appendix A for more

details). Therefore, this underestimation of the fixel-RD metric

might be related to the overestimation of the isotropic volume

fraction.

Similar to Figure 5, in Figure 6 violin plots on the 13th

bundle are reported for the 3 simulated scenarios detailed in

Section 2.1: healthy control case, demyelination, and axonal loss.

Additionally, tractometry results on the same bundle for the 3

different scenarios can be found in Figure 6B. In the healthy control

scenario, the limitations of DTI in capturing the overall WM

microstructure configuration are evident. Tract profiles informed

with standard DTI metrics are biased by crossing fibers as FA,

RD, and AD tract profiles have variations along the bundle, while

the GS does not. In particular, FA tract profile decreases and

RD tract profile increases when the value of N increases, see

Figure 6B. In contrast, the robustness of the multi-tensor fixel-

based metrics estimated with MRDS is evident as they provide

tract profiles independent of the underlying fiber configuration, see

Figure 6B.

In the demyelination scenario, results with DTI metrics

in Figure 6 showed limited sensitivity to changes in the WM

microstructure. In the region with a lesion, tract profiles

exhibit variations, but they do not correspond with the GS.

Contrarily, results with multi-tensor fixel-based metrics show

enhanced sensitivity, detecting reductions in FA and increase in

RD associated with simulated demyelination while maintaining

robustness to noise and crossing fibers, see Figure 6. Like

the demyelination scenario, DTI metrics exhibit limitations in

detecting axonal loss, particularly in regions with crossing fibers.

Despite the differences in the three simulated scenarios, results in

Figure 6 show no substantial differences in DTImetrics. Thismakes

it impossible to distinguish between different scenarios. Results

with multi-tensor fixel-based metrics are less contaminated by fiber

crossing artifacts, which allows to detect variations in the tract

profiles related to lesions. Obtained tract profiles informed with

fixel-based metrics underestimate the GS RD, which is expected

and congruent with the results investigated in Figure 5. Although

results with multi-tensor fixel-based metrics overestimate the GS

FA and underestimate the GS RD, they are accurate in shape and

sensitive to small variations.

3.2 Experiments on in-vivo data

For experiments on in-vivo data, we focus only on FA and

RD metrics and their fixel-based counterparts, as MS research and

literature report that FA and RD are potential biomarkers closely

related to microstructure anomalies and demyelination (Song et al.,
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FIGURE 6

Di�erences between di�erent simulated scenarios are studied in the bundle number 13 of the phantom. (A) Violin plots of the estimated

single-tensor (blue) and multi-tensor (green) fixel-based metrics for each scenario. The mean of the distributions is represented as a horizontal line

matching the color of the distribution. The GS of the healthy tissue and damaged tissue are represented as red and purple horizontal lines,

respectively. (B) Tract profiles resulting from projecting the estimated single- and multi-tensor fixel-based metrics along the 13th bundle. Every row

represents a di�erent scenario (control, demyelination, and axon loss), while every row represents a di�erent measure (FA, RD, and AD). The GS value

of N (black curve) and tensor metrics (red curve) are also projected on the bundle number 13, showing the actual underlying fiber configuration

along this bundle for comparison. A region with lesions and crossing fibers is highlighted in pink.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1467786
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hernandez-Gutierrez et al. 10.3389/fnins.2024.1467786

FIGURE 7

Group-averaged tract profiles of the 100 healthy control scans (comprising 20 participants scanned five times over 6 months) along several

segmented WM bundles: the (red) SLF_L, (cyan) PYT_L, (orange) MCP, (blue) IFOF_L, (yellow) CG_L (magenta) ILF_L and (green) AF_L bundles. The

mean and variance of the tract profiles obtained with DTI-derived metrics (green) and MTM-derived fixel-based metrics (blue) are represented with a

bold line and a shaded area, respectively. The estimated number of crossing fibers (N) using TODI along each selected bundle is represented by an

black curve. The axial, coronal and sagittal views a control subject’s T1 image are provided as anatomical references.

2002, 2005). Figure 7 illustrates tract profiles for different major

bundles in the left hemisphere of the healthy participants.

According to Table 2, tract profiles obtained with MRDS

fixel-FA and fixel-RD metrics show an overall reduction in

the correlation with the value of N compared to FA and RD

metrics. Tract FA profile decreases in locations where N is high

and vice versa. In contrast, tract fixel-FA profiles exhibit more

robustness to crossing fibers. Additionally, tract profiles informed

with fixel-based multi-tensor metrics show FA similar to the ones

reported in healthy WM of human brain. Based on the literature,

FA values in the healthy human brainWM generally range between

0.60 and 0.85, depending on the specific tract or region. For

example, FA in the corpus callosum was reported to be between

0.72 and 0.78 (Westlye et al., 2010), and between 0.73 and 0.76.

FA in the internal capsule was reported to be between 0.70 and

0.80 (Mukherjee et al., 2008), and around 0.75. Finally, FA in

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1467786
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hernandez-Gutierrez et al. 10.3389/fnins.2024.1467786

TABLE 2 Pearson correlation coe�cients between the tract profiles of MRDS fixel-based metrics (green curves), DTI metrics (blue curves) and the NuFO

value of N (black curve) in Figure 7. Each metric was evaluated across the same set of bundles as in Figure 7.

Correlation with N SLF_L AF_L PYT_L ILF_L MCP IFOF_L CG_L

FA 0.0967 -0.2601 -0.7193 -0.4657 -0.9682 -0.7553 -0.8593

Fixel-FA 0.8311 0.8631 0.5264 -0.4285 0.5364 -0.5641 -0.6131

RD -0.4528 -0.2934 0.4773 0.3926 0.7444 0.5921 0.8717

Fixel-RD -0.4994 -0.5395 0.1480 0.1433 0.8568 0.4370 0.7228

frontal WM was found to be between 0.60 and 0.70 (Westlye et al.,

2010), and between 0.60 and 0.65. Results on the healthy control

group dataset follow the patterns observed in the experiments on

the control synthetic dataset. Like Figure 5, tract profiles obtained

with DTI-based metrics consistently show lower FA and higher RD

values compared to the fixel-based metrics across every bundle.

Figure 7 shows average tract profiles computed from the HC

cohort, which includes different subjects scanned in different time

stamps. Tract profiles in Figure 7 show visually low variability

overall. In Table C1, the standard deviation (SD) is presented for

tract profiles informed with both fixel-based and DTI metrics. The

SDs are computed within-subject and between-subject for each

bundle and each section of the bundle. The SD from tract fixel-

FA profiles is generally higher than the tract FA profiles, though

they remain comparable overall. Additionally, Table C2 presents

the results of the ANOVA test conducted to compare the mean of

5 tract fixel-FA and fixel-RD profiles resulting from the five scans

of sub-015 (one of the subjects exhibiting the highest variability),

see Appendix C. The ANOVA test shows the F-statistic and p-

value across the 20 locations (labels) of the selected bundles. The

results revealed significant differences in the means for various

bundles at specific labels. Notably, Label 2 exhibited a statistically

significant effect in the PYT_L bundle with an F-statistic of 3.9618

(p = 3.84E-04) and in the ILF_L bundle (F-statistic = 1.6415, p =

1.69E-02). Similarly, Label 8 demonstrated significant findings in

the SLF_L (F-statistic = 4.6286, p = 2.74E-04) and MCP (F-statistic

= 15.2726, p = 2.82E-06) bundles. Additionally, Label 12 showed

highly significant results in the AF_L (F-statistic = 12.99599, p =

5.45E-07) and PYT_L (F-statistic = 10.1636, p = 1.48E-07) bundles.

3.3 Experiments on relapsing-remitting MS
data

Our pipeline was applied to the MS dataset for a set of

relevant bundles in the context of MS studies: AF, ILF, IFOF, and

PYT. Differences between MS patients and HC group-averaged

tract profiles are studied in Figure 8. In locations adjacent to

lesions, fixel-FA tract profiles show lower values than the healthy

control group. Moreover, on the ILF and IFOF bundles, fixel-

FA values are beyond the second variance, which may indicate

degradation of theWM integrity. Besides, fixel-RD tract profiles are

consistently elevated compared to healthy controls in regions with

lesions, suggesting widespread expected demyelination. The spatial

extent of the lesions correlates with the extent of the changes in

both metrics.

Figure 9 displays FA and fixel-FA maps along the IFOF_L

bundle in the patient 004. Both single- and multi-tensors are

visualized in the region of the bundle. Each tensor is colored

according to its FA value. Additionally, Figure 9 compares the

tensor renders in two different ROIs within the bundle. The ROI

outlined in blue has MS lesions while the orange outlined ROI

is located at the normal-appearing white matter. Several crossing

fibers are present in each ROI as the IFOF bundle crosses with

other bundles, such as the PYT and ILF bundles. The FA map

shows darker areas in both ROIs, corresponding with the shape,

and decreased FA showed by the tensors. No significant differences

in FA values are appreciated between the two ROIs. On the other

side, the fixel-FA map is darker only in the ROI with the lesion.

However, unlike the FA map, fixel-FA map shows higher values

and fewer dark spots in the crossing fiber ROI. This indicates that

fixel-FA is more robust to crossing fibers. In addition, multi-tensors

show FA values within a healthy control range in the crossing fiber

ROI, highlighting their potential to differentiate between crossing

fibers and lesions.

4 Discussion

In this work, we address the crossing fiber bias from DTI

metrics used in tractometry, by instead using multi-tensor fixel-

based measures obtained from multi-shell HARDI acquisitions.

Multiple b-vale diffusion-weighted data is mandatory for reliable

parameter estimation in MTM-based methods such as MRDS

(Scherrer and Warfield, 2012; Coronado-Leija et al., 2017). Our

multi-shell acquisitions remain clinically feasible (∼30 minutes).

Previous works in literature have reported limitations when

informing tractometry with multi-tensor fixel-based metrics.

Multi-tensor fitting is computationally demanding, highly affected

by noise, and requires extensive high-quality dMRI HARDI

acquisitions, which are time-consuming and challenging to find

in clinical settings (Tournier et al., 2011; Jeurissen et al., 2013).

Because of this, previous tractometry methods informed with

multi-tensor fixel-based metrics have been limited up to 2 fixels per

voxels, resulting insufficient in many regions of the brain (Delinte

et al., 2023; Mishra et al., 2014). MTM methods generally struggle

to accurately determine the number of fixels at each voxel, which is

especially challenging in regions with complex fiber configurations.

Choosing MRDS as a framework to estimate the multi-tensor

fixel-based measures and using TODI to inform MRDS’s model

selection with tractography regularization allowed us to address

these limitations in the current state-of-the-art. MRDS accounts for

the presence of up to 3 fixels within each voxel plus an isotropic
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FIGURE 8

Single MS patient fixel-FA and fixel-RD tract profiles (red lines) compared with the group-averaged tract profiles (green lines with shaded areas) of the

100 healthy control subjects (comprising 20 participants scanned 5 times) along several segmented WM bundles: the (A) AF_L, (B) ILF_L, (C) IFOF_L,

and (D) PYT_L. Tract profiles of lesion volume (black lines) are reported to exhibit the potential relationship between the fluctuations in the tract

profiles and the lesion. The sagittal view of the MS patient’s T1 image, the bundle, and the lesions (dark blue surfaces) are provided as anatomical

references.
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FIGURE 9

Di�erence between DTI and MTM in ROIs with crossing fibers and lesions. (A) The T1 image of an MS patient and the IFOF_L bundle streamlines with

lesion mask (pink colored surfaces) are shown for anatomical reference. (B) Fixel-FA and (C) FA maps along the IFOF_L bundle estimated with MRDS

and DTI, respectively. Tensors and multi-tensors are rendered in two di�erent ROIs using the FA value of the tensor as color using the Inferno color

map. One of the ROIs (blue ROI) has MS lesions, while the other (orange ROI) is located at the NAWM. Both ROIs present crossing fibers as the IFOF

intersects other bundles. Single-tensors show a decreased FA value in both ROIs. Multi-tensors show low FA value only in the ROI with lesions, while

the ROI in the NAWM shows more consistent values with healthy tissue.

compartment, allowing for more accurate characterization of the

fixel-specific tract profiles and being robust to fiber-crossing.

MRDS is relatively fast when estimating the diffusivities in the

resampled WM at 1 mm isotropic resolution (∼1 h of computing

time per subject). Moreover, it has been shown to be accurate and

robust to noise (SNR = 12) when using clinical-grade dMRI data

and protocols. Finally, the new model selection (Karaman et al.,

2023) applied in MRDS allows for improvement in the estimation

of the required number of tensors per voxel, taking advantage of the

spatial regularization provided by tractography.

In the experiments with synthetic dMRI data, relative errors for

fixel-based metrics indicate that multi-tensor fixel-based metrics

estimated with MRDS are robust to crossing fibers and sensitive

to WM anomalies (Figure 5). When comparing the tract profiles

obtained with fixel-based multi-tensor metrics to traditional single-

fixel tensor metrics, a difference in sensitivity was observed.

Tract profiles informed with multi-tensor fixel-based metrics

distinguish between crossing fibers and scenarios like axonal loss

and demyelination (Figure 6) by assessing the underlying fiber

configuration and WM tissue metrics.

We tested our proposed tractometry pipeline on several WM

bundles of the in-vivo healthy control group: SLF, AF, CG, IFOF,

PYT, ILF and MCP. We compared the obtained tract profiles

informed with multi-tensor fixel-based metrics with tract profiles

informed with single-tensor metrics along these bundles, focusing

on their robustness to crossing fibers (Figure 7). The robustness of

the multi-tensor fixel-based metrics to crossing fibers is evident

across all examined bundles. Besides, our findings indicate that

tractometry informed with multi-tensor fixel-based metrics is

consistent, reliable, and not significantly affected by random noise

or crossing fibers. As expected, single-tensor metrics exhibit a

notable fluctuation when the estimated number of crossing fibers

per voxel (N) along the bundle increases or decreases. This pattern

suggests that single-tensormetrics are highly influenced by crossing

fibers. According to the literature (Grieve et al., 2007), tract

profiles informed with multi-tensor fixel-based metrics exhibit FA

values in a range that is considered normal for healthy WM. This

alignment suggests that multi-tensor fixel-based metrics provide

more accurate representation of the WM integrity. Contrary,

singles tensor metrics fail to estimate FA values considered normal

in the WM because they are biased by crossing fibers.

In Section 3.2 we quantitatively and qualitatively explored

the within-subject and between-subject variability of the tract

profiles. The consistent low SDs values for the tract profiles indicate

minimal variability within and between subjects. Despite the higher

variability in multi-tensor fixel-based tract profiles, they remain

within acceptable limits. This suggests that multi-tensor fixel-based

informed tract profiles are more accurate, but less precise than

DTI informed tract profiles. Moreover, we conducted an ANOVA

test to evaluate the differences in mean fixel-FA and fixel-RD

metrics across 20 locations of several bundles in sub-015. The

overall rejection rates across the labels suggest a high level of

consistency in the measurements, with an average rejection rate

of 40%. However, our findings indicate that the tract profiles

of certain bundles are significantly influenced by the anatomical

location, revealing significant differences in the means of fixel-

FA and fixel-RD across different regions of the brain. These

results underscore the importance for careful interpretation of

tract profiles as certain bundles, particularly in subjects with

pronounced variability.

While Rojas-Vite et al. (2019) provided a solid foundation for

the application of fixel-based metrics provided by MRDS, further

validation using animal models remains essential. Particularly, in

the context of demyelination and tractometry. Understanding the

intricate changes in the obtained fixel-basedmetrics associated with

demyelination is crucial for accurately interpreting the alterations

detected by our method. Future studies utilizing animal models

have to be driven for a more comprehensive assessment of our

approach’s sensitivity to demyelination and its correlation with

histological outcomes.
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4.1 Application to relapsing-remitting
multiple sclerosis

We compared relapsing-remitting MS patients to a group of

healthy subjects with similar age and brain configuration (Figure 8).

The proposed pipeline shows to be sensitive to WM anomalies

related to relapsing-remitting MS disease. The single MS patient

tract profiles exhibit values that clearly deviate from the healthy

control group. These deviations are potentially related to MS

pathology as they occur around lesion location. A similar behavior

is reproduced in the synthetic data simulating demyelination

(Figure 6). Therefore, differences between group-averaged and

individual MS patients’ tract profiles in Figure 8 are assumed to

be a consequence of the disease. In general, for all bundles, MS

patients consistently show reduced fixel-FA and increased fixel-RD

compared to healthy controls.

In Section 3.3, we made a comparison between the tract profiles

of the HC group and two MS patients (sub-004-ms and sub-

022-ms) of the MS group. Although a group comparison (HC

vs. MS) may be done, the inherent group-averaging may not be

beneficial because of the variability of MS lesions among MS

patients. MS lesions can appear in different regions along the

brain, and the severity of these lesions varies between patients

(Wicks et al., 1992). Averaging these tract profiles across patients

could lead to loss of critical information that is essential for

understanding the individual differences within the MS group.

Nonetheless, it is important, as a future work, to design an analysis

for the entire MS cohort, which will provide a more comprehensive

understanding of these dynamics. Moreover, we recognize the

importance of developing a framework for explicit comparison of

Wallerian degeneration, which would provide valuable insights to

the MS research community. Finally, we acknowledge the need for

a more comprehensive analysis comparing FA and RD values in

the normal-appearing white matter of MS patients with those of

healthy controls, which could further enhance our understanding

of the integrity of WM in regions without visible lesions.

In a previous study (Winter et al., 2021), tractometry with

dMRI metrics was investigated in young adults with relapsing-

remitting MS. They reported significant abnormalities in the

WM microstructure in WM bundles similar to those we used.

In particular, reduced FA and increased RD were observed,

indicating demyelination, which aligns with our reported results.

Additionally, specific changes in fiber density and complexity

were noted, indicating axonal degeneration. In Chamberland

et al. (2021) a study using tractometry was conducted on MS

patients with optic neuritis. It was found a limited ability to

differentiate between various types of lesions like demyelination

and axon loss using dMRI metrics, which is consistent with our

findings. In another example (Beaudoin et al., 2021), tractometry

informed with single tensor and other advanced fixel-based metrics

was used to investigate the association between diffusion MRI-

derived measures and neuropsychological symptoms of MS. They

focused on WM fascicles that are associated with cognitive

dysfunction in the presence of lesions. Our approach could

offer several benefits to this kind of studies. For example,

MTM metrics may replace standard DTI metrics in their

analysis. The integration of these new metrics should be direct,

as MTM metrics have the same biological and geometrical

interpretation as DTI metrics without the crossing fiber bias.

This could provide a more robust and accurate depiction of

microstructural WM changes in MS patients. MTM metrics

like fixel-RD would allow for a more precise and sensitive

characterization of demyelination and other alterations, including

axon loss. Robust multi-tensor metrics could improve the reliability

of longitudinal studies by providing consistent and accurate

measures over time. This would facilitate the monitoring of disease

progression. By incorporating multi-tensor fixel-based tractometry

analysis, researchers and clinicians may underscore the advantages

of multi-tensor fixel-based metrics in improving the fidelity

of studies.

One of the main limitations in the current literature is

that RD metric can be contaminated in regions with crossing

fibers and lesions, leading to erroneous interpretations and

conclusions, making RD unstable as a biomarker (Jones et al., 2013;

Winston, 2012). This work addresses this limitation by offering

a tractometry pipeline robust to crossing fibers, suggesting the

fixel-RD metric as a more robust biomarker for demyelination.

Our pipeline shows that multi-tensor fixel-based methods could

be a robust alternative to DTI, in which familiar metrics such

as FA or RD are now specific to a particular fixel or track,

with similar biological/geometrical interpretation. This facilitates

the contextualization of these MTM metrics regarding many

studies utilizing DTI metrics. Besides, it is unnecessary to include

other fixel-based metrics such as AFD, which has challenging

biological interpretability. AFD reflects the density of axonal fibers

within a voxel, but not necessarily their functional status or

health (Dell’Acqua et al., 2007). Thus, an increase or decrease

in AFD does not directly translate to improved or deteriorated

neurological function, requiring additional context (Raffelt et al.,

2012). Moreover, pathological conditions like demyelination or

axon loss can alter diffusion properties in ways that are not

straightforward to disentangle, making it hard to pinpoint

the exact biological cause of changes in AFD (Jones et al.,

2013).

4.2 Limitations

In this work, we utilized a simulated phantom that incorporates

different compartments to simulateWMmicrostructure to evaluate

our proposed method. However, it is important to acknowledge the

limitations of this phantom as it only serves as an approximation

that does not capture the full complexities of the human WM.

Membrane permeability and vascularization are examples of factors

that were not considered in these simulations. Future work should

focus on validating the proposed method using more realistic

phantoms, such as the proposed by Callaghan et al. (2020) and

Villarreal-Haro et al. (2023).

Our pipeline uses the closest-fixel-only strategy when relating

the streamline’s segments to local fixel properties. This does not

allow multiple local fixels to contribute to a given streamline and

might contribute to erroneous tractometry results if the bundle

does not have enough streamlines. This can be improved by

employing a fixel angular weighting strategy as the one proposed

and used in Delinte et al. (2023).
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Our results showed a decrease in RD precision when a

single fiber population is present. This is concordant with what

has been reported in other multi-fiber methods (Parker et al.,

2013). Including a free water tensor in MRDS enhances results

accuracy andmitigates potential biases, particularly when analyzing

patient data. Nonetheless, this inclusion decreases sensitivity in the

estimated fixel-based diffusivities due to the increased complexity

of fitting 4 tensors (3 anisotropic and 1 isotropic) instead of 3 with

MRDS. Besides, for acquisition schemes including high b-values

the estimation of N and the isotropic volume fraction is affected,

see Appendix A. Hence, the isotropic compartment may partially

explain the contribution of the extra-cellular part of the dMRI

signal, resulting in a reduction of the RD as shown in results with

synthetic data. In the future, we consider that it will be important

to study in depth the impact of including a free water compartment

in MRDS and their implications in other lesions like edema as it is

still an open question.

In our study, we demonstrated that the proposed method

effectively detects variations in tract profiles associated with

lesions, both in synthetic simulations and in-vivo data. This

capability underscores the potential of our approach for identifying

abnormalities in complex fiber crossing regions. However, it is

important to note that while our method shows promise in

detecting lesions, future work is necessary to further investigate

its performance in accurately assessing the actual severity of

detected lesions.

Although the obtained results underscore the capabilities of

the proposed pipeline to identify WM lesions while being robust

to crossing fibers, it cannot discriminate between demyelination

and axonal damage. This is congruent to previous studies, which

found that RD is sensitive to several microstructural changes

different from demyelination, such as axonal deterioration, edema,

and inflammation (de Vries, 2010). More advanced models like

SM (Ferizi et al., 2016; Novikov et al., 2019) can distinguish

between changes occasioned by axonal integrity and changes due to

demyelination, but they still use one single tissue kernel per voxel,

not per fixel. Similar to Dayan et al. (2015), our robust multi-tensor

fixel-based metrics can be combined with these advanced methods,

leading to a more sophisticated pipeline with a different type of

metrics. Additionally, the employment of Magnetization Transfer

Imaging (MTI), which is sensitive to myelin content, could help to

differentiate between demyelination and axonal injury. However,

it is necessary to extend the developed phantom for simulating

not only dMRI acquisitions but also MTI acquisitions in order to

validate the results on in-vivo data.

Another important aspect to consider is the high amount of

false-positive streamlines in the tractogram and recognized bundles

(Maier-Hein et al., 2017). While segmenting the tractogram

and focusing the analysis on known tract bundles, false-positive

streamlines can lead to inconsistencies in the tract profiles of

the tractometry analysis, like overestimating the tract profiles

from the estimated fixel-based metrics. Additionally, they can

introduce more noise and variability into the analysis, hindering

reproducibility. This can reduce the sensitivity of tractometry

analysis to detect genuine alterations in WM between control

subjects and patients, resulting inmisinterpretations and erroneous

conclusions. Fortunately, there are methods like COMMIT

(Daducci et al., 2015) that assign weights to individual streamlines

in the tractogram by solving a convex optimization problem. This

enables the detection of false-positive streamlines, which can be

removed by discarding streamlines with weight equal to 0. As future

work, COMMIT can be integrated into the pipeline to obtain a

pipeline more robust to false-positive streamlines.

5 Conclusions

In conclusion, our work focuses on creating a robust

tractometry framework informed by tractography-regularized

multi-tensor fixel-based metrics. It demonstrates its capabilities

to address the crossing fibers bias and lesions, increasing the

sensibility in both simulated and real-world scenarios.

This study makes several key contributions to the field of

WM imaging analysis. First, developing a simulated phantom with

challenging and customizable geometry, incorporating different

WM scenarios by using the standard model (healthy tissue,

demyelination, and axon loss). This phantom provides a controlled

environment to systematically evaluate and compare different

imaging techniques and models. This allows us to verify the

accuracy and robustness of our proposed methods against various

fiber configurations and pathologies. Second, our proposed pipeline

informed with the multi-compartment framework MRDS–three

anisotropic and one isotropic compartment–marks a substantial

methodological advancement. This pipeline goes from raw data

to tract profiles informed with track-specific tensor metrics. By

combining tractography robust to lesions and accurate multi-

tensor fixel-based metrics, our pipeline achieves more robust,

precise, and sensitive representations of the WM microstructure,

particularly in regions with complex crossing fiber configurations

or lesions related to pathologies. This approach addresses

limitations in the current state-of-the-art methods. Thirdly, we

evaluated the proposed tractometry pipeline in a cohort of 20

healthy individuals. Our results demonstrate the superiority of

MTM over DTI, highlighting MTM’s enhanced ability to capture

detailed microstructural information and resolve crossing fiber

geometries. The increased sensitivity of MTM metrics provides

more accurate assessments of white matter integrity. Finally,

applying our tractometry pipeline to a cohort with relapsing-

remitting MS further underscores the clinical relevance of our

work. Our qualitative analysis demonstrates the sensitivity of the

pipeline in detecting WM anomalies related to demyelination. This

is particularly important in diseases like MS, where it is important

to differentiate between crossing fibers and lesion contamination.

Pipeline’s capabilities to delineate these anomalies offer an

improvement over those that only include DTImetrics for studying

and monitoring MS and potentially other neurological conditions.

Data availability statement

The raw in-vivo dMRI data and the derivatives are not

accessible to the public as we do not hold exclusive ownership

of the data. Nevertheless, data can be solicited with a reasonable

request and data-sharing agreements with the owners. A Python

framework was developed to simulate the synthetic phantom’s

diffusion-weighted imaging (DWI) signal. The code can be

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2024.1467786
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hernandez-Gutierrez et al. 10.3389/fnins.2024.1467786

found in https://github.com/ErickHernandezGutierrez/phantom_
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explorer. The Tractoflow pipeline is available at https://github.com/
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Appendix A

Isotropic compartment fitting

Two synthetic datasets were generated using 2 different

acquisition schemes. Datasets share the same parameters except

for the scheme. They were generated with no noise and no

dispersion. MRDS was fitted in both datasets in order to study

the estimation of the Isotropic Volume Fraction (IVF) with

different schemes. The first scheme (Penthera_3T) matched as

closely as possible the scheme used in the in-vivo experiments.

Similar to the Penthera_3T scheme, the second scheme (Test

scheme) was composed of 107 encoding directions, but they

were distributed as 33 directions for b = 0.3ms/µm2, 33 for

b = 0.6ms/µm2, 34 for b = 1ms/µm2, and 7 for b = 0,

respectively.

Figure A1 shows histograms of the estimated IVF with

MRDS on the 2 different acquisition schemes. The histogram

corresponding to Penthera_3T shows an overestimation of the

IVF, with a mean relative error of 80%. On the other hand,

the histogram corresponding to the second scheme has a lower

relative error (40%). This indicates the importance of using an

appropriated protocol for the estimation, as the free diffusion

compartment decays faster for high b-values (>1ms/µm2),

reducing the number of lower b-values measurements in

the protocol biases the estimation of the IVF. However, for

the most accurate estimation of the free water compartment

acquisitions with multiple echo times are needed (Coelho et al.,

2022).

FIGURE A1

Histograms of the estimated isotropic volume fraction with MRDS

using di�erent protocols.

Appendix B

Fiber tracking with multi-tensor

If a statistical-based model selection, such as the Bayesian

Information Criterion (BIC), is used to obtain a preliminary MTF

with MRDS, an Orientation Distribution Function (ODF) can be

generated. The transformation of the MTF provided by MRDS

into an ODF image can be performed using the following equation

(Daducci et al., 2014):

ODF
(

ĝ
)

=

N
∑

j=1

αj

(

ĝTD−1
j ĝ

)− 3
2

4π
√

det
(

Dj

)

, (B.1)

Fiber tracking can be performed using the probabilistic

tractography algorithm iFOD2 (Tournier et al., 2009) on the ODFs

obtained with Equation B.1. Since iFOD2 has been optimized for

the Fiber Orientation Distributions (FODs) derived from CSD,

a tuned ODF amplitude cutoff of 0.05 should be used as it has

shown to improve results when tacking with multi-tensor derived

ODFs (Girard et al., 2023). Afterward, the obtained tractogram

can be used as input for the proposed pipeline in Figure 4. Thus,

this tractogram can be segmented into major bundles, employing

RecoBundlesX. Besides, it can be used to evaluate a new MTF with

the TODI model selector.

Computing the tractogram with MRDS instead of CSD could

help to reduce the pipeline’s computational time. However, both

RecoBundlesX and iFOD2 are specifically tuned to work with ODFs

obtained with CSD or similar methods. Therefore, the quality of the

tractogrammay be affected, resulting in difficulties recovering some

major bundles.

Appendix C

Tract profile standard deviation and ANOVA
test results for fixel-FA and fixel-RD metrics
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TABLE C1 Standard deviations (SD) for tract profiles across di�erent white matter bundles.

SLF_L AF_L PYT_L ILF_L MCP IFOF_L CG_L

Subject FA Fixel-
FA

FA Fixel-
FA

FA Fixel-
FA

FA Fixel-
FA

FA Fixel-
FA

FA Fixel-
FA

FA Fixel-
FA

sub-003 0.108 0.174 0.117 0.142 0.122 0.143 0.112 0.167 0.098 0.213 0.113 0.154 0.116 0.170

sub-004 0.113 0.158 0.113 0.164 0.127 0.161 0.102 0.167 0.105 0.177 0.108 0.163 0.111 0.174

sub-005 0.118 0.154 0.103 0.160 0.136 0.170 0.100 0.172 0.120 0.192 0.105 0.165 0.118 0.148

sub-006 0.110 0.162 0.112 0.167 0.126 0.163 0.102 0.170 0.108 0.179 0.103 0.165 0.119 0.173

sub-007 0.101 0.172 0.099 0.153 0.128 0.153 0.104 0.163 0.112 0.162 0.106 0.154 0.109 0.160

sub-008 0.115 0.169 0.102 0.151 0.135 0.172 0.091 0.158 0.106 0.170 0.102 0.143 0.112 0.168

sub-010 0.108 0.159 0.100 0.145 0.123 0.162 0.093 0.158 0.112 0.196 0.099 0.153 0.100 0.161

sub-011 0.099 0.162 0.110 0.162 0.123 0.146 0.103 0.156 0.116 0.185 0.100 0.146 0.132 0.168

sub-012 0.102 0.192 0.106 0.162 0.135 0.174 0.108 0.158 0.121 0.182 0.115 0.155 0.111 0.186

sub-014 0.105 0.172 0.100 0.152 0.129 0.167 0.092 0.173 0.102 0.163 0.098 0.170 0.093 0.159

sub-015 0.109 0.144 0.108 0.142 0.120 0.165 0.109 0.180 0.101 0.208 0.103 0.171 0.116 0.161

sub-016 0.112 0.154 0.104 0.146 0.130 0.173 0.098 0.155 0.107 0.190 0.102 0.144 0.126 0.152

sub-018 0.114 0.175 0.103 0.167 0.130 0.156 0.108 0.169 0.107 0.198 0.113 0.159 0.121 0.156

sub-019 0.114 0.171 0.104 0.146 0.128 0.171 0.110 0.153 0.106 0.161 0.117 0.151 0.105 0.170

sub-020 0.100 0.156 0.094 0.135 0.128 0.169 0.099 0.163 0.109 0.203 0.103 0.157 0.109 0.162

sub-021 0.121 0.171 0.108 0.155 0.126 0.150 0.105 0.175 0.110 0.206 0.103 0.164 0.117 0.167

sub-022 0.108 0.161 0.103 0.142 0.123 0.166 0.105 0.153 0.113 0.223 0.103 0.150 0.106 0.164

sub-023 0.108 0.178 0.099 0.129 0.130 0.158 0.098 0.163 0.109 0.200 0.110 0.152 0.119 0.173

Cohort 0.109 0.166 0.105 0.151 0.128 0.162 0.102 0.164 0.109 0.190 0.106 0.157 0.114 0.165

Subject RD Fixel-
RD

RD Fixel-
RD

RD Fixel-
RD

RD Fixel-
RD

RD Fixel-
RD

RD Fixel-
RD

RD Fixel-
RD

sub-003 0.507 0.346 0.521 0.355 0.538 0.378 0.503 0.341 0.452 0.307 0.478 0.352 0.525 0.346

sub-004 0.491 0.357 0.491 0.373 0.527 0.367 0.483 0.348 0.498 0.333 0.489 0.369 0.512 0.337

sub-005 0.483 0.354 0.473 0.370 0.543 0.386 0.464 0.342 0.508 0.344 0.485 0.371 0.522 0.358

sub-006 0.507 0.371 0.487 0.385 0.536 0.384 0.476 0.352 0.506 0.339 0.486 0.366 0.505 0.337

sub-007 0.476 0.339 0.471 0.342 0.540 0.374 0.472 0.333 0.491 0.315 0.478 0.347 0.497 0.320

sub-008 0.493 0.352 0.479 0.340 0.536 0.365 0.474 0.347 0.496 0.320 0.465 0.349 0.518 0.328

sub-010 0.471 0.341 0.457 0.332 0.527 0.369 0.461 0.337 0.502 0.323 0.456 0.338 0.489 0.321

sub-011 0.475 0.352 0.486 0.365 0.524 0.366 0.472 0.336 0.507 0.318 0.481 0.345 0.510 0.326

sub-012 0.488 0.368 0.474 0.370 0.545 0.388 0.482 0.340 0.518 0.329 0.477 0.349 0.496 0.358

sub-014 0.496 0.351 0.479 0.364 0.532 0.378 0.458 0.341 0.477 0.309 0.485 0.361 0.487 0.329

sub-015 0.478 0.365 0.491 0.368 0.537 0.371 0.474 0.336 0.504 0.319 0.480 0.366 0.507 0.345

sub-016 0.505 0.354 0.473 0.363 0.543 0.376 0.464 0.342 0.491 0.326 0.469 0.342 0.515 0.345

sub-018 0.473 0.351 0.477 0.362 0.538 0.386 0.486 0.339 0.500 0.324 0.478 0.361 0.519 0.332

sub-019 0.501 0.357 0.489 0.360 0.546 0.374 0.485 0.337 0.496 0.317 0.490 0.345 0.507 0.337

sub-020 0.484 0.365 0.467 0.348 0.545 0.381 0.465 0.338 0.506 0.330 0.469 0.343 0.492 0.343

sub-021 0.474 0.341 0.484 0.349 0.539 0.357 0.467 0.332 0.488 0.319 0.477 0.348 0.522 0.319

sub-022 0.472 0.351 0.469 0.345 0.538 0.371 0.471 0.330 0.494 0.312 0.473 0.348 0.504 0.317

sub-023 0.487 0.353 0.465 0.331 0.542 0.384 0.470 0.337 0.504 0.327 0.481 0.341 0.511 0.345

Cohort 0.489 0.355 0.478 0.360 0.539 0.376 0.474 0.339 0.497 0.324 0.479 0.352 0.505 0.340

The SDs for each bundle are calculated by taking the square root of the mean of the within-subject variance across five repeated scans. The last row in the table shows the SD obtained from the

between-subject variance, reflecting the variability of the tract profiles within the group. The SDs are reported for four key metrics: FA, fixel-FA, RD and fixel-RD. Only 18 of the 20 subjects

from the HC cohort are reported because 2 of them did not completed the five scans.
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TABLE C2 ANOVA results for tract profiles of sub-015 across the 20 sections (labels) of multiple bundles.

Fixel-FA SLF_L AF_L PYT_L ILF_L MCP IFOF_L CG_L

Label f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value

1 2.68 6.20E-01 1.95 2.20E-01 13.45 1.26E-08 2.54 6.98E-01 4.60 3.13E-02 1.13 2.33E-01 0.40 5.42E-01

2 0.52 1.51E-01 1.64 8.66E-01 3.96 3.84E-04 1.64 1.69E-02 0.77 1.21E-03 3.59 2.13E-02 9.33 5.24E-07

3 1.81 7.20E-01 2.01 1.17E-02 8.50 6.73E-03 6.15 3.93E-02 2.23 3.36E-02 1.41 3.03E-02 2.63 1.94E-02

4 1.68 1.16E-01 2.67 8.57E-01 0.17 5.55E-01 0.39 4.31E-04 3.45 5.91E-01 1.70 7.32E-01 8.92 3.88E-02

5 0.42 2.10E-01 2.28 2.18E-02 3.74 3.96E-04 0.88 6.89E-01 7.52 5.83E-07 1.33 7.70E-01 4.16 7.90E-04

6 1.83 1.37E-01 2.20 5.03E-01 4.20 2.57E-01 9.50 1.43E-02 0.27 8.34E-02 0.98 2.23E-01 5.27 1.89E-05

7 1.73 1.31E-01 5.35 2.41E-04 22.91 5.45E-17 13.83 1.88E-13 6.97 1.88E-05 0.74 1.36E-01 1.29 1.36E-02

8 4.63 2.74E-04 2.04 1.26E-01 14.76 1.05E-06 15.27 2.82E-06 5.12 1.77E-02 8.89 1.71E-05 2.82 1.45E-01

9 4.10 5.86E-03 4.43 5.58E-05 4.00 5.20E-03 2.47 7.17E-03 2.20 3.60E-02 5.87 1.97E-03 3.25 3.33E-03

10 1.39 1.12E-01 5.14 1.33E-03 2.01 1.19E-01 5.13 3.66E-01 7.64 9.55E-03 3.57 5.01E-04 3.73 1.12E-03

11 1.03 9.90E-01 0.54 2.68E-01 1.93 1.47E-02 3.38 2.62E-01 1.83 2.70E-01 3.40 6.62E-04 2.68 6.22E-05

12 1.81 4.28E-02 12.99 5.45E-07 10.16 1.48E-07 13.85 1.67E-05 4.59 2.87E-03 5.61 3.61E-01 0.36 9.03E-01

13 4.87 8.56E-03 7.40 3.10E-04 7.12 1.83E-01 9.42 1.79E-06 4.68 6.92E-05 6.23 1.15E-04 0.60 4.13E-01

14 2.54 9.77E-03 4.50 1.47E-01 3.66 4.24E-03 3.18 2.61E-05 5.15 6.68E-01 1.33 4.30E-01 13.63 1.85E-05

15 0.78 5.48E-02 4.10 3.25E-02 3.79 1.66E-02 1.97 1.12E-01 1.07 3.41E-01 11.86 1.63E-03 5.78 1.11E-05

16 9.05 3.11E-03 18.82 3.47E-13 5.31 1.63E-02 0.65 4.07E-01 2.87 4.70E-02 8.91 1.27E-05 5.50 1.28E-04

17 2.10 4.94E-01 7.85 5.87E-05 4.41 2.98E-02 3.37 2.59E-01 9.96 2.63E-06 7.06 2.39E-02 8.27 8.73E-09

18 0.51 2.61E-01 0.69 2.25E-01 10.31 3.31E-06 6.81 3.43E-09 1.13 2.93E-01 17.16 1.87E-09 4.89 2.39E-03

19 1.81 2.80E-01 1.51 3.20E-01 2.18 1.06E-01 0.99 6.23E-01 3.77 4.23E-01 1.99 2.02E-01 0.22 1.43E-02

20 2.73 4.56E-01 0.57 1.66E-01 2.19 3.92E-02 6.77 1.90E-02 1.82 8.15E-01 1.92 1.38E-02 0.98 7.60E-01

Rej. rate 25% 35% 50% 40% 35% 40% 55%

(Continued)
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TABLE C2 (Continued)

Fixel-
RD

SLF_L AF_L PYT_L ILF_L MCP IFOF_L CG_L

Label f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value f-stat p-value

1 2.55 3.65E-01 0.87 9.90E-02 7.81 2.08E-04 1.47 4.42E-01 1.78 3.29E-02 2.13 2.78E-02 3.84 8.35E-02

2 0.99 1.58E-01 1.88 6.29E-01 0.85 3.83E-01 2.42 1.84E-02 2.89 1.65E-02 2.34 3.10E-01 7.45 1.37E-04

3 1.94 2.11E-01 1.09 4.50E-01 6.21 4.59E-04 1.52 2.19E-01 0.34 7.36E-03 1.49 6.28E-01 2.10 8.33E-02

4 1.30 7.04E-02 1.19 5.44E-02 13.20 2.87E-05 1.91 4.24E-01 8.90 5.56E-05 1.30 2.52E-01 1.66 9.10E-02

5 0.86 1.56E-01 0.95 3.13E-02 19.43 1.46E-10 1.46 9.16E-01 0.95 5.26E-01 1.13 4.03E-02 2.30 3.59E-01

6 1.98 3.94E-02 11.33 6.11E-07 18.96 1.45E-10 2.85 3.57E-01 8.11 3.62E-07 6.99 1.79E-03 6.71 1.19E-05

7 2.40 3.11E-01 6.17 2.27E-06 8.92 1.40E-06 4.00 1.41E-05 16.90 4.07E-09 1.30 7.30E-01 7.27 8.59E-04

8 0.33 4.04E-01 3.50 1.90E-01 3.60 1.14E-02 0.21 6.85E-01 3.24 1.62E-04 2.08 2.70E-01 2.24 9.10E-02

9 1.04 5.36E-01 10.65 4.61E-08 1.06 1.14E-02 0.62 2.15E-02 3.34 1.44E-02 3.52 1.06E-01 3.22 2.18E-03

10 0.00 7.94E-06 7.05 2.33E-03 8.26 1.20E-03 3.21 3.24E-01 26.34 3.35E-16 11.59 5.33E-10 3.51 4.32E-02

11 0.47 1.64E-01 9.52 4.65E-07 2.17 5.06E-03 1.06 7.70E-01 12.96 7.62E-10 12.14 4.52E-08 5.19 8.09E-02

12 0.00 3.13E-07 4.51 1.98E-01 3.05 7.44E-03 4.01 1.25E-01 2.94 1.66E-01 6.51 1.92E-06 9.12 1.71E-06

13 4.57 1.28E-02 4.98 3.98E-02 0.47 1.34E-01 3.17 3.03E-01 2.10 2.18E-03 9.48 1.58E-04 6.49 1.41E-02

14 4.02 1.55E-03 3.60 3.18E-03 6.92 2.12E-01 0.30 3.22E-01 1.71 1.22E-01 0.70 8.55E-01 2.97 7.49E-03

15 3.78 7.62E-03 10.43 1.04E-04 0.92 7.24E-03 3.75 1.43E-05 1.45 3.62E-01 4.72 4.24E-02 3.65 2.98E-02

16 0.44 1.46E-01 7.04 4.07E-07 6.83 7.45E-06 3.47 8.95E-03 3.18 2.68E-06 4.99 4.21E-03 6.23 3.71E-05

17 2.33 2.43E-02 1.87 1.00E-01 1.01 7.09E-03 0.57 3.25E-01 2.58 4.11E-03 1.22 3.28E-01 2.66 1.94E-01

18 11.29 1.80E-05 1.26 8.85E-01 2.18 2.96E-02 3.04 1.21E-03 11.60 1.45E-06 1.41 2.01E-03 7.80 4.88E-03

19 2.88 2.88E-02 2.55 3.54E-01 6.76 4.35E-02 2.41 6.38E-03 14.73 1.13E-07 0.75 2.52E-01 1.03 8.64E-02

20 1.91 5.04E-01 1.55 1.84E-01 2.64 1.00E-05 4.66 2.01E-03 1.41 7.36E-03 1.32 7.63E-02 4.20 8.93E-02

Rej. rate 25% 40% 60% 25% 60% 25% 40%

The ANOVA test assesses whether there are statistically significant differences in the means tract profiles with fixel-FA and fixel-RD metrics across locations, with a significance threshold set at p < 0.01. It includes the percentage of hypothesis rejection. The sample

size for the analysis is 500.
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