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Background: Functional magnetic resonance imaging (fMRI) is widely used 
to depict neural activity and understand human brain function. Studies show 
that functional networks in gray matter undergo complex transformations from 
neonatal age to childhood, supporting rapid cognitive development. However, 
white matter functional networks, given the much weaker fMRI signal, have 
not been characterized until recently, and changes in white matter functional 
networks in the developing brain remain unclear.

Purpose: Aims to examine and compare white matter functional networks in 
neonates and 8-year-old children.

Methods: We acquired resting-state fMRI data on 69 full-term healthy neonates 
and 38 healthy 8-year-old children using a same imaging protocol and studied 
their brain white matter functional networks using a similar pipeline. First, 
we utilized the ICA method to extract white matter functional networks. Next, 
we analyzed the characteristics of the white matter functional networks from 
both time-domain and frequency-domain perspectives, specifically, intra-
network functional connectivity (intra-network FC), inter-network functional 
connectivity (inter-network FC), and fractional amplitude of low-frequency 
fluctuation (fALFF). Finally, the differences in the above functional networks’ 
characteristics between the two groups were evaluated. As a supplemental 
measure and to confirm with literature findings on gray matter functional 
network changes in the developing brain, we  also studied and reported 
functional networks in gray matter.

Results: White matter functional networks in the developing brain can 
be depicted for both the neonates and the 8-year-old children. White matter 
intra-network FC within the optic radiations, corticospinal tract, and anterior 
corona radiata was lower in 8-year-old children compared to neonates (p  <  0.05). 
Inter-network FC between cerebral peduncle (CP) and anterior corona radiation 
(ACR) was higher in 8-year-olds (p  <  0.05). Additionally, 8-year-olds showed a 
greater distribution of brain activity energy in the high-frequency range of 0.01–
0.15 Hz. Significant developmental differences in brain white matter functional 
networks exist between the two group, characterized by increased inter-network 
FC, decreased intra-network FC, and higher high-frequency energy distribution. 
Similar findings were also observed in gray matter functional networks.

Conclusion: White matter functional networks can be  reliably measured in 
the developing brain, and the differences in these networks reflect functional 
differentiation and integration in brain development.

KEYWORDS

RS-fMRI, white matter, functional connectivity, fALFF, brain development

OPEN ACCESS

EDITED BY

Xiangmin Xu,  
University of California, Irvine, United States

REVIEWED BY

Muwei Li,  
Vanderbilt University Medical Center, 
United States
Wenjian Zheng,  
Shenzhen Second People’s Hospital, China

*CORRESPONDENCE

Xiawei Ou  
 ouxiawei@uams.edu

RECEIVED 19 July 2024
ACCEPTED 14 October 2024
PUBLISHED 23 October 2024

CITATION

Huang Y, Glasier CM, Na X and Ou X (2024) 
White matter functional networks in the 
developing brain.
Front. Neurosci. 18:1467446.
doi: 10.3389/fnins.2024.1467446

COPYRIGHT

© 2024 Huang, Glasier, Na and Ou. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 23 October 2024
DOI 10.3389/fnins.2024.1467446

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1467446&domain=pdf&date_stamp=2024-10-23
https://www.frontiersin.org/articles/10.3389/fnins.2024.1467446/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1467446/full
mailto:ouxiawei@uams.edu
https://doi.org/10.3389/fnins.2024.1467446
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1467446


Huang et al. 10.3389/fnins.2024.1467446

Frontiers in Neuroscience 02 frontiersin.org

1 Introduction

Human brain undergoes significant structural and functional 
changes to support the development of behavior and cognition from 
infancy to childhood. Based on fMRI, previous studies have shown 
that functional brain networks undergo complex transformation 
during this time in the gray matter (Edde et al., 2021; Chen et al., 2021; 
Bruchhage et al., 2020). While blood oxygenation level-dependent 
(BOLD) signals have been reliably detected in gray matter using fMRI, 
and recent studies have shown that neural activity can also be detected 
in white matter as BOLD signals (Ding et al., 2018; Gore et al., 2019; 
Huang Y. et al., 2020), research on white matter functional networks 
in the developing brain has not been reported.

In neonates, the focus of brain function study has been primarily 
on fundamental autonomic processes and sensory processing (Huang 
Z. et al., 2020; Gao et al., 2017). In contrast, school age children exhibit 
a repertoire of more sophisticated cognitive functions, encompassing 
language, memory, attention, and problem-solving abilities. During 
this developmental window, there is a clear progression in brain size 
and volume (Bethlehem et al., 2022). Structural differences between 
brains of neonates and school age children are evident and have been 
extensively documented in the literature (Gilmore et al., 2018; Alex 
et  al., 2023). Concomitant with these structural changes, brain 
function also undergoes substantial transformations. For example, 
Gao et al. utilized heat maps to quantify the developmental changes 
in functional connectivity across the first six years of life (Chen et al., 
2021). Previous research has also shown that functional connectome 
can be employed to characterize individual traits (Wang et al., 2021) 
and to predict age (Kardan et al., 2022). However, these studies have 
all focused on gray matter regions and have not investigated white 
matter functional networks.

The goal of this study is to demonstrate that white matter 
functional networks can be depicted in the developing brain and to 
investigate the differences in white matter functional networks in 
different age groups. We hypothesize that there are functional network 
differences in white matter associated with age. To test this hypothesis, 
we utilized resting-state fMRI (RS-fMRI) data from two cohorts of 
children: full term healthy neonates and healthy 8-year-old children 
and studied and compared their brain white matter functional 
networks based on three perspectives: functional connectivity within 
networks (intra-network FC), functional connectivity between 
networks (inter-network FC), and fractional amplitude of low 
frequency fluctuations (fALFF) of functional networks. RS-fMRI data 
for the two groups were acquired using a same imaging protocol on 
the same 3T MRI scanner and decomposed into independent 
components using spatial independent component analysis (ICA) 
(Calhoun et al., 2001) using a similar processing pipeline.

2 Materials and methods

2.1 MRI data acquisition and 
pre-processing

We acquired and analyzed two sets of research MRI data, one 
from full term healthy neonates and one from healthy 8-year-old 
children. The demographic information of the research subjects is 
summarized in Table 1, and there was no difference in sex between the 

two groups (p > 0.05). Informed consent was obtained from all subjects 
following Institutional Review Board approved study protocols at 
Arkansas Children’s Hospital. Anonymized data were used for analysis.

The neonates and 8-year-old children’s MRI data were both 
acquired using a 3.0 T Prisma (Siemens healthcare) scanner. The 
neonatal scans were performed when they were at natural sleep with 
no sedation. The 8-year-old children were instructed to close their 
eyes during the RS-fMRI data acquisition. The MRI protocol included 
a MPRAGE 3D T1-weighted scan with TR 2400ms, TE 2.24ms, 1 
average, voxel size 0.8*0.8*0.8mm3, 8° flip angle, turbo factor 256, and 
sagittal slices covering the entire brain, and a RS-fMRI pulse sequence 
with multi-band EPI with TR 800ms, TE 37ms, phase-encoding AP 
direction then repeated in PA direction, multi-band factor 8, matrix 
size 104*104, voxel size 2*2*2 mm3, and 72 slices. In addition, a short 
field map sequence using the same geometry was performed for both 
AP/PA phase encoding, to correct for field inhomogeneity associated 
distortion in imaging post-processing.

The 8-year-old children’s brain structural and functional images 
were preprocessed by the fMRIPrep toolbox (Esteban et al., 2019), 
which includes tools from FSL (Jenkinson et al., 2012), AFNI (Cox, 
1996), and ANTs (Avants et  al., 2009). The pipeline in our study 
includes (1) slice timing correction; (2) correction for susceptibility 
distortions induced by magnetic field inhomogeneity and multi-band 
EPI; (3) realignment of all volumes to a selected reference volume; (4) 
co-registration of the functional data to the structural image; (5) 
normalization to the MNI standard space, data resampling to 
2*2*2 mm3 isotropic voxels; (6) functional images’ segmentation into 
gray matter and white matter; and (7) smoothing the segmented white 
matter with a 4 mm FWHM Gaussian kernel.

Since the fMRIPrep toolbox by default lacks an age-appropriate 
template for the neonatal brain, we applied in-house code base on FSL, 
AFNI and ANTs, same as those used in fMRIPrep, to perform data 
preprocessing on neonates (Jenkinson et al., 2012; Cox, 1996; Avants 
et al., 2009). It should be noted that all steps were the same as those 
used in fMRIPrep and the only difference between processing of the 
neonatal and 8-year-old data was that the neonatal data were 
registered to the UNC neonatal template (Shi et al., 2011) whereas 
data for 8-year-old children were registered to the MNI space. And the 
white and gray matter masks from UNC were used to segment the 
white and gray matter data for the neonates.

Head motion of all subjects was checked, and only subjects with 
RS-fMRI data with minimal to slight head motion (<3.0  mm in 
translation and < 3° in rotation for all imaging volumes for 8-year-old 
children; <2.0 mm in translation and < 2° in rotation for all imaging 
volumes for neonates) were kept in the study. After the head motion 

TABLE 1 Demographic information for the research subjects included in 
this study.

Mean Std. Range

Neonates

Gestational age (days) 275 6 258–290

Postnatal age at MRI (days) 20 8 10–54

Postmenstrual age at MRI 

(days)
295 11 274–339

Gender N/A N/A 40 M/29 F

8-year-

olds

Age at MRI (years) 8.1 0.2 7.9–8.7

Gender N/A N/A 20 M/18 F
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evaluation, 3 subjects from the 8-year-old group were excluded and 
38 subjects were used for further analysis; and 3 subjects from the 
neonatal group were excluded and 69 subjects were used for 
further analysis.

2.2 Group ICA parcellation

We first decomposed the two preprocessed BOLD data separately 
using standard group-level ICA to identify statistically ICs, as 
implemented in the GIFT toolbox.1 The data were decomposed using 
the Infomax ICA algorithm, and the ICASSO algorithm was repeated 
20 times to increase the stability of ICs. Subject-specific spatial maps 
and time courses were estimated using the GICA back-reconstruction 
method, similar to that performed in previous research on whole-
brain connectivity in the resting state (Allen et al., 2014). FMRI data 
of white matter were decomposed into 16 and 20 independent 
components for the neonates and 8-year-old children, respectively. 
Eight year old children have a more mature brain network 
development compared to neonates, and their BOLD signal were 
therefore decomposed to a larger number of independent components, 
consistent with previous studies (Gao et  al., 2015b). A similar 
processing scheme was also applied to the gray matter fMRI data 
for references.

2.3 Identification of functional networks

The group-average spatial maps obtained from the GIFT output 
were visually inspected, with each component manually labeled as 
either a functional network or noise. Following the method of 
functional network identification in gray matter ICA decomposition 
by Du et al. (2023), we organized the spatial maps from the white 
matter ICA decomposition into specific functional networks. To 
determine whether a component constituted a meaningful functional 
network and should be  included in the analysis, we  removed 
components located on the scalp or blood vessels, compared each 
component to previous research findings (Gao et al., 2017; Gilmore 
et al., 2018; Allen et al., 2014; Allen et al., 2011; Seeley, 2019; Du et al., 
2020), and identified white matter functional networks according to 
their anatomical roles and the JHU atlas (Du et  al., 2023; Allen 
et al., 2011).

For the comparison of functional networks between the two age 
groups, since the functional brain networks of neonates are still 
developing and not fully mature (Huang Z. et al., 2020; Gao et al., 
2015b; Gao et  al., 2015a), it may be  challenging to establish a 
one-to-one correspondence between the independent components 
obtained from neonates and those obtained for 8-year-old children. 
We  focused on optic radiation (OR), cerebral peduncle (CP) and 
anterior corona radiation (ACR) functional networks in both datasets, 
which are consistently delineated in both groups (Figure 1) and are 
essential for the visual, motor, and cognitive functions. For gray 
matter, we identified the primary functional networks including the 
visual network (VN), the sensorimotor network (SMN), and the 

1 https://trendscenter.org/software/gift/

FIGURE 1

(a) Group-average spatial maps for white matter functional networks 
in neonates; (b) group-average spatial maps for white matter 
functional networks in 8-year-old children. All spatial maps were 
thresh-hold at Z > 2 (p < 0.05), and the color bar denotes Z-scores. OR, 
Optic Radiation; CP, Cerebral Peduncle; ACR, Anterior Corona Radiata; 
SCR, Superior Corona Radiata; PCR, Posterior Corona Radiata; GCC, 
Genu of Corpus Callosum; SS, Sagittal Stratum; SCC, Splenium of 
Corpus Callosum; MCP, Middle Cerebellar Peduncle; SCP, Superior 
Cerebellar Peduncle; PLIC, Posterior Limb of Internal Capsule; RPIC, 
Retrolenticular Part of Internal Capsule; UF, Uncinate Fasciculus.
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auditory network (AN), as well as high-order networks including  
the default mode network (DMN), the salience network (SAN), and 
the frontoparietal networks (FPN) in both datasets 
(Supplementary Figure S1).

2.4 Computation of intra-network FC and 
inter- network FC

To remove the influence of irrelevant signals, we conducted the 
following post-processing on all time courses (TC): transforming TC 
to a Fisher’s Z-score, regressing six head motion parameters, and 
removing linear trends. This analytical framework is systematically 
applied to both white matter and gray matter fMRI data sets 
respectively, ensuring a comprehensive understanding of FC across 
different brain tissue types.

Consequently, we analyzed the differences in intra-network and 
inter-network FCs among the 3 white matter functional networks and 
6 gray matter functional networks between the two age groups. As an 
additional measure, we also examined the differences in both intra-
network FC and inter-network FC for all meaningful functional 
networks (as presented in Figure 1) combined, regardless of whether 
they were consistently detected in both age groups.

For each functional network, we assessed intra-network FC by 
computing the mean Pearson correlation coefficient across the voxel 
TC within the network, excluding diagonal elements. For each 
participant, we also calculated the average intra-network FC for all 
functional networks to derive the intra-network FC. The main 
objective of intra-network FC is to assess the synchronous activity 
within the functional network. Positive correlations reflect the 
temporal consistency of activities among different voxels within the 
network, which is crucial for measuring the network’s homogeneity. 
Negative correlations, on the other hand, might indicate functional 
differentiation within the network, which is not aligned with our 
purpose of assessing homogeneity. In brain functional studies, positive 
correlations are often viewed as indicators of functional connectivity, 
representing regions that are either simultaneously activated or 
inhibited. Negative correlations are less commonly used to denote 
such synchronous activity, especially when evaluating connectivity 
within a single network. Therefore, for intra-network FC, we only 
considered positive correlations within the network.

For each participant, we  computed the inter-network FC by 
evaluating the mean Pearson correlation coefficient matrix among all 
pairs of the identified functional networks, again omitting diagonal 
elements. This process provides us with distinct inter-network FC 
values for each individual. For inter-network FC, we include both 
positive and negative correlations between networks. The goal of inter-
network FC is to assess the interactions between different functional 
networks. Positive correlations indicate cooperative activity between 
networks, while negative correlations represent a complementary or 
inhibitory relationship. Both types of correlations are biologically 
significant in the context of inter-network interactions. Considering 
the complex interaction patterns between different networks, 
including both positive and negative correlations ensures a more 
comprehensive evaluation of inter-network functional connectivity. 
Omitting negative correlations would overlook crucial information 
about the nature of these interactions. Averaging both positive and 
negative correlations to evaluate overall inter-network functional 

connectivity is commonly used in clinical and cognitive neuroscience 
research, especially in studies that require a comprehensive assessment 
of network connectivity strength or changes in connectivity patterns 
(Berman et al., 2016; Sahoo et al., 2015; Song et al., 2015). Therefore, 
we considered both positive and negative inter-network FC.

2.5 Investigation of frequency spectrum in 
functional networks

The amplitude of low-frequency fluctuation (ALFF) of the resting-
state fMRI signal has been suggested to reflect the intensity of regional 
spontaneous brain activity (Zang et al., 2007). Due to its sensitivity to 
noise, the fALFF was subsequently proposed to study brain function 
(Zou et al., 2008). Here we calculated the ratio of power spectrum at 
11 frequency bands to that of the frequency range (0.01 ~ 0.15 Hz), 
which denote the power of BOLD signal fluctuation. These 11 
frequency bands starting from 0.01 Hz to 0.15 Hz, each frequency 
band is 0.04  Hz in length, with a step size of 0.01  Hz. For each 
independent component of each subject, TC was extracted to compute 
fALFF at the 11 frequency bands. Similar to the process used in 
calculating FC, we also applied the following post-processing to TC: 
Fisher-Z score transformation, head-motion regression, and 
detrending before computing fALFF.

3 Results

3.1 Identification of white matter functional 
networks using ICA

The identified white matter functional networks for neonates 
are as follows: OR (Optic Radiation), GCC (Genu of Corpus 
Callosum), CP (Cerebral Peduncle), SCR (Superior Corona 
Radiata), ACR (Anterior Corona Radiata), PCR (Posterior Corona 
Radiata), and SS (Sagittal Stratum), as shown in Figure  1a. The 
identified white matter functional networks for 8-year-old children 
are as follows: OR (Optic Radiation), SCC (Splenium of Corpus 
Callosum), CP (Cerebral Peduncle), SCP (Superior Cerebellar 
Peduncle), ACR (Anterior Corona Radiata), MCP (Middle 
Cerebellar Peduncle), PLIC (Posterior Limb of Internal Capsule), 
RPIC (Retrolenticular Part of Internal Capsule), and UF (Uncinate 
Fasciculus), as shown in Figure 1b. Possibly due to the immaturity 
of functional networks in neonates and the much lower BOLD 
signal in white matter, only three networks: OR, CP and ACR were 
consistently identified (the first three rows of the left column in 
Figures 1a,b) and were used for group comparison.

3.2 Intra-network FC analysis in white 
matter between two groups

To investigate how functional networks evolve from neonates to 
8-year-old children, we compared the intra-network FC of the above 
three networks, with the corresponding results presented in Figure 2, 
which shows that the intra-network FC within OR, CP, and ACR were 
lower (all p values <0.05, FDR corrected) when compare 8-year-old 
children to neonates.
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To explore the differences in intra-network FC of all white brain 
networks between neonates and 8-year-old children from a holistic 
perspective, we further examined the overall intra-network FC within 
white matter for all functional networks derived from the ICA 
algorithm (Figure 1) for the two age groups, and the results are shown 
in Figure 3. It can be also seen that the intra-network FC was lower in 
8-year-old children compared to that in neonates. These results 
suggest that with an increase in age, the intra-network FC within the 
same functional networks decreases.

3.3 Inter-network FC analysis in white 
matter between two groups

Next, we compared the inter-network FC of the three networks 
between neonates and 8-year-olds, with the corresponding results 
presented in Figure  4, which indicated that the inter-network FC 
between CP and ACR were higher when compare 8-year-old children 
to neonates (p < 0.05), while the inter-network FC between OR and 
ACR were similar between the two age groups (p = 0.08). Here 
we mainly measure the inter-networks between basic and advanced 
networks, so we did not present the inter-networks FC between OR 
and CP (which are both basic brain functional networks).

Similarly, we also examined the overall inter-network FC within 
white matter for all functional networks using the ICA algorithm 
(Figure 1) and compared them between the two age groups, and the 
results are shown in Figure 5. It can be also seen that the inter-network 
FC was higher in 8-year-old children compared to those in neonates. 
These results suggest that with an increase in age, the inter-network 
FC between the different functional networks increases.

3.4 Functional networks fALFF analysis in 
white matter between two groups

Firstly, we  calculated the fALFF of each component for each 
participant (excluding noise components). Then, we  averaged the 
fALFF of all components for each participant to obtain the fALFF of 
that participant in a specific frequency band. Finally, we compared the 
fALFF across different frequency bands between neonates and 

8-year-old children. Multiple comparison corrections (FDR) were 
applied to account for the 11 frequency bands. The comparison of 
fALFF in white matter functional networks is presented in Figure 6. 
Specifically, in the low-frequency range (0.01–0.05 Hz, 0.02–0.06 Hz, 
0.03–0.07 Hz, 0.04–0.08 Hz), the fALFF for the 8-year-old children 
were lower than those for the neonates (p < 0.05, FDR corrected); and 
in higher frequency bands (0.07–0.11 Hz, 0.08–0.12 Hz, 0.09–0.13 Hz, 
0.10–0.14 Hz, 0.11–0.15 Hz), the 8-year-old children had higher 
fALFF than the neonates (p < 0.05, FDR corrected).

We also found similar results in the gray matter functional 
network: the intra-network FC of 8-year-old children is lower than 
that of newborns, while the inter-network FC is higher than that of 
newborns. Additionally, with increasing age, the distribution of fALFF 
shifts toward higher frequencies. Detailed results can be found in the 
Supplementary material.

4 Discussion

We conducted an investigation of brain functional networks in 
both the temporal domain and the frequency domain to examine the 
differences in white matter functional networks between neonates and 
8-year-old children. Traditional functional network research has 
predominantly concentrated on gray matter, since white matter BOLD 
signal is much weaker, and it has not been studied extensively until 
recently (Gore et al., 2019; Li et al., 2019; Wang et al., 2022; Huang 
et al., 2023). We expanded current literature findings to explore the 
white matter functional networks in the developing brain based on 
RS-fMRI data.

In the FC analysis, we approached the investigation from two 
perspectives. First, we analyzed the differences in both intra- and 
inter-network FC within specific functional networks that were 
consistently presented in both neonates and 8-year-old children. Then, 
we examined the intra- and inter-network FC differences across all 
meaningful functional networks identified by ICA, regardless of 
whether they were consistently present in the two age groups. For both 
approaches, our findings show lower white matter intra-network FC 

FIGURE 2

Difference in intra-network FC within white matter functional 
networks (including OR, CP and ACR) in neonates and 8-year-old 
children. Asterisks above the box plots indicate significant differences 
(p  <  0.05, FDR corrected) between neonates and 8-year-old children 
(two-sample T-test). FIGURE 3

Overall intra-network white matter FC differences between the two 
age groups. Asterisks above the box plots indicate significant 
differences (p  <  0.05) between neonates and 8-year-old children 
(two-sample T-test).

https://doi.org/10.3389/fnins.2024.1467446
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2024.1467446

Frontiers in Neuroscience 06 frontiersin.org

and higher white matter inter-network FC in 8-year-old children 
compared to neonates. These findings are consistent with gray matter 
functional network findings presented in the Supplementary material, 
which also showed lower intra-network FC and higher inter-network 
FC in 8-year-old children compared to neonates for primary 
functional networks (including VN, SMN, and AN) and higher-order 
functional networks (including DMN, SAN, and FPN) and for all 
functional networks. Combined, our results reflect a differentiation of 
brain function within the same networks, and an integration of 
different functional networks with age. This developmental pattern is 
consistent with reports of gray matter functional connectivity in 
children by other studies (Edde et al., 2021; Gao et al., 2015b; Betzel 
et  al., 2014; Chan et  al., 2014). Specifically, previous studies 
demonstrate that there is a strong and widespread organization of 
networks, starting with segregation processes followed by a continuous 
increase in integration during the first year of the life, followed by a 
refinement of existing functional networks, which are characterized 

by an increase in integrative processes until about 40 years of age 
(Edde et al., 2021). Gao et al. (2015b) reported that increased FC is 
predominantly observed among higher-order cognitive function 
networks. Other studies indicated that the adult brain also displays 
reduced within-network and increased between-network FC across 
the adult lifespan (Du et al., 2023; Betzel et al., 2014; Chan et al., 2014; 
Deery et al., 2023). Adaptive changes in FC between different networks 
with age may be one of the contributing factors to the evolvement of 
higher-order cognitive functions during human life span.

Previous studies also showed that BOLD effects in white matter 
are robustly detectable both in response to stimuli and in a resting 
state, which have been largely ignored in previous fMRI literature 
(Huang Z. et al., 2020). Recently, researchers have explored biomarkers 
for depression and children with attention-deficit disorder based on 
white matter BOLD signals (Li et al., 2020; Bu et al., 2020). However, 
there are few reports on white matter BOLD signals associated with 
child brain development. Our research results indicate significant 
differences in the white matter functional networks between 8-year-
old children and newborns. These differences in functional network 
connectivity signify adaptive adjustments in brain function from 
infancy to childhood, e.g., neonates predominantly manifest basic 
physiological rhythms in their brainwave activity, whereas 8-year-old 
children already exhibit more intricate and advanced cognitive 
functions in their brainwave patterns. This cognitive evolution is 
underpinned by the increasing complexity and refinement of neural 
connections within the brain, including both white matter and gray 
matter. This enhanced connectivity allows for improved coordination 
and efficient exchange of information between different regions of the 
brain (Edde et  al., 2021; Bruchhage et  al., 2020; Bethlehem et  al., 
2022). It should be noted that different FC results can be obtained 
when using different band-pass filters. In our study, the FC values are 
based on the same band-pass filtering within the 0.01–0.15 Hz range.

The fALFF is an important indicator of brain functional activity. 
Our study reveals that in the lower frequency range of 0.01–0.15 Hz, 
8-year-old children exhibited lower fALFF compared to neonates. In 
contrast, at higher frequency ranges, 8-year-old children showed 
higher fALFF than neonates. This was true for both white matter and 
gray matter. Our results of gray matter align with previous research 
findings that there is a clear rightward shift in the BOLD signal 
frequency during the first year of life (Alcauter et  al., 2015). Our 
results also suggest that this rightward shift in the BOLD signal 
spectrum is more prominent in white matter functional networks. 
This result is consistent with the findings of a previous study that 
simple functional connectivity is predominantly occupied by 
low-frequency BOLD oscillations, while complex functional 
connectivity networks are mainly occupied by high-frequency BOLD 
oscillations (Baria et al., 2011). Therefore, the development of higher-
order cognitive functions during brain maturation may result in the 
differences in fALFF.

Despite its novelty in evaluation of brain functional networks and 
activity at rest in white matter, our study has certain limitations. First, 
the sample size is relatively small. Second, our study is cross-sectional 
but not longitudinal and there is a lack of data encompassing the 
developmental stages in between neonates and 8-year-olds. Existing 
and future data from large, multi-center, and longitudinal 
neuroimaging studies may be able to address this limitation, confirm 
our findings, and characterize brain resting-state functional network 
changes throughout all brain developmental stages. Third, the different 

FIGURE 4

Differences in inter-network FC between white matter functional 
networks (including OR, CP, and ACR) in neonates and 8-year-old 
children. Asterisks above the box plots indicate significant differences 
(p  <  0.05) between neonates and 8-year-old children (two-sample 
T-test).

FIGURE 5

Overall inter-network white matter FC differences between the two 
age groups. Asterisks above the box plots indicate significant 
differences (p  <  0.05) between neonates and 8-year-old children 
(two-sample T-test).
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states of newborns and 8-year-old children during MRI data collection 
may have influenced our results. Several studies have investigated the 
differences in FC between sleep and awake states. Research indicates 
that while there are notable differences in brain activity patterns 
between these states, the core networks and their functional 
connectivity tend to be preserved. For example, studies have shown 
that key resting-state networks, such as the default mode network 
(DMN), remain identifiable both during sleep and wakefulness, albeit 
with variations in their connectivity strengths and dynamics (Horovitz, 
et al., 2009; Larson-Prior et al., 2011). Horovitz et al. (2009) found that 
although the DMN exhibits reduced connectivity during deep sleep 
stages, its presence is still discernible. Similarly, Larson-Prior et al. 
(2011) demonstrated that the fundamental structure of resting-state 
networks remains intact during different sleep stages, even though 
their connectivity patterns are modulated by the level of consciousness. 
It is speculated that the differences associated with sleep and awake 
states, while present, are less significant compared to the substantial 
developmental changes in brain connectivity from neonates to 8-year-
olds. Age-related differences in brain development involve extensive 
maturation and reorganization of neural networks, which likely have a 
more profound impact on FC than the transient state differences 
between sleep and wakefulness. Therefore, while we acknowledge the 
potential influence of sleep versus awake states on our results, 
we believe that the age-related developmental changes we observe are 
the predominant factor. Nonetheless, future studies with more 
standardized data collection procedures across different age groups and 
states of consciousness will be beneficial to further validate our findings.

5 Conclusion

Our study indicates that white matter functional networks can 
be depicted in the developing brain using resting-state fMRI, and 
there are significant differences in white matter brain functional 
networks between neonates and 8-year-old children from three 
measures (intra-networks FC, inter-networks FC and fALFF). This 
phenomenon, indicative of the brain’s adaptive developmental 
processes, is evident in white matter and is consistent with the patterns 
observed in gray matter by us and by others as well. The analysis of FC 
and fALFF in white matter brain’s functional networks between 
neonates and 8-year-old children can contribute to better 
understanding of normal child brain development.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by University of 
Arkansas for Medical Sciences. The studies were conducted in 
accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 

FIGURE 6

Comparison of fALFF between neonates and 8-year-old in white matter. The horizontal axis shows 11 different frequency bands; the vertical axis 
represents fALFF. The box on the left above each frequency band represents neonates, while the one on the right represents 8-year-old children. 
Asterisks above the box plots indicate significant differences (p  <  0.05, FDR corrected) between neonates and 8-year-old children (two-sample T-test).

https://doi.org/10.3389/fnins.2024.1467446
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2024.1467446

Frontiers in Neuroscience 08 frontiersin.org

participate in this study. The animal study was approved by University 
of Arkansas for Medical Sciences. The study was conducted in 
accordance with the local legislation and institutional requirements. 
Written informed consent was obtained from the minor(s)’ legal 
guardian/next of kin for the publication of any potentially identifiable 
images or data included in this article.

Author contributions

YH: Conceptualization, Formal analysis, Investigation, 
Methodology, Software, Validation, Writing – original draft, Writing 
– review & editing. CG: Data curation, Supervision, Writing – review 
& editing, Project administration. XN: Writing – review & editing, 
Software. XO: Formal analysis, Funding acquisition, Project 
administration, Resources, Supervision, Validation, Visualization, 
Writing – review & editing, Methodology.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported in part by the National Institute of Health (R01 HD099099) 
and the Agriculture Research Service of U.S. Department of 
Agriculture (6026-10700-001-000D).

Acknowledgments

We thank Dr. Guowei Wu for supporting MRI data preprocessing.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1467446/
full#supplementary-material

References
Alcauter, S., Lin, W., Smith, J. K., Goldman, B. D., Reznick, J. S., Gilmore, J. H., et al. 

(2015). Frequency of spontaneous BOLD signal shifts during infancy and correlates with 
cognitive performance. Dev. Cogn. Neurosci. 12, 40–50. doi: 10.1016/j.dcn.2014.10.004

Alex, A. M., Aguate, F., Botteron, K., Buss, C., Chong, Y.-S., Dager, S. R., et al. (2023). 
A global multicohort study to map subcortical brain development and cognition in 
infancy and early childhood. Nat. Neurosci. 27, 176–186. doi: 10.1038/
s41593-023-01501-6

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D. 
(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 
24, 663–676. doi: 10.1093/cercor/bhs352

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al. 
(2011). A baseline for the multivariate comparison of resting-state networks. Front. Syst. 
Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Avants, B. B., Tustison, N., and Song, G. (2009). Advanced normalization tools 
(ANTS). Insight J 2, 1–35. doi: 10.54294/uvnhin

Baria, A. T., Baliki, M. N., Parrish, T., and Apkarian, A. V. (2011). Anatomical and 
functional assemblies of brain BOLD oscillations. J. Neurosci. 31, 7910–7919. doi: 
10.1523/JNEUROSCI.1296-11.2011

Berman, R. A., Gotts, S. J., McAdams, H. M., Greenstein, D., Lalonde, F., Clasen, L., 
et al. (2016). Disrupted sensorimotor and social–cognitive networks underlie symptoms 
in childhood-onset schizophrenia. Brain 139, 276–291. doi: 10.1093/brain/awv306

Bethlehem, R. A., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., 
et al. (2022). Brain charts for the human lifespan. Nature 604, 525–533. doi: 10.1038/
s41586-022-04554-y

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., and Sporns, O. (2014). Changes in 
structural and functional connectivity among resting-state networks across the human 
lifespan. NeuroImage 102, 345–357. doi: 10.1016/j.neuroimage.2014.07.067

Bruchhage, M. M., Ngo, G.-C., Schneider, N., D’Sa, V., and Deoni, S. C. (2020). 
Functional connectivity correlates of infant and early childhood cognitive development. 
Brain Struct. Funct. 225, 669–681. doi: 10.1007/s00429-020-02027-4

Bu, X., Liang, K., Lin, Q., Gao, Y., Qian, A., Chen, H., et al. (2020). Exploring white 
matter functional networks in children with attention-deficit/hyperactivity disorder. 
Brain Commun. 2:fcaa113. doi: 10.1093/braincomms/fcaa113

Calhoun, V. D., Adali, T., Pearlson, G., and Pekar, J. J. (2001). Spatial and temporal 
independent component analysis of functional MRI data containing a pair of task-
related waveforms. Hum. Brain Mapp. 13, 43–53. doi: 10.1002/hbm.1024

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., and Wig, G. S. (2014). 
Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. 
Acad. Sci. 111, E4997–E5006. doi: 10.1073/pnas.1415122111

Chen, H., Liu, J., Chen, Y., Salzwedel, A., Cornea, E., Gilmore, J. H., et al. (2021). 
Developmental heatmaps of brain functional connectivity from newborns to 6-year-
olds. Dev. Cogn. Neurosci. 50:100976. doi: 10.1016/j.dcn.2021.100976

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional 
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173. doi: 10.1006/
cbmr.1996.0014

Deery, H. A., Di Paolo, R., Moran, C., Egan, G. F., and Jamadar, S. D. (2023). The older 
adult brain is less modular, more integrated, and less efficient at rest: a systematic review 
of large-scale resting-state functional brain networks in aging. Psychophysiology 
60:e14159. doi: 10.1111/psyp.14159

Ding, Z., Huang, Y., Bailey, S. K., Gao, Y., Cutting, L. E., Rogers, B. P., et al. (2018). 
Detection of synchronous brain activity in white matter tracts at rest and under 
functional loading. Proc. Natl. Acad. Sci. USA 115, 595–600. doi: 10.1073/
pnas.1711567115

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., et al. (2020). NeuroMark: an automated 
and adaptive ICA based pipeline to identify reproducible fMRI markers of brain 
disorders. NeuroImage 28:102375. doi: 10.1016/j.nicl.2020.102375

Du, Y., Guo, Y., and Calhoun, V. D. (2023). Aging brain shows joint declines in brain 
within-network connectivity and between-network connectivity: a large-sample study 
(N> 6,000). Front. Aging Neurosci. 15:1159054. doi: 10.3389/fnagi.2023.1159054

Edde, M., Leroux, G., Altena, E., and Chanraud, S. (2021). Functional brain 
connectivity changes across the human life span: from fetal development to old age. J. 
Neurosci. Res. 99, 236–262. doi: 10.1002/jnr.24669

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., 
et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. 
Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., 
et al. (2015a). Functional network development during the first year: relative sequence 
and socioeconomic correlations. Cereb. Cortex 25, 2919–2928. doi: 10.1093/
cercor/bhu088

Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H., and Lin, W. (2015b). Development 
of human brain cortical network architecture during infancy. Brain Struct. Funct. 220, 
1173–1186. doi: 10.1007/s00429-014-0710-3

https://doi.org/10.3389/fnins.2024.1467446
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1467446/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1467446/full#supplementary-material
https://doi.org/10.1016/j.dcn.2014.10.004
https://doi.org/10.1038/s41593-023-01501-6
https://doi.org/10.1038/s41593-023-01501-6
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.54294/uvnhin
https://doi.org/10.1523/JNEUROSCI.1296-11.2011
https://doi.org/10.1093/brain/awv306
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1007/s00429-020-02027-4
https://doi.org/10.1093/braincomms/fcaa113
https://doi.org/10.1002/hbm.1024
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1016/j.dcn.2021.100976
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1111/psyp.14159
https://doi.org/10.1073/pnas.1711567115
https://doi.org/10.1073/pnas.1711567115
https://doi.org/10.1016/j.nicl.2020.102375
https://doi.org/10.3389/fnagi.2023.1159054
https://doi.org/10.1002/jnr.24669
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1093/cercor/bhu088
https://doi.org/10.1093/cercor/bhu088
https://doi.org/10.1007/s00429-014-0710-3


Huang et al. 10.3389/fnins.2024.1467446

Frontiers in Neuroscience 09 frontiersin.org

Gao, W., Lin, W., Grewen, K., and Gilmore, J. H. (2017). Functional connectivity of 
the infant human brain: plastic and modifiable. Neuroscientist 23, 169–184. doi: 
10.1177/1073858416635986

Gilmore, J. H., Knickmeyer, R. C., and Gao, W. (2018). Imaging structural and 
functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137. doi: 
10.1038/nrn.2018.1

Gore, J. C., Li, M., Gao, Y., Wu, T.-L., Schilling, K. G., Huang, Y., et al. (2019). 
Functional MRI and resting state connectivity in white matter-a mini-review. Magn. 
Reson. Imaging 63, 1–11. doi: 10.1016/j.mri.2019.07.017

Horovitz, S. G., Braun, A. R., Carr, W. S., Picchioni, D., Balkin, T. J., Fukunaga, M., 
et al. (2009). Decoupling of the brain's default mode network during deep sleep. Proc. 
Natl. Acad. Sci. 106, 11376–11381. doi: 10.1073/pnas.0901435106

Huang, Z., Wang, Q., Zhou, S., Tang, C., Yi, F., and Nie, J. (2020). Exploring functional 
brain activity in neonates: a resting-state fMRI study. Dev. Cogn. Neurosci. 45:100850. 
doi: 10.1016/j.dcn.2020.100850

Huang, Y., Wei, P.-H., Xu, L., Chen, D., Yang, Y., Song, W., et al. (2023). Intracranial 
electrophysiological and structural basis of BOLD functional connectivity in human 
brain white matter. Nat. Commun. 14:3414. doi: 10.1038/s41467-023-39067-3

Huang, Y., Yang, Y., Hao, L., Hu, X., Wang, P., Ding, Z., et al. (2020). Detection of 
functional networks within White matter using independent component analysis. 
NeuroImage 222:117278. doi: 10.1016/j.neuroimage.2020.117278

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M. 
(2012). FSL, FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kardan, O., Kaplan, S., Wheelock, M. D., Feczko, E., Day, T. K., 
Miranda-Domínguez, Ó., et al. (2022). Resting-state functional connectivity identifies 
individuals and predicts age in 8-to-26-month-olds. Dev. Cogn. Neurosci. 56:101123. doi: 
10.1016/j.dcn.2022.101123

Larson-Prior, L. J., Power, J. D., Vincent, J. L., Nolan, T. S., Coalson, R. S., Zempel, J., 
et al. (2011). Modulation of the brain’s functional network architecture in the transition 
from wake to sleep. Prog. Brain Res. 193, 277–294. doi: 10.1016/
B978-0-444-53839-0.00018-1

Li, J., Biswal, B. B., Wang, P., Duan, X., Cui, Q., Chen, H., et al. (2019). Exploring the 
functional connectome in white matter. Hum. Brain Mapp. 40, 4331–4344. doi: 10.1002/
hbm.24705

Li, J., Chen, H., Fan, F., Qiu, J., Du, L., Xiao, J., et al. (2020). White-matter functional 
topology: a neuromarker for classification and prediction in unmedicated depression. 
Transl. Psychiatry 10:365. doi: 10.1038/s41398-020-01053-4

Sahoo, K., Sahoo, B., Choudhury, A. K., Sofi, N. Y., Kumar, R., and Bhadoria, A. S. 
(2015). Childhood obesity: causes and consequences. J. Family Med. Prim. Care 4, 
187–192. doi: 10.4103/2249-4863.154628

Seeley, W. W. (2019). The salience network: a neural system for perceiving and 
responding to homeostatic demands. J. Neurosci. 39, 9878–9882. doi: 10.1523/
JNEUROSCI.1138-17.2019

Shi, F., Yap, P.-T., Wu, G., Jia, H., Gilmore, J. H., Lin, W., et al. (2011). Infant brain 
atlases from neonates to 1-and 2-year-olds. PLoS One 6:e18746. doi: 10.1371/journal.
pone.0018746

Song, S., Gotts, S. J., Dayan, E., and Cohen, L. G. (2015). Practice structure improves 
unconscious transitional memories by increasing synchrony in a premotor network. J. 
Cogn. Neurosci. 27, 1503–1512. doi: 10.1162/jocn_a_00796

Wang, P., Wang, J., Michael, A., Wang, Z., Klugah-Brown, B., Meng, C., et al. (2022). 
White matter functional connectivity in resting-state fMRI: robustness, reliability, and 
relationships to gray matter. Cereb. Cortex 32, 1547–1559. doi: 10.1093/cercor/bhab181

Wang, Q., Xu, Y., Zhao, T., Xu, Z., He, Y., and Liao, X. (2021). Individual uniqueness 
in the neonatal functional connectome. Cereb. Cortex 31, 3701–3712. doi: 10.1093/
cercor/bhab041

Zang, Y.-F., He, Y., Zhu, C.-Z., Cao, Q.-J., Sui, M.-Q., Liang, M., et al. (2007). Altered 
baseline brain activity in children with ADHD revealed by resting-state functional MRI. 
Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.07.002

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., et al. (2008). An 
improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for 
resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137–141. doi: 10.1016/j.
jneumeth.2008.04.012

https://doi.org/10.3389/fnins.2024.1467446
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1177/1073858416635986
https://doi.org/10.1038/nrn.2018.1
https://doi.org/10.1016/j.mri.2019.07.017
https://doi.org/10.1073/pnas.0901435106
https://doi.org/10.1016/j.dcn.2020.100850
https://doi.org/10.1038/s41467-023-39067-3
https://doi.org/10.1016/j.neuroimage.2020.117278
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.dcn.2022.101123
https://doi.org/10.1016/B978-0-444-53839-0.00018-1
https://doi.org/10.1016/B978-0-444-53839-0.00018-1
https://doi.org/10.1002/hbm.24705
https://doi.org/10.1002/hbm.24705
https://doi.org/10.1038/s41398-020-01053-4
https://doi.org/10.4103/2249-4863.154628
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1162/jocn_a_00796
https://doi.org/10.1093/cercor/bhab181
https://doi.org/10.1093/cercor/bhab041
https://doi.org/10.1093/cercor/bhab041
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://doi.org/10.1016/j.jneumeth.2008.04.012

	White matter functional networks in the developing brain
	1 Introduction
	2 Materials and methods
	2.1 MRI data acquisition and pre-processing
	2.2 Group ICA parcellation
	2.3 Identification of functional networks
	2.4 Computation of intra-network FC and inter- network FC
	2.5 Investigation of frequency spectrum in functional networks

	3 Results
	3.1 Identification of white matter functional networks using ICA
	3.2 Intra-network FC analysis in white matter between two groups
	3.3 Inter-network FC analysis in white matter between two groups
	3.4 Functional networks fALFF analysis in white matter between two groups

	4 Discussion
	5 Conclusion

	References

