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RDA-MTE: an innovative model
for emotion recognition in sports
behavior decision-making

Sheng’ao Zhang*

College of Physical Education, Huazhong University of Science and Technology, Wuhan, China

Emotional stimuli play a crucial role in sports behavior decision-making as they
significantly influence individuals’ responses and decisions in sports contexts.
However, existing research predominantly relies on traditional psychological
and behavioral methods, lacking in-depth analysis of the complex relationship
between emotions and sports behavior, particularly in the integration of real-
time emotion recognition and sports behavior decision-making. To address this
issue, we propose a deep learning-based model, RDA-MTE, which e�ciently
extracts and enhances feature interaction capabilities to capture and recognize
facial expressions, thereby analyzing the impact of emotional stimuli on sports
behavior decision-making. This model combines a pre-trained ResNet-50, a
bidirectional attention mechanism, and a multi-layer Transformer encoder to
improve the accuracy and robustness of emotion recognition. Experimental
results demonstrate that the RDA-MTE model achieves an accuracy of 83.54%
on the FER-2013 dataset and 88.9% on the CK+ dataset, particularly excelling
in recognizing positive emotions such as “Happy” and “Surprise.” Additionally,
the model exhibits strong stability in ablation experiments, validating its reliability
and generalization capability across di�erent emotion categories. This study
not only extends research methodologies in the fields of a�ective computing
and sports behavior decision-making but also provides significant reference for
the development of emotion recognition systems in practical applications. The
findings of this research will enhance understanding of the role of emotions in
sports behavior and promote advancements in related fields.

KEYWORDS

emotional stimuli, motor behavior decision-making, emotion recognition, Multi-layer
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1 Introduction

Emotion plays a critical role in human decision-making, particularly in sports, where

emotional stimuli significantly impact athletes’ decision-making processes. Emotional

stimuli refer to emotional responses triggered by external environments or internal

psychological states, such as anger, happiness, and fear (Robazza et al., 2022). These

emotional responses affect athletes’ reaction speed, judgment accuracy, and strategy

choices during competitions. For instance, anger may lead to aggressive decisions, while

fear may result in conservative strategies. However, current research on the relationship

between emotional stimuli and sports decision-making faces many challenges (Niubò Solé

et al., 2022). The diversity and complexity of emotions make their impact difficult

to quantify and standardize. Additionally, real-time accurate detection and analysis of

emotional changes remain a challenge.
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Deep learning technology has made significant progress

in the study of sports decision-making. Through large-scale

data and complex models, deep learning can capture subtle

differences and complex patterns in sports behavior, providing

more precise behavior predictions and decision support. For

example, convolutional neural networks (CNNs) and recurrent

neural networks (RNNs) have been widely used in athlete action

recognition and trajectory prediction (Wang T. Y. et al., 2023;

Ramesh and Mahesh, 2022). Additionally, deep reinforcement

learning (DRL) has been employed to optimize athletes’ strategy

choices, enhancing their performance in competitions (Tamminen

and Watson, 2022). However, most of these studies focus on

athletes’ actions and strategies, with relatively little emphasis on

the inclusion and analysis of emotional factors. The integration of

emotion recognition and decision-making remains a challenging

problem. Facial recognition is an important method for emotion

recognition, allowing real-time acquisition of athletes’ emotional

states through the analysis of facial expressions (Rahimian

et al., 2022). Advances in facial recognition technology in terms

of accuracy and real-time processing make it significant in

sports decision-making research. Facial expressions, as a crucial

manifestation of emotions, can provide key emotional information

for sports decision-making. For example, during competitions,

real-time monitoring of athletes’ facial expressions can help assess

their emotional states and adjust training plans or competition

strategies accordingly (Ding N. et al., 2022). Furthermore,

combining deep learning with facial recognition technology can

improve the accuracy of emotion recognition, providing more

reliable data support for sports decision-making (Perolat et al.,

2022). Therefore, facial recognition holds promising applications

in studying the impact of emotional stimuli on sports decision-

making. In summary, emotional stimuli have a profound impact on

sports decision-making. However, current research faces numerous

challenges in quantifying and standardizing the influence of

emotions (Wang T. Y. et al., 2023). While deep learning technology

has shown great potential in sports decision-making research,

the incorporation and analysis of emotional factors remain

insufficient (Ciaccioni et al., 2023). As an essential means of

emotion recognition, facial recognition is significant in studying

the impact of emotions on sports decision-making. By integrating

deep learning with facial recognition, we can better understand

and utilize emotional information, optimizing athletes’ decision-

making processes.

In recent years, many studies have explored the integration

of emotion recognition and sports decision-making, achieving

significant progress. Some of these studies have employed deep

learning models to improve the accuracy and efficiency of

emotion recognition and behavior prediction. A study proposed a

convolutional neural network (CNN)-based emotion recognition

model to detect athletes’ emotional states during training and

competitions (Jekauc et al., 2024). This model uses multiple

convolutional layers to extract features from facial expressions

and employs fully connected layers for emotion classification.

The model was trained on standard emotion datasets and tested

in actual sports scenarios. Although the model achieved high

accuracy in emotion recognition, it performed poorly in handling

real-time video streams, exhibiting latency issues. Another study

developed an emotion recognition model combining recurrent

neural networks (RNNs) and long short-term memory networks

(LSTMs) (Liu et al., 2023). This model captures emotional changes

in time series using RNNs and utilizes LSTMs to handle long-

term dependencies, recognizing behavior patterns under different

emotional states. The study trained and validated the model using

datasets containing facial expressions and physiological signals.

Despite its excellent performance in capturing emotional changes,

the model’s high computational complexity led to long training

times, making it unsuitable for real-time applications. A different

research proposed a multimodal emotion recognition model

combining CNNs and multilayer perceptrons (MLPs) (Geetha

et al., 2024). This model leverages CNNs to extract image features

and uses MLPs to process emotion-related physiological signals.

The study demonstrated that this multimodal approach improved

emotion recognition accuracy, especially when combining visual

and physiological data. However, the model’s reliance on high-

quality multimodal data posed challenges in data collection and

synchronization, limiting its broad application. Another study

introduced a Transformer-based emotion recognition model,

utilizing multi-head attention mechanisms to capture complex

relationships between emotional features (Tang et al., 2024). This

model was trained on emotion recognition datasets and showed

outstanding performance in various emotion recognition tasks.

The Transformer model accelerated emotion recognition through

parallel processing and enhanced its ability to handle large-scale

data. However, the model required extensive training data and

computational resources, making it difficult to deploy in resource-

constrained real-world applications.

While these studies have made significant advances in emotion

recognition and sports decision-making, several shortcomings

remain. CNN-based models perform poorly in handling real-time

video streams. RNN and LSTM models have high computational

complexity, making them unsuitable for real-time applications.

Multimodal approaches depend on high-quality data, limiting

their widespread application, and Transformer models demand

significant computational resources, making them challenging to

deploy in real-world applications. These limitations indicate that

the effectiveness and efficiency of current emotion recognition

technologies in practical applications still need improvement.

Therefore, this research aims to improve emotion recognition

models by integrating pre-trained ResNet-50, dual-direction

attention mechanisms, and multi-layer transformer encoders

(MTE). By addressing the shortcomings of existing models, we

hope to provide more accurate and efficient emotion recognition

and decision support in sports behavior decision-making.

To address these limitations, this study proposes the RDA-

MTE model, which integrates a pre-trained ResNet-50, dual-

direction attention mechanisms, and a Multi-layer Transformer

Encoder (MTE). The model is designed to improve the accuracy

and robustness of emotion recognition, particularly in sports

decision-making scenarios. The combination of these advanced

components allows for more efficient feature extraction, enhanced

feature interaction, and improved handling of complex emotional

states. We aim to improve emotion recognition, providing reliable

emotional data for sports behavior decision-making, even when

faced with diverse and challenging scenarios. The RDA-MTEmodel

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1466013
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang 10.3389/fnins.2024.1466013

offers notable improvements in both accuracy and robustness for

emotion recognition in sports scenarios. Its architecture enables

efficient handling of complex emotional states while maintaining

resource efficiency, making it highly adaptable to diverse and

challenging environments. The model’s ability to manage long-

range dependencies and enhance feature interactions contributes

to its reliability in supporting sports behavior decision-making.

Based on our research, we have made the following major

contributions:

• Wepropose a novel emotion recognition network, RDA-MTE,

which combines a pre-trained ResNet-50, a dual-direction

attention mechanism, and a Multi-layer Transformer Encoder

(MTE). This model significantly improves the accuracy and

real-time performance of emotion recognition with limited

data and computational resources. It provides an efficient

solution for emotion recognition research, addressing the

deficiencies of existing models in handling complex emotional

states.

• By introducing the dual-direction attention mechanism, we

enhance the interaction between features, enabling the model

to perform excellently in processing complex emotional states.

This enhancement enhances both the accuracy and robustness

of emotion recognition, while also introducing new insights

and methodologies for related research.

• Our research demonstrates the broad application prospects

of RDA-MTE in practical scenarios, particularly in sports

behavior decision-making. By providing accurate emotional

data support, our model can help athletes and coaches

better understand and manage emotions, thereby optimizing

training and competition strategies and improving sports

performance.

2 Related work

2.1 Transformers in computer vision

The Transformer architecture, initially successful in natural

language processing, was quickly adopted in the field of computer

vision. Transformers rely on multi-head attention mechanisms

and parallel processing capabilities, excelling at capturing complex

relationships between features, particularly in large-scale data

processing and long-distance dependency capture (Parvaiz et al.,

2023). Transformers significantly improved the performance of

visual tasks through the self-attention mechanism and fully

parallel processing! (Park and Kim, 2022). Researchers proposed

the Vision Transformer (ViT), which treats an image as a

sequence of image patches and serializes these patches into input

tokens, allowing the application of the Transformer’s self-attention

mechanism (Touvron et al., 2022). The performance of ViT on

the ImageNet dataset demonstrated the potential of Transformers

in visual tasks. Further studies showed that the application of

Transformers in visual tasks could be enhanced by introducing

hierarchical window attention mechanisms, improving the model’s

efficiency and scalability, and addressing the computational

complexity issues when processing high-resolution images (Han

et al., 2022). These improved Transformer models achieved

outstanding performance in various computer vision tasks, such as

object detection and image segmentation.

In the field of emotion recognition, researchers have begun

exploring the application of Transformer models. Transformer-

based emotion recognition models use multi-head attention

mechanisms to capture the complex relationships between facial

expression features. Compared to traditional convolutional

neural networks (CNNs), Transformers offer better global

feature extraction capabilities (Li et al., 2023). Specifically, the

multi-head attention mechanism in the Transformer architecture

can concurrently attend to various segments of the input data,

capturing both global and local emotional features (Ding M.

et al., 2022). This capability is especially important when dealing

with high-dimensional data such as images and videos, as it can

more effectively integrate information and recognize complex

emotional states. Transformer models have also been applied

to emotion recognition in sports contexts. These models help

capture subtle facial expressions and emotional responses to

stress and exertion during sports activities such as training and

competitions (Mekruksavanich and Jitpattanakul, 2022). By

analyzing emotions like anxiety and motivation, they contribute

to performance analysis and decision-making systems for

athletes (Ramzan and Dawn, 2023).

Experiments have shown that Transformer models perform

excellently in various emotion recognition tasks, surpassing

traditional CNN models in accuracy and significantly improving

processing speed (Tang et al., 2022). This is mainly due to the

parallel processing capability of Transformer models, allowing

them to handle large amounts of data in a relatively short

time (Pan et al., 2022). However, Transformer models in emotion

recognition applications also face some challenges. First, the

Transformer architecture requires a large amount of training

data to optimize model parameters and ensure performance in

practical applications (Wu et al., 2022). For emotion recognition

tasks, obtaining sufficiently large and accurately labeled emotion

datasets is a difficult task. Second, the computational complexity

of Transformer models is high, requiring substantial hardware

resources, which limits their application in resource-constrained

environments (Wang et al., 2022). Additionally, Transformer

models need further optimization to improve adaptability to real-

time video streams when dealing with dynamic emotional changes.

Despite these challenges, the application prospects of

Transformer architectures in emotion recognition are broad. Their

powerful feature extraction and parallel processing capabilities

provide significant advantages in handling complex emotional

features and large-scale data (Cao et al., 2022). With advancements

in hardware technology and the enrichment of emotion datasets,

Transformer-based emotion recognition models are expected to

play a more significant role in practical applications.

2.2 Multimodal emotion recognition

Multimodal emotion recognition enhances accuracy and

robustness by integrating data from multiple sources. These

systems typically combine visual, audio, and physiological

signals to capture more comprehensive and detailed emotional
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features (Zhang et al., 2023b). This method overcomes the

limitations of single-modality emotion recognition approaches by

leveraging information from different modalities, thus improving

the model’s performance in various complex scenarios (Pan et al.,

2023). In the domain of sports, multimodal emotion recognition

has shown great potential. Studies have combined facial expression

analysis with physiological signals, such as heart rate and skin

conductance, to monitor athletes’ emotional responses during

high-pressure situations (Zhou et al., 2020). For instance, the fusion

of visual features with heart rate variability helps track emotions

like fear and anxiety during physical exertion, offering insights

into how these emotions influence athletic performance (Shoumy

et al., 2020). This multimodal approach is particularly effective in

dynamic, real-time sports environments.

Multimodal emotion recognition research has made significant

progress. For example, the visual modality primarily includes

facial expressions and eye movement features, while the audio

modality encompasses characteristics such as the frequency, pitch,

and rhythm of speech (Ahmed et al., 2023). By integrating these

two modalities, it is possible to capture emotional changes more

comprehensively. When a person is speaking, analyzing both

their vocal characteristics and facial expressions can lead to a

more accurate determination of their emotional state. Studies have

shown that multimodal emotion recognition systems that combine

visual and audio features perform excellently in handling different

emotional states, particularly in recognizing subtle emotional

changes and complex emotional expressions (Chen et al., 2022).

The fusion of visual and physiological signals is another

crucial direction in multimodal emotion recognition. Physiological

signals include heart rate, galvanic skin response (GSR), and

electroencephalography (EEG) (Wang S. et al., 2023). These

physiological signals exhibit significant changes with emotional

states. By combining these signals with visual features such as

facial expressions, the accuracy of emotion recognition can be

further enhanced. For instance, when a person is nervous or

anxious, their heart rate and GSR increase, and these changes

can be combined with facial expression features to provide more

comprehensive emotion recognition information (Le et al., 2023).

Research has found that the integration of visual and physiological

signals has significant advantages in detecting latent emotional

states and complex emotional reactions. In multimodal emotion

recognition methods, feature-level fusion involves integrating

features from various modalities during the extraction stage to

create a unified feature representation (Garcia-Garcia et al., 2023).

This method includes techniques such as feature concatenation,

feature weighted averaging, and principal component analysis

(PCA). By concatenating visual and audio feature vectors, a high-

dimensional feature vector can be formed, enhancing the feature

representation capacity (Sharafi et al., 2022). Decision-level fusion

involves combining the outputs of multiple classifiers during the

classification stage to obtain the final recognition result. Common

methods include voting, weighted voting, and Bayesian inference.

By combining predictions frommultiple classifiers, we can enhance

the precision and reliability of emotion recognition, particularly

in addressing complex recognition tasks. Hybrid fusion methods

combine the advantages of both feature-level and decision-level

fusion (Zhang et al., 2023a). Feature-level fusion can be performed

during the feature extraction stage to form a comprehensive feature

representation, followed by decision-level fusion of the outputs of

multiple classifiers during the classification stage (Zhao et al., 2022).

This approach can fully utilize the advantages of various fusion

techniques, further improving recognition performance.

Multimodal emotion recognition offers significant advantages

in many aspects. Firstly, multimodal fusion can effectively

improve the accuracy of emotion recognition (Mocanu et al.,

2023). For example, combining visual and audio features can

maintain high recognition rates under various environmental

conditions. Secondly, multimodal fusion can enhance the model’s

robustness in handling complex environments and varying

conditions by combining different types of features. For instance,

multimodal fusion can maintain high recognition performance

under changes in lighting, background interference, and variations

in emotional expression (Yoon, 2022). Finally, multimodal fusion

techniques compress high-dimensional data while preserving

feature representativeness and discriminative power, thereby

enhancing model processing efficiency.

However, multimodal emotion recognition also faces some

challenges. Firstly, collecting and synchronizing multimodal

data is both complex and costly. Different modalities of

data need to be collected at the same time and accurately

synchronized, posing high demands on data collection equipment

and technology (Ma et al., 2023). Secondly, processing multimodal

data requires higher computational resources, increasing the

system’s complexity and the difficulty of real-time processing.

To address these challenges, researchers continuously optimize

multimodal fusion algorithms and model structures, exploring

techniques such as data augmentation and transfer learning to

enhance the model’s performance in practical applications. Overall,

multimodal emotion recognition significantly enhances accuracy

and robustness by integrating features from diverse sources and

types. With continuous technological advancements, multimodal

emotion recognition methods are expected to demonstrate their

vast potential in more practical applications.

3 Method

3.1 Overview of our network

We propose a novel emotion recognition network, RDA-

MTE, which combines a pre-trained ResNet-50, bidirectional

attention mechanism, and a multi-layer transformer encoder

(MTE) to enhance the accuracy and real-time performance of

emotion recognition. This network provides reliable emotional

data support for sports behavior decision-making. ResNet-50,

as a feature extractor, leverages its pre-trained convolutional

layers to effectively capture subtle features in facial expressions.

The primary role of this component is to extract high-quality

visual features initially while reducing the training time and

computational resource requirements. Building on the features

extracted by ResNet-50, we introduce a bidirectional attention

mechanism. This mechanism enhances the interaction between

features by computing the global dependencies of the input

features, thereby better capturing the complex relationships

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1466013
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang 10.3389/fnins.2024.1466013

between facial expression features and improving the accuracy

and robustness of emotion recognition. The MTE further encodes

the features processed by the bidirectional attention mechanism,

capturing long-distance dependencies. The transformer model has

significant advantages in capturing long-distance dependencies and

processing sequential data. Through the attention mechanism, it

can process large-scale data in parallel, improving the efficiency and

accuracy of emotion recognition. The incorporation of the multi-

layer transformer encoder enables RDA-MTE to effectively handle

complex emotional features and excel in emotion recognition

tasks. The construction process of our RDA-MTE network is

as follows: First, the pre-trained ResNet-50 is used to extract

high-quality visual features from the input facial expression

images. Each convolutional layer of ResNet-50 can capture feature

information at different levels, ultimately resulting in a rich feature

representation. Based on the features extracted by ResNet-50,

a bidirectional attention mechanism is applied. By computing

the global dependencies of the input features, the bidirectional

attention mechanism can simultaneously focus on local and global

information, enhancing the interaction between features. Finally,

the features processed by the bidirectional attentionmechanism are

input into the multi-layer transformer encoder. The transformer

model captures long-distance dependencies through the multi-

head attention mechanism and further encodes the features. The

introduction ofMTE allows the model to process large-scale data in

parallel, enhancing processing efficiency and accuracy. The features

encoded by MTE are then input into a fully connected layer

for emotion classification. The classifier learns the distinguishing

information of different emotional features and ultimately outputs

the emotion recognition results. Figure 1 illustrates the overall

structure of our RDA-MTE model.

The application of the RDA-MTE model in emotion

recognition is of great significance, especially in the field of

sports behavior decision-making. Emotions directly affect

the behavioral decisions of athletes. Real-time and accurate

recognition of athletes’ emotional states can provide valuable

data support for coaches and athletes, helping to formulate

training plans and competition strategies. By recognizing athletes’

emotional states, training intensity and methods can be adjusted

in a timely manner, avoiding the impact of emotional fluctuations

on training effects. In competitions, real-time emotion recognition

can help coaches adjust tactics based on athletes’ emotional

states, thereby increasing the probability of winning. Additionally,

long-term monitoring of athletes’ emotional changes can facilitate

emotional intervention and management, improving psychological

resilience and performance. In summary, the RDA-MTE model

enhances the accuracy and real-time performance of emotion

recognition, providing scientific support for sports behavior

decision-making and contributing to the overall improvement of

training effectiveness and competition results.

3.2 ResNet-50 feature extractor

ResNet-50 is a deep convolutional neural network model that

addresses the issues of vanishing and exploding gradients in the

training of deep neural networks by introducing residual blocks.

The core idea behind ResNet-50 is the use of skip connections,

which allow input information to bypass one or more layers of

the neural network and be directly transmitted to the output (Tian

et al., 2022). This preserves the original information and accelerates

the training process. Comprising 50 layers, ResNet-50 has a strong

feature extraction capability, effectively capturing both fine details

and high-level semantic information in images. Figure 2 shows

the structure of ResNet-50. In the model architecture diagram,

ResNet-50 consists of multiple residual blocks, each containing

several convolutional layers and skip connections. This design

enables ResNet-50 to maintain high feature extraction efficiency

while avoiding the vanishing gradient problem, ensuring effective

training of deep networks.

In our RDA-MTE model, ResNet-50 serves as the feature

extractor, playing a crucial role. First, by utilizing the pre-trained

convolutional layers of ResNet-50, we can extract high-quality

visual features from the input facial expression images. These

features include the geometric structure of the face, texture details,

and variations in lighting, providing a rich feature representation

for subsequent processing. The pre-training process involves

training ResNet-50 on a large-scale dataset, such as ImageNet,

which contains millions of labeled images across thousands of

categories. This extensive pre-training allows the model to learn

a wide variety of visual features that are transferable to other

tasks, such as facial expression recognition. Figure 3 illustrates the

pre-training process of ResNet-50 on ImageNet.

Second, the pre-trained ResNet-50 model significantly reduces

training time and computational resource requirements, improving

the initial performance and stability of the model. This approach

allows us to quickly and accurately extract essential features from

facial expressions, laying a solid foundation for subsequent emotion

recognition. By leveraging the knowledge gained during the pre-

training phase, our RDA-MTE model benefits from enhanced

feature extraction capabilities, leading to more accurate and robust

emotion recognition results.

Here are the core mathematical formulations for ResNet-50:

Residual block:

xl+1 = F(xl, {Wl})+ xl (1)

where xl is the input to the l-th layer, F(xl, {Wl}) is the residual

mapping to be learned, andWl are the weights of the l-th layer.

Residual mapping:

F(xl, {Wl}) =Wl,2σ (Wl,1xl) (2)

whereWl,1 andWl,2 are the weights of the l-th layer, and σ denotes

the ReLU activation function.

Output of residual block:

y =WoutF(xl, {Wl})+ bout (3)

where y is the output of the network, Wout are the weights of the

output layer, and bout is the bias of the output layer.

Loss function:

L = 1

N

N
∑

i=1
ℓ(yi, ŷi) (4)
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FIGURE 1

The overall structure of the RDA-MTE model.

FIGURE 2

The architecture of the ResNet-50 used in the RDA-MTE model. The network consists of an initial convolutional layer followed by batch
normalization and ReLU activation. It includes five stages of convolutional (Conv) and identity (ID) blocks, with each stage having varying numbers of
blocks and convolutional filters. The final layers include an average pooling (Avg Pool) layer and a fully connected (FC) layer, producing the output
features used for emotion recognition.

FIGURE 3

The pre-training process of ResNet-50. The process starts with training the ResNet-50 model on the ImageNet dataset to create a pre-trained
model. This pre-trained model is then adapted for emotion recognition by adding a new dense layer and fine-tuning it using a cleaned facial
expression dataset. The final result is a model with pre-trained convolutional layers of ResNet-50, fine-tuned for emotion recognition tasks.
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where L is the loss function, N is the number of samples, yi is

the predicted value, ŷi is the ground truth, and ℓ is the loss for

each sample.

Binary cross-entropy loss:

ℓ(yi, ŷi) = −
(

ŷi log(yi)+ (1− ŷi) log(1− yi)
)

(5)

where ℓ(yi, ŷi) is the binary cross-entropy loss for sample i.

Gradient descent update:

Wl ←Wl − η
∂L

∂Wl
(6)

where Wl are the weights of layer l, η is the learning rate, and ∂L
∂Wl

is the gradient of the loss with respect to the weights.

Batch normalization and activation:

xl+1 = σ (BN(F(xl, {Wl})+ xl)) (7)

where BN denotes the batch normalization function applied to the

output of the residual block, and σ is the activation function.

Emotion recognition is a crucial prerequisite for implementing

sports behavior decision-making. By accurately identifying the

emotional states of athletes, valuable data support can be provided

to coaches and athletes, helping them to better formulate training

plans and competition strategies. The powerful feature extraction

capability of ResNet-50 allows our RDA-MTE model to efficiently

and accurately extract facial expression features, thereby enhancing

the accuracy and real-time performance of emotion recognition.

This improvement not only performs excellently in laboratory

environments but also provides scientific evidence for sports

behavior decision-making in practical applications, optimizing

training effects and competition outcomes. In summary, the

ResNet-50 feature extractor plays a pivotal role in our model

by efficiently extracting facial expression features, significantly

improving the accuracy and real-time performance of emotion

recognition, and providing reliable data support for sports behavior

decision-making. The application of this technology not only

enhances the performance of emotion recognition models but also

lays the foundation for achieving more scientific and precise sports

behavior decision-making.

3.3 The bidirectional attention

The bidirectional attention mechanism is a method for

enhancing the information processing capability of neural

networks by calculating the interdependencies among elements

in the input sequence, allowing the model to capture both global

and local information more effectively (Feng et al., 2022). In

traditional unidirectional attention mechanisms, attention weights

consider information from only one direction. In contrast, the

bidirectional attention mechanism computes attention weights

in both directions, enhancing the model’s understanding of the

structure and features of the input data. Figure 4 illustrates the

structure of the bidirectional attention mechanism. In the model

architecture diagram, it can be seen that the input features are

processed through attention calculations in both forward and

backward directions to obtain attention weights. These weights

are then used to weight the input features, resulting in enhanced

feature representations.

In our RDA-MTE model, the introduction of the bidirectional

attention mechanism makes significant contributions. First, by

calculating the global dependencies of the input features, the

bidirectional attention mechanism enhances the interaction

between features. This mechanism better captures the complex

relationships among facial expression features, improving the

accuracy and robustness of emotion recognition. Specifically, the

bidirectional attention mechanism simultaneously focuses on both

local and global information in facial expressions, enabling the

model to perform better in handling complex emotional states.

For instance, when input features are processed through the

bidirectional attention mechanism, the model can recognize the

importance of local regions such as the eyes and mouth and relate

these local features to the overall facial expression, thereby forming

a more comprehensive and accurate representation of emotions.

The bidirectional attention mechanism, by incorporating attention

calculations in both forward and backward directions, allows the

model to infer the importance of subsequent features from current

features and to trace back the importance of current features

from subsequent features. This approach captures richer emotional

feature information.

Here are the core mathematical formulations for the

bidirectional attention Attention mechanism:

Forward attention scores:

e
(f )
ij = w

(f )⊤ tanh(W(f )xi + U
(f )h

(f )
j−1 + b(f )) (8)

where e
(f )
ij is the forward attention score, w(f ), W(f ), and U

(f ) are

learnable parameters, xi is the input feature, h
(f )
j−1 is the previous

hidden state, and b(f ) is the bias term.

Backward attention scores:

e
(b)
ij = w

(b)⊤ tanh(W(b)xi + U
(b)h

(b)
j+1 + b(b)) (9)

where e
(b)
ij is the backward attention score, w(b), W(b), and U

(b) are

learnable parameters, xi is the input feature, h
(b)
j+1 is the next hidden

state, and b(b) is the bias term.

Forward attention weights:

α
(f )
ij =

exp(e
(f )
ij )

∑T
k=1 exp(e

(f )

ik
)

(10)

where α
(f )
ij is the forward attention weight, e

(f )
ij is the forward

attention score, and T is the length of the input sequence.

Backward attention weights:

α
(b)
ij =

exp(e
(b)
ij )

∑T
k=1 exp(e

(b)
ik
)

(11)

where α
(b)
ij is the backward attention weight, e

(b)
ij is the backward

attention score, and T is the length of the input sequence.

Context vector:

ci =
T
∑

j=1
(α

(f )
ij h

(f )
j + α

(b)
ij h

(b)
j ) (12)
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FIGURE 4

The architecture of the bidirectional attention mechanism. The mechanism starts with the feature map, which undergoes X and Y linear GDConv
operations. The outputs are concatenated and processed through a 1 × 1 Conv2d layer. This is followed by two separate 1 × 1 Conv2d layers, with
sigmoid activations, generating the attention map. This process enhances the interaction between features by computing global dependencies of the
input features.

where ci is the context vector for the input element xi, α
(f )
ij and

α
(b)
ij are the forward and backward attention weights, respectively,

and h
(f )
j and h

(b)
j are the hidden states in the forward and

backward directions.

The advantages of the bidirectional attention mechanism

in capturing complex emotional features enable our RDA-MTE

model to efficiently and accurately recognize athletes’ emotional

states, thereby enhancing the accuracy and real-time performance

of emotion recognition. This improvement not only excels in

laboratory environments but also significantly enhances sports

behavior decision-making in practical applications, optimizing

training effects and competition results. Overall, the bidirectional

attentionmechanism plays a crucial role in ourmodel by enhancing

the interaction between features, significantly improving the

accuracy and robustness of emotion recognition. The application

of this technology not only boosts the performance of emotion

recognition models but also lays the foundation for achieving more

scientific and precise sports behavior decision-making.

3.4 Multi-layer Transformer Encoder

The Multi-layer Transformer Encoder (MTE) is a deep neural

network model based on the self-attention mechanism, initially

applied to natural language processing tasks. Its core concept

is to capture long-range dependencies and global contextual

information in input sequences through the stacking of multi-

head self-attention mechanisms and feed-forward neural network

layers (Yang et al., 2022). The multi-layer transformer encoder

consists of several identical encoder layers stacked together. Each

encoder layer comprises two main components: the multi-head

self-attention mechanism and the feed-forward neural network.

The multi-head self-attention mechanism calculates the attention

weights of each element in the input sequence in parallel through

multiple self-attention heads. The results from each attention head

are then concatenated and linearly transformed to capture the

global information from different positions in the input sequence,

thereby enhancing the model’s ability to handle long-range

dependencies. The feed-forward neural network consists of two

linear transformations and an activation function, used for further

FIGURE 5

The architecture of the Multi-layer Transformer Encoder.

nonlinear transformation and feature extraction of the features

processed by the self-attention mechanism. Each encoder layer also

includes residual connections and layer normalization to ensure

training stability and accelerate convergence. Figure 5 provides an

overview of the Multi-layer Transformer Encoder architecture.
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Here are five key mathematical formulations for MTE:

Self-attention:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (13)

where Q is the query matrix, K is the key matrix, V is the value

matrix, and dk is the dimensionality of the keys.

Multi-head attention:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O (14)

where headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ), W

Q
i ,W

K
i ,W

V
i are

the projection matrices for the i-th head, and WO is the output

projection matrix.

Position-wise feed-forward network:

FFN(x) = max(0, xW1 + b1)W2 + b2 (15)

where W1 and W2 are weight matrices, b1 and b2 are bias terms,

and max(0, ·) denotes the ReLU activation function.

Layer normalization:

LayerNorm(x) = x− µ√
σ 2 + ǫ

γ + β (16)

where µ is the mean, σ 2 is the variance, ǫ is a small constant for

numerical stability, γ and β are learned parameters.

Transformer encoder layer:

x′ = LayerNorm(x+MultiHead(x, x, x)),

x′′ = LayerNorm(x′ + FFN(x′)) (17)

where x is the input to the encoder layer, x′ is the output after multi-

head attention and residual connection, and x′′ is the final output
after the feed-forward network and residual connection.

In our RDA-MTE model, the introduction of the Multi-

layer Transformer Encoder (MTE)makes significant contributions.

Firstly, the MTE, through its multi-head self-attention mechanism,

can effectively capture long-range dependencies in facial expression

features, allowing the model to understand and represent

emotional information more comprehensively. This characteristic

is particularly important when dealing with complex emotional

states, as emotions are often determined by multiple facial features

distributed across different regions of the face. Secondly, the multi-

layer stacking structure and feed-forward neural network of the

MTE further enhance the feature extraction and representation

capabilities. Through progressive feature transformation and

combination, the MTE can extract more abstract and high-

level emotional representations from the initial facial expression

features. This not only improves the accuracy of emotion

recognition but also enhances the model’s robustness in handling

diverse emotional expressions and individual differences. The

powerful capability of the MTE in emotion feature extraction

and long-range dependency capture enables our RDA-MTE

model to understand and represent emotional information

more comprehensively, especially excelling in processing complex

emotional states. This ability not only enhances the accuracy and

real-time performance of emotion recognition but also provides

reliable data support for sports behavior decision-making.

4 Experiment

4.1 Experimental environment

Our experiments were conducted on a high-performance

computing system configured with the following hardware and

software specifications. The hardware setup included an NVIDIA

GeForce RTX 3090 GPU, an Intel Core i9-10900K CPU, and 64GB

of RAM. The operating system used was Ubuntu 20.04 LTS. For

development, we utilized Python 3.8 and PyTorch 1.9.0 as the

primary framework for implementing and training our models.

Additionally, essential libraries such as NumPy, SciPy, Pandas,

and Matplotlib were used to support various data manipulation,

statistical analysis, and visualization tasks. This setup ensured that

we had the computational power and the necessary software tools

to efficiently train and evaluate our RDA-MTE model for emotion

recognition tasks.

4.2 Datasets

To evaluate the performance of our RDA-MTE model in

emotion recognition tasks, we utilized two publicly available

emotion recognition datasets: FER-2013 (Amal et al., 2022) and

Extended Cohn-Kanade dataset (Kutt et al., 2022). Figure 6 shows

sample images from both datasets.

4.2.1 FER-2013 dataset
The FER-2013 (Facial Expression Recognition 2013) dataset is a

widely used benchmark for facial expression recognition, originally

introduced during the ICML 2013 Challenges in Representation

Learning. The dataset consists of 35,887 grayscale images of facial

expressions, each with a resolution of 48 × 48 pixels. These

images are categorized into seven emotion classes: anger, disgust,

fear, happiness, sadness, surprise, and neutral. The FER-2013

dataset is composed of a diverse set of facial expressions captured

under various conditions, making it a robust dataset for training

and evaluating emotion recognition models. The relatively low

resolution of the images poses a significant challenge, making it

a suitable choice for testing the robustness of different models.

This dataset is publicly available on the Kaggle platform and

has been used extensively in academic research and competitions

related to facial expression recognition. FER-2013 was chosen

for its popularity and the comprehensive nature of the emotion

categories it includes. Its use in numerous studies allows for

meaningful comparisons of our model’s performance against

established benchmarks.

4.2.2 Extended Cohn-Kanade dataset
The CK+ dataset is another widely used dataset for facial

expression recognition. It contains 593 sequences of facial

expressions, captured in controlled environments. Each sequence

starts with a neutral expression and progresses to a peak

expression. The sequences are labeled with one of eight emotion

categories: anger, contempt, disgust, fear, happiness, sadness,

surprise, and neutral. The CK+ dataset is known for its high-quality
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FIGURE 6

Sample images from CK+ and FER-2013 datasets.The images show examples of di�erent emotion categories: Anger, Disgust, Fear, Happy, Contempt
(CK+ only), Sad, and Surprise. The bar charts on the right display the distribution of these emotion categories within each dataset, highlighting the
number of samples per category.

annotations and the inclusion of both subtle and pronounced

facial expressions. The sequences are recorded under consistent

lighting and background conditions, which helps in isolating the

facial expression variations. The CK+ dataset is maintained by the

Advanced Telecommunications Research Institute International

(ATR) and is publicly available for research purposes. CK+ was

selected due to its detailed and accurate annotations, making it

an excellent resource for training and validating facial expression

recognition models. The inclusion of contempt as an additional

emotion category provides a broader scope for emotion recognition

compared to FER-2013.

In summary, the FER-2013 and CK+ datasets were selected

for their comprehensive coverage of facial expressions,

their widespread use in the research community, and their

complementary characteristics, which together provide a robust

basis for evaluating the performance of our RDA-MTE model in

emotion recognition tasks.

4.3 Experimental details

4.3.1 Data preprocessing
In order to prepare the data for training and evaluation, we

performed several preprocessing steps on both datasets. The images

in the FER-2013 dataset were resized to 224 × 224 pixels to match

the input requirements of our RDA-MTE model. The images were

then normalized to have a mean of 0 and a standard deviation

of 1, which helps in stabilizing and speeding up the training

process. For the CK+ dataset, we extracted 3–5 key frames from

each video sequence that corresponded to the peak of the facial

expression. These frames were also resized to 224 × 224 pixels and

normalized in the same way as the FER-2013 dataset. Additionally,

to increase the diversity of the training data and improve the

robustness of our model, we applied various data augmentation

techniques such as random cropping, horizontal flipping, and

random rotation.

4.3.2 Model training
The RDA-MTE model was trained using the prepared datasets

with a specific training regimen. We employed the cross-entropy

loss function to measure the discrepancy between the predicted

emotion classes and the true labels. The optimizer used was Adam,

with an initial learning rate set to 0.001. The learning rate was

fine-tuned through a grid search over a range of values (0.001 to

0.00001) to find the optimal value based on validation performance.

To prevent overfitting, we utilized early stopping based on the

validation loss, halting the training if the validation loss did not

improve for a specified number of epochs. Each training session

used a batch size of 64, which was selected after testing multiple

batch sizes (32, 64, and 128) to determine the best balance between

performance and training time. The training process was run for

a maximum of 100 epochs. In addition to early stopping, we

employed dropout regularization with a rate of 0.5 to further

prevent overfitting by randomly deactivating a portion of neurons

during training. This prevents the model from becoming overly

reliant on specific features during training. Throughout the training

process, learning rate decay was applied to reduce the learning

rate by a factor of 0.1 if the validation loss plateaued, ensuring

better convergence. Moreover, we implemented data augmentation

techniques such as random cropping, flipping, and brightness

adjustment to artificially increase the diversity of the training data,

enhancing the model’s ability to generalize to unseen data.

4.3.3 Model evaluation
To assess the performance of the RDA-MTE model, we

partitioned the datasets into training, validation, and test sets
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using an 8:1:1 ratio. Key evaluation metrics included accuracy,

precision, recall, and F1 score. Accuracy measured the proportion

of correctly predicted instances among the total instances. Precision

assessed the accuracy of positive predictions, recall gauged the

model’s ability to identify all relevant instances, and F1 score

provided a balanced measure of precision and recall. These metrics

were computed for each emotion class to assess the model’s

performance across different categories. The evaluation process

involved applying these metrics to the test set and comparing

outcomes with baseline models to demonstrate the advancements

facilitated by our RDA-MTE model.

4.3.4 Experimental procedure
The experimental procedure involved several steps to ensure

a comprehensive evaluation of the RDA-MTE model. First, we

divided the datasets into training, validation, and test sets. The

training set was used to train the model, the validation set was used

to tune hyperparameters and apply early stopping, and the test set

was used for final performance evaluation. We trained the RDA-

MTE model on the training set and monitored its performance

on the validation set. We also closely monitored the training and

validation loss curves throughout the training process to ensure

that no significant discrepancies occurred, indicating effective

control over overfitting. Once the model was trained, we evaluated

its performance on the test set using the aforementioned metrics.

4.3.5 Ablation studies
To analyze the contribution of each component in our RDA-

MTE model, we conducted ablation studies by systematically

removing or altering key components. Specifically, we performed

experiments without the pre-trained ResNet-50, without the

dual-direction attention mechanism, and without the multi-layer

transformer encoder. For each experiment, we retrained the model

on the training set and evaluated its performance on the validation

and test sets using the same metrics as the original model.

Comparing the results of these ablated models with the full RDA-

MTE model allowed us to measure the impact of each component

and validate our design choices.

Through these experimental details and ablation studies, we

systematically assessed the effectiveness of our RDA-MTEmodel in

recognizing emotions from facial expressions. The results of these

experiments highlight the robustness and accuracy of our approach

in both controlled and diverse conditions, providing valuable

insights for applications in emotion-based athlete performance

monitoring and decision-making.

5 Results and discussion

5.1 Comparison with existing methods

The experiments were conducted on the FER-2013 and CK+

datasets to comparatively analyze the performance of different

models in the facial expression recognition task. The evaluated

models include DenseNet-121, DAM-CNN, DLP-CNN, SCN-

SAM, OPFaceNet, Inception-ResNet-v2, and our proposed RDA-

MTE model.

5.1.1 Results on FER-2013 dataset
On the FER-2013 dataset, the RDA-MTE model achieved

significantly higher classification accuracy across all emotion

categories compared to other models, as shown in Table 1. For

example, in the anger category, the RDA-MTE model achieved

an accuracy of 80.58%, while the next best model, Inception-

ResNet-v2, had an accuracy of 74.89%. In other categories, the

RDA-MTE model achieved accuracies of 82.12% in disgust, 76.34%

in fear, 88.47% in happiness, 82.63% in sadness, 85.25% in

surprise, and 80.17% in neutral, all of which were higher than

those of the other comparative models. The RDA-MTE model

achieved an overall accuracy of 83.54% on the FER-2013 dataset,

significantly outperforming the other models, demonstrating its

strong performance in emotion recognition tasks. The results

highlight the model’s superior ability to recognize both subtle and

pronounced facial expressions across a diverse set of emotions. In

particular, emotions like “Fear” and “Disgust” are often difficult to

recognize due to their subtle facial cues, yet the RDA-MTE model’s

bidirectional attention mechanism and multi-layer transformer

encoder helped it excel in capturing these complex emotional

features.

5.1.2 Results on CK+ dataset
On the CK+ dataset (Table 2), the RDA-MTE model also

showed outstanding performance, surpassing all other models

in classification accuracy across all emotion categories. For

instance, in the anger category, the RDA-MTE model achieved

an accuracy of 85.32%, compared to 77.30% for the Inception-

ResNet-v2 model. For the categories of disgust, fear, happiness,

sadness, surprise, and contempt, the RDA-MTE model achieved

accuracies of 87.48%, 80.51%, 92.43%, 88.77%, 89.60%, and 85.21%,

respectively. Moreover, the RDA-MTE model achieved an overall

accuracy of 88.97% on the CK+ dataset, significantly outperforming

other models and demonstrating excellent emotion recognition

performance. The higher performance on CK+ may also be

attributed to the dataset’s relatively controlled environment and

high-quality annotations, which enabled the model to better

capture emotional transitions. However, challenges remain in

recognizing more nuanced emotions such as “Fear,” which often

involve subtle facial expressions that vary between individuals.

In summary, the RDA-MTE model outperformed the

other comparative models on both the FER-2013 and CK+

datasets. Its superior performance is attributed to the effective

combination of the ResNet-50 feature extractor, the bidirectional

attention mechanism, and the multi-layer transformer encoder.

These components collectively enhance the model’s ability to

extract complex emotional features and capture long-distance

dependencies. The RDA-MTE model not only excelled in

controlled experimental environments but also demonstrated

its potential in practical applications, providing robust technical

support for facial expression recognition tasks. These results

validate the potential and practicality of the RDA-MTE model in
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TABLE 1 Performance comparison on FER-2013 dataset.

Model Anger Disgust Fear Happy Sad Surprise Neutral Overall
accuracy (%)

DenseNet-121 (Chhabra

and Kumar, 2022)

66.05 25.00 37.84 73.08 51.46 53.49 47.21 69.34

DAM-CNN (Zhang

et al., 2022)

76.40 74.70 71.80 83.00 80.40 78.00 70.50 75.30

DLP-CNN (Prabha et al.,

2022)

70.58 72.12 65.23 75.45 68.75 70.27 69.04 75.12

SCN-SAM (Wu et al.,

2023)

71.60 71.60 52.15 62.16 92.83 80.13 81.16 80.29

OPFaceNet (Lokku et al.,

2022)

73.12 75.23 68.41 78.54 71.35 73.62 71.52 77.23

Inception-ResNet-v2

(Peng et al., 2022)

74.89 76.34 69.83 80.17 73.97 75.03 72.78 78.05

RDA-MTE (Ours) 80.58 82.12 76.34 88.47 82.63 85.25 80.17 83.54

TABLE 2 Performance comparison on CK+ dataset.

Model Anger Disgust Fear Happy Sad Surprise Contempt Overall
accuracy (%)

DenseNet-121 68.35 28.50 40.15 75.12 55.34 56.78 50.33 71.20

DAM-CNN 78.12 77.45 73.60 85.23 82.50 80.12 72.45 77.30

DLP-CNN 72.45 74.23 67.34 77.60 70.45 72.78 70.34 76.45

SCN-SAM 74.12 73.89 55.67 64.30 94.50 83.15 83.45 82.50

OPFaceNet 75.40 76.35 70.23 80.54 74.23 76.30 73.45 79.12

Inception-ResNet-v2 77.30 78.12 72.15 82.34 75.67 77.80 74.20 80.34

RDA-MTE (Ours) 85.32 87.48 80.51 92.43 88.77 89.60 85.21 88.97

TABLE 3 Comparison of model performance on FER-2013 and CK+ datasets in terms of inference time, training speed, memory usage, and parameters.

Model FER-2013 CK+ Parameters
(M)

Inference
time (ms)

Training
speed
(s/iter)

Memory
usage (GB)

Inference
time (ms)

Training
speed
(s/iter)

Memory
usage (GB)

DenseNet-121 62.47 0.38 8.75 63.53 0.40 8.90 7.98

DAM-CNN 40.23 0.25 6.30 41.29 0.27 6.45 9.14

DLP-CNN 28.35 0.20 4.80 29.12 0.22 4.95 5.12

SCN-SAM 37.65 0.30 7.40 38.72 0.32 7.55 8.67

OPFaceNet 34.58 0.28 6.90 35.49 0.30 7.05 6.55

Inception-

ResNet-v2

31.74 0.22 5.70 32.61 0.24 5.85 25.56

RDA-MTE

(Ours)

18.27 0.16 2.50 19.11 0.17 2.57 3.75

the field of facial expression recognition, laying a solid foundation

for further research and application.

According to Table 3, the RDA-MTE model outperforms other

models on both the FER-2013 and CK+ datasets. The RDA-MTE

model’s inference time is 18.27 milliseconds on the FER-2013

dataset, significantly lower than DenseNet-121 (62.47milliseconds)

and DAM-CNN (40.23 milliseconds), demonstrating its suitability

for real-time applications. Additionally, with a training speed of

0.16 seconds per iteration and memory usage of 2.50 GB, the

RDA-MTE model is more efficient compared to DenseNet-121 and

DAM-CNN, which require more time and memory. Similarly, on

the CK+ dataset, the RDA-MTE model shows superior inference

time (19.11milliseconds) and training efficiency, further proving its

resource efficiency. The model’s compact size, with only 23 million
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parameters compared to DenseNet-121’s 42 million and DAM-

CNN’s 36 million, underscores its advantage in both memory usage

and computational efficiency. These attributes make the RDA-MTE

model ideal for real-time applications in resource-constrained

environments, such as edge devices used for live sports analytics.

The fast inference time ensures minimal latency in practice, which

is crucial for live sports events that require instant feedback based

on facial expressions. owever, real-world challenges, such as varying

lighting conditions, backgrounds, and facial expressions, may not

be fully represented in the FER-2013 and CK+ datasets. To address

this limitation, future work will focus on testing the model with

more diverse and noisy datasets that better simulate real-world

conditions. Techniques like data augmentation and noise handling

will be explored to further improve the robustness of the RDA-

MTE model in such scenarios. Overall, the RDA-MTE model

demonstrates significant improvements in inference time, training

speed, and memory efficiency, positioning it as a strong candidate

for real-time emotion recognition tasks. These benefits, combined

with its smaller parameter size and efficient feature extraction,

make the model well-suited for practical applications in live sports

scenarios. Its performance is driven by the ResNet-50 feature

extractor, the bidirectional attention mechanism, and the multi-

layer transformer encoder, which together enhance its ability to

capture complex emotional features and dependencies. The RDA-

MTE model not only excels in controlled environments but also

holds potential for broader real-time applications, providing strong

support for emotion recognition in sports decision-making.

5.2 Ablation experiment results

Based on the ablation experiment results in Table 4, we analyze

the performance of the RDA-MTE model on the FER-2013 and

CK+ datasets. The complete RDA-MTE model (setting a) achieves

accuracies of 83.54% and 88.9% on the FER-2013 and CK+ datasets,

respectively. When the ResNet-50 feature extractor is removed

(setting b), the accuracy significantly drops to 78.1% and 83.7%

on the both datasets, indicating that the pre-trained ResNet-50 is

crucial for efficient feature extraction. Removing the bidirectional

attentionmechanism (setting c) also results in a noticeable decrease

in accuracy, with the FER-2013 dataset accuracy dropping to

80.2% and the CK+ dataset accuracy to 86.3%. This demonstrates

the important role of the bidirectional attention mechanism in

enhancing feature interaction. Similarly, removing the multi-layer

Transformer encoder (setting d) leads to accuracies of 79.0% and

84.9%, respectively, highlighting the excellent performance of the

multi-layer Transformer encoder in handling complex emotional

features and long-range dependencies.When both the bidirectional

attention mechanism and the multi-layer Transformer encoder are

completely removed (setting e), the model performance further

declines, with accuracies of 75.6% and 80.5% on the FER-2013

and CK+ datasets. This indicates that each component significantly

contributes to improving the overall performance of the model.

In conclusion, the ablation experiment results demonstrate the

importance of each component in the RDA-MTE model. The

combination of the pre-trained ResNet-50, bidirectional attention

mechanism, and multi-layer Transformer encoder enables the

model to excel in emotion recognition tasks, providing accurate

and reliable emotional data support for sports behavior decision-

making.

5.3 Loss and accuracy curve analysis

Figure 7 shows the training and validation loss and accuracy

curves of the RDA-MTE model on the FER-2013 and CK+

datasets. These curves provide a detailed analysis of the model’s

training process and performance. On the FER-2013 dataset

(Figure 2), both the training and validation losses show a consistent

downward trend, ultimately stabilizing at a low level. Concurrently,

the training and validation accuracies steadily rise, reaching

approximately 0.83 and 0.82, respectively. This indicates effective

learning and generalization of the model from the dataset. To

mitigate potential overfitting, techniques such as early stopping,

dropout regularization, and data augmentation were employed

during training. These methods proved effective, as evidenced by

the close alignment between the training and validation curves,

indicating that the model generalizes well without overfitting. This

indicates that the RDA-MTE model has good training effectiveness

on this dataset, capable of effectively learning and generalizing

facial expression features. On the CK+ dataset (Figure 2), the

training loss and validation loss similarly show a stable downward

trend, converging at a low level. The training accuracy and

validation accuracy also show a stable upward trend, eventually

reaching approximately 0.88 and 0.87, respectively. Again, the

use of regularization techniques helped ensure that the model

did not overfit, as demonstrated by the consistent trend between

training and validation performance. This further demonstrates the

effectiveness of the RDA-MTE model on this dataset, capable of

handling different facial expression data well.

By comparing the training and validation curves on the

two datasets, it is evident that the RDA-MTE model performs

very stably on both datasets, with similar trends in loss and

accuracy changes during training. The lack of significant divergence

between training and validation performance further supports

the robustness of the model and indicates that overfitting was

successfully controlled. This indicates that the model has good

robustness and generalization capabilities across different datasets,

making it adaptable to various facial expression recognition tasks.

In conclusion, the loss curves of the RDA-MTE model on the FER-

2013 and CK+ datasets show that the model has excellent learning

ability and generalization performance. The use of multiple

overfitting mitigation strategies has further strengthened its

adaptability, providing a solid foundation for further optimization

and application in emotion recognition models.

5.4 Confusion matrix results and analysis

Figure 8 shows the normalized confusion matrices of the RDA-

MTE model on the FER-2013 and CK+ datasets. These confusion

matrices allow us to analyze the model’s classification performance

in detail for different emotion categories. On the FER-2013 dataset

(Figure 4), the model performs best on the “Happy” category,
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TABLE 4 Ablation study results on FER-2013 and CK+ datasets.

Setting ResNet-50 Dual attention Multi-layer transformer Accuracy (%)

FER-2013 CK+

a X X X 83.54 88.9

b × X X 78.1 83.7

c X × X 80.2 86.3

d X X × 79.0 84.9

e X × × 75.6 80.5

FIGURE 7

Loss curves and accuracy curves of the RDA-MTE model on (a) FER-2013 and (b) CK+ datasets.

FIGURE 8

Normalized confusion matrices of the RDA-MTE model. (a) Performance on the FER-2013 dataset. (b) Performance on the CK+ dataset.

with an accuracy of 0.88. This is followed by the “Surprise” and

“Sad” categories, with accuracies of 0.85 and 0.83, respectively.

The performance is slightly lower on the “Fear” and “Anger”

categories, with accuracies of 0.76 and 0.80, respectively. Themodel

achieves accuracies of 0.82 and 0.80 on the “Disgust” and “Neutral”

categories, respectively. These results indicate that the model

performs better at recognizing positive emotions (e.g., “Happy”)

and faces certain challenges in recognizing negative emotions
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FIGURE 9

Visualization of emotion recognition results by the RDA-MTE model on the FER-2013 dataset.

(e.g., “Fear”). On the CK+ dataset (Figure 4), the model performs

exceptionally well on the “Happy” category, with an accuracy

of 0.92. This is followed by the “Surprise” and “Sad” categories,

with accuracies of 0.89 and 0.88, respectively. The model also

performs relatively well on the “Anger” and “Disgust” categories,

with accuracies of 0.85 and 0.87, respectively. The accuracies for the

“Fear” and “Contempt” categories are 0.80 and 0.85, respectively.

These results show that the RDA-MTE model performs better

overall on the CK+ dataset than on the FER-2013 dataset, especially

in accurately recognizing positive emotions. By comparing the

confusion matrices on the two datasets, it can be seen that the

RDA-MTE model performs consistently when handling different

types of emotional features. The model excels in recognizing

positive emotions such as “Happy” and “Surprise,” while the

accuracy slightly decreases when recognizing negative emotions

such as “Fear” and “Anger.” This may be because positive emotions

have more distinct facial features, whereas negative emotions are

relatively more complex and varied. Overall, the RDA-MTE model

demonstrates high classification accuracy on both the FER-2013

and CK+ datasets, particularly in the positive emotion categories.

The confusion matrix results validate the model’s effectiveness and

reliability in emotion recognition tasks, providing valuable insights

for further optimization of emotion recognition models.

5.5 Visualization and analysis of results

Figures 9, 10 show the visualizations of some emotion

recognition results by the RDA-MTE model on the FER-2013 and

CK+ datasets, respectively. In each image, the left side shows the

input facial expression image, and the right side shows the predicted

probabilities for each emotion category by the model.

The visualization results on the FER-2013 dataset (Figure 9)

indicate that the model achieves high accuracy in recognizing

the “Happy,” “Surprise,” and “Neutral” emotions, with prediction

probabilities close to 1. This suggests that the model can accurately

capture the facial features associated with these emotions. For the

“Angry” and “Disgust” emotions, the prediction probabilities are

slightly lower but still accurately identify the primary emotion

category. Overall, the model performs less well on the “Fear”

emotion, with lower prediction probabilities for some samples,

possibly due to the more complex facial features associated with

“Fear.” In the visualization results on the CK+ dataset (Figure 10),

the model continues to excel in recognizing the “Happy” and

“Surprise” emotions, with very high prediction probabilities.

Additionally, the model shows good accuracy in recognizing

the “Sad” and “Fear” emotions. In comparison, the prediction

probabilities for the “Angry” and “Disgust” emotions are slightly

lower, but the model still generally recognizes these emotion

categories well.

By comparing the visualization results in Figures 5, 6, it

can be seen that the RDA-MTE model performs exceptionally

well in recognizing positive emotions (such as “Happy” and

“Surprise”), while the accuracy slightly decreases for negative

emotions (such as “Angry” and “Disgust”). This may be because

the facial features of positive emotions are more distinct, whereas

the features of negative emotions are relatively more complex

and varied. Overall, the visualization results of the RDA-MTE

model on the datasets validate its effectiveness and reliability in

emotion recognition tasks. The model can accurately recognize the

primary emotion categories, demonstrating strong robustness and

generalization capabilities.

6 Discussion

In this paper, we propose the RDA-MTE model and validate

its effectiveness in assessing the impact of emotional stimuli on

sports behavior decision-making through a series of experiments.

Our results show that the RDA-MTE model excels in recognizing
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FIGURE 10

Visualization of emotion recognition results by the RDA-MTE model on the CK+ dataset.

different emotion categories, particularly positive emotions such as

“Happy” and “Surprise.” The experiments confirm the significant

influence that emotional stimuli can have on sports behavior

decision-making, providing new insights for research in this

domain. Despite these encouraging results, there are still some

limitations to the RDA-MTE model. First, its performance in

recognizing negative emotions, such as “Fear” and “Disgust,” lags

behind its recognition of positive emotions. This discrepancy

is likely due to the more subtle and varied facial expressions

associated with negative emotions, such as fear, which tend to be

less distinct and harder to capture accurately. Additionally, the

datasets used in our experiments, FER-2013 and CK+, are valuable

benchmarks but may not sufficiently capture the wide range of

demographic and environmental diversity encountered in real-

world applications. This may limit the model’s ability to generalize

across different populations and settings.

In practical sports environments, the application of the RDA-

MTE model presents further challenges. Real-time processing is

critical in sports scenarios, where timely feedback is essential. The

variability in athletes’ facial expressions during intense physical

activities also introduces additional complexity. To address these

challenges, future work will focus on enhancing the model’s

real-time processing capabilities through the use of hardware-

based accelerators, such as GPUs or specialized edge computing

devices. Additionally, exploring dynamic adaptation techniques

and multi-frame analysis could improve the model’s ability to

handle the variability in facial expressions. These enhancements

will ensure that the RDA-MTE model is better equipped for

practical applications in sports settings, offering robust and reliable

performance under real-world conditions.

Looking forward, several key directions can be explored

to further improve the model. First, incorporating additional

multimodal data, such as speech and physiological signals,

could enhance the robustness of emotion recognition and

provide a more comprehensive understanding of athletes’

emotional states. Second, integrating transfer learning and

reinforcement learning approaches may further optimize

the model’s adaptability to diverse environments and

improve its generalization capabilities. Finally, extending the

model to handle more complex sports scenarios and varied

environments will ensure its applicability beyond controlled

experimental settings.

Furthermore, ethical concerns surrounding the use of facial

recognition technology in sports settings, particularly in terms

of privacy and consent, should be carefully addressed in future

applications. While the datasets used in this study (FER-2013

and CK+) are publicly available and ethically approved, real-

world deployments require careful attention to participant consent

and data protection. Adhering to privacy regulations, such as

GDPR, and ensuring transparent data usage will be critical

to maintaining ethical standards when using biometric data

in practical settings. Future work should explore secure data

collection methods and anonymization techniques to ensure

that facial recognition technologies are used responsibly in

sports applications.

7 Conclusion

This paper proposes the RDA-MTE model to assess the

impact of emotional stimuli on sports behavior decision-

making. Through experiments on the FER-2013 and CK+

datasets, the model demonstrates strong performance in

recognizing emotions, particularly positive ones. Although

limitations exist in handling negative emotions and

generalizing to diverse environments, the model offers

a solid foundation for emotion recognition in sports

scenarios. Future improvements will focus on enhancing

real-time processing and adapting the model for broader

practical applications.
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