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Multi-level feature fusion
network for neuronal
morphology classification

Chunli Sun and Feng Zhao*

MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and

Technology of China, Hefei, China

Neuronal morphology can be represented using various feature representations,

such as hand-crafted morphometrics and deep features. These features are

complementary to each other, contributing to improving performance. However,

existing classification methods only utilize a single feature representation

or simply concatenate di�erent features without fully considering their

complementarity. Therefore, their performance is limited and can be further

improved. In this paper, we propose amulti-level feature fusion network that fully

utilizes diverse feature representations and their complementarity to e�ectively

describe neuronal morphology and improve performance. Specifically, we

devise a Multi-Level Fusion Module (MLFM) and incorporate it into each

feature extraction block. It can facilitate the interaction between di�erent

features and achieve e�ective feature fusion at multiple levels. The MLFM

comprises a channel attention-based Feature Enhancement Module (FEM) and

a cross-attention-based Feature Interaction Module (FIM). The FEM is used to

enhance robust morphological feature presentations, while the FIM mines and

propagates complementary information across di�erent feature presentations.

In this way, our feature fusion network ultimately yields a more distinctive

neuronal morphology descriptor that can e�ectively characterize neurons than

any singular morphological representation. Experimental results show that our

method e�ectively depicts neuronal morphology and correctly classifies 10-

type neurons on the NeuronMorpho-10 dataset with an accuracy of 95.18%,

outperforming other approaches. Moreover, our method performs well on

the NeuronMorpho-12 and NeuronMorpho-17 datasets and possesses good

generalization.

KEYWORDS

cross-attention, feature fusion, multi-level fusion, neuronal morphology, neuron

classification

1 Introduction

Neuron classification based on morphological characteristics is essential but

challenging due to numerous types, insufficient high-quality reconstructions, and vague

definitions of differences among different types (DeFelipe et al., 2013; Armañanzas and

Ascoli, 2015; Zeng and Sanes, 2017; Glaser et al., 2019; López-Cabrera et al., 2020). In

order to solve these difficulties and realize accurate identification of neurons, researchers

are devoted to exploring the efficient representation of neuronal morphology (Laturnus

et al., 2020; Sarkar et al., 2013; Wu et al., 2008; Batabyal and Acton, 2018; Basu et al., 2011;

Batabyal et al., 2018; López-Cabrera and Lorenzo-Ginori, 2017; Hernández-Pérez et al.,

2019).
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Neuronal morphologies typically are represented in two

primary formats, namely the 2D or 3D image and SWC format

file formats (as shown in Figures 1A, B). The SWC format is low-

dimensional and unstructured. It describes neurons as a non-strict

binary tree (Zhang et al., 2021). When the neuronal branches under

the same bifurcation are exchanged, the neuronal morphology

does not vary. Moreover, the length of neuron points is directly

related to the sampling rate. This leads to a large variability in

the length among different neurons. Conversely, the 2D or 3D

image is structured but suffers from high dimensionality (Zhang

et al., 2021). These images possess similarities in local features

and invariance to translation rotation. Nevertheless, compared to

the complexity of neuronal morphology, the number of samples is

insufficient. This makes neuronal morphology analysis particularly

challenging.

To effectively describe neuronal morphology, the hand-

crafted morphometrics (as shown in Figure 1C), such as the

number of bifurcations, the number of branches, and the

soma surface (Uylings and Van Pelt, 2002; Costa et al., 2010;

Wan et al., 2015; Bird and Cuntz, 2019), are designed and

widely used. The hand-crafted morphometrics usually measure

the neuronal morphology as statistic real numbers, such as

mean or standard variance (as shown in Figure 1D). Although

hand-crafted morphometrics perform well in characterizing

neurons, they would fail to describe neurons with very complex

dendrites (Scorcioni et al., 2008). Later, researchers increasingly

focus on analyzing advanced and intricate morphological

descriptors to fully characterize neurons. Based on the topological

and geometrical theories and the tree-like structure of neurons,

various morphological descriptors are developed, such as shape

descriptor (Sarkar et al., 2013), Sholl analysis (López-Cabrera et al.,

2020; Khalil et al., 2022), and Topological Morphology Descriptors

(TMD; Kanari et al., 2018).

Recently, motivated by the development of deep learning

techniques, many studies utilize neural networks to extract deep

features from 3D neuron data (Lin and Zheng, 2018; Zhao

et al., 2022; Kanari et al., 2024) or 2D images (Li et al., 2018,

2021; Sun et al., 2023). The sparsity of 3D neuron data makes

training 3D neural networks challenging. For example, training

3D networks requires significant computation resources and train

time. Furthermore, the variability in the number of neuron points

adds complexity to the design of a unified framework for processing

3D neuron data. Since the 2D image describes the full neuronal

morphology, the deep features extracted by Convolutional Neural

Network (CNN) perform well in depicting the holistic structure of

neurons. Moreover, the hand-crafted morphometrics are a set of

statistical values, such as mean or standard variance. They fail to

describe neurons with complex dendrites, but relatively effectively

characterize the local structure of neurons. It is worth noting that

combining deep features with hand-crafted morphometrics can

significantly boost classification performance, as proved in (Li et al.,

2018; Zhang et al., 2021). Therefore, exploring effective strategies

for integrating diverse feature representations to enhance neuronal

classification performance is of significant importance.

Many studies recently attempt to integrate deep features

and hand-crafted morphometrics to build a more distinctive

representation of neuronal morphology and improve the

performance of neuron classification (Li et al., 2018; Zhang

et al., 2021). They first employ two modules to acquire various

features individually and then directly concatenate them to

generate the final feature descriptors of neurons. For example,

Li et al. (2018) first utilize Stacked Convolutional Auto-encoders

(SCAEs) to extract deep features from three projected 2D images.

Subsequently, the deep features are directly combined with

hand-crafted morphometrics to generate a more distinct neuron

representation. As illustrated in Figure 2A, Zhang et al. (2021)

incorporate different features extracted from two data formats

(i.e., SWC file and 2D slice images) to identify neuron types. Their

work exploits a tree-based Recurrent Neural Network (RNN)

and a CNN to extract morphological features from the SWC-

format data and the 2D images, respectively. Then, these features

are further concatenated, which shows power in the neuronal

morphology representation and promotes the identification of

neuron types. While these studies incorporate a variety of feature

representations, they primarily rely on simple concatenation for

fusion. It is inadequate to explore the shared information across

different feature representations.

To effectively leverage the advantage of individual feature

representation and the relationships and complementarity between

different feature representations, we present a multi-level feature

fusion network (as shown in Figure 2B). It effectively fuses

hand-crafted morphometrics and deep features derived from

2D images by enhancing individual feature representation and

mining the relationship and complementarity between different

features. We support that the features extracted from hand-

crafted morphometrics and 2D images are complementary. Deep

features extracted from 2D images excel in capturing the holistic

structure of neurons, while hand-crafted morphometrics provide

precise statistical values for the local and global structures of

neurons. Therefore, fusing these features significantly improves

performance, as proved in Li et al. (2018) and Zhang et al. (2021).

To effectively merge these two features, the proposed

multi-level feature fusion network aims to mine relationships

and complementary information between different feature

representations and facilitate their interaction. Specifically, our

method first uses a Fully Connected Network (FCN) and a

CNN to extract morphological characteristics from hand-crafted

morphometrics and 2D images, respectively. Subsequently, we

develop Multi-Level Fusion Modules (MLFMs) to enhance

distinctive morphological information within each network and

extract salient features across networks. The MLFM consists of

a channel attention-based Feature Enhancement Module (FEM)

and a cross-attention-based Feature Interaction Module (FIM).

The FEM mines the discriminative information of each feature

representation to capture a reliable depiction of neuronal shapes.

Concurrently, the FIM mines the relationships and facilitates the

exchange of information across both networks, thereby enriching

the overall representation of neuronal morphology. Furthermore,

MLFMs are embedded in multiple feature extraction blocks for

more comprehensive learning of neuronal morphology. Finally, we

further concatenate the feature representations extracted from FCN

and CNN to effectively characterize neuronal morphology from

both local and holistic levels. Experimental results demonstrate that

our method can effectively capture the discriminative descriptors
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FIGURE 1

Neuron data in di�erent formats and hand-crafted morphometrics. (A) is 3D neuron data and the red, green, and blue represent the X, Y, and Z axis,

respectively. (B) is the neuron data stored in the SWC format. (C) is the definition of hand-crafted morphometrics (Costa et al., 2010) and (D) is the 43

hand-crafted morphometrics computed by the L-Measure toolbox (Scorcioni et al., 2008).

FIGURE 2

Di�erent fusion networks for neuronal morphology classification. Di�erent features are directly concatenated without any communication (Zhang

et al., 2021) (A) or fused after information interaction at multi-levels (B).

for neuronal morphology. Our method achieves an accuracy of

95.18% on the NeuroMorpho-10 dataset, outperforming that only

based on individual feature representation.

The main contributions of our approach are listed:

• We develop a multi-level feature fusion network for

neuron classification. This network fully characterizes

neuron morphology by leveraging different feature

representations and tactfully integrating them for effective

neuron identification.

• The multi-level fusion modules are developed and embedded

as bridges for information communication between two

networks. It explores the distinguishable information of two

features at multiple levels and then conveys it between the two

networks to better characterize neuronal morphology.

• Our method accurately identifies 10 types of neurons

with a high accuracy of 95.18%, superior to other

methods by a large margin. Furthermore, our method

performs well on the other two datasets, possessing

good generalization.

The remainder of this article is structured as follows. Section 2

briefly introduces the related work. Section 3 elaborates the

presented method, including data preprocessing, multi-level fusion

network, and multi-level fusion module. Section 4 introduces

the dataset, experimental settings, and experimental results and

analysis. Section 5 discusses the model complexity, limitation,

and improvement strategy of our proposed method. Finally,

conclusions are presented in Section 6.

2 Related work

This section briefly introduces some related methods,

including hand-crafted morphometrics, deep features-based

neuronal morphology classification, and attention models.
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FIGURE 3

The proposed multi-level feature fusion network. An FCN is applied to extract geometric information from hand-crafted morphometrics. A CNN is

utilized to characterize the holistic structure of neurons. The Multi-Level Fusion Module (MLFM), consisting of a Feature Enhancement Module (FEM)

and a Feature Interaction Module (FIM), is embedded between the adjacent feature extraction blocks for information communication. Finally, the

features (Fl and Fc) extracted from the FCN and CNN are further fused to obtain a more distinguishing descriptor (Fj).

2.1 Hand-crafted morphometrics-based
neuron classification

To quantitatively characterize neuronal morphology, various

hand-crafted morphometrics (Uylings and Van Pelt, 2002; Costa

et al., 2010; Wan et al., 2015; Bird and Cuntz, 2019) are designed

and widely utilized. These morphometrics can be primarily divided

into four categories. They are distance-related metrics (e.g.,

branch length and Euclidean distance), angle-related metrics (such

as bifurcation angles), topology-related metrics (including the

number of bifurcations and branch order), and size-related metrics

(like branch radius and surface area) (Chen et al., 2022). Typically,

these features are summarized using statistics, such as mean or

standard deviation. They are easily acquired using toolboxes (e.g.,

L-Measure Scorcioni et al., 2008, Neurolucida Glaser and Glaser,

1990, and nGauge Walker et al., 2021).

Traditional methods for neuronal morphology classification

mainly rely on these hand-crafted morphometrics (Vasques et al.,

2016; Laturnus et al., 2020; Cervantes et al., 2019). For example,

43 morphological measurements computed by the L-Measure

toolbox (Scorcioni et al., 2008) are utilized to describe the

characteristics of rat neurons (Vasques et al., 2016). Although these

methods effectively identify neuronal morphology, they would fail

to describe neurons with complex dendrites (Scorcioni et al., 2008).

Other methods utilize the Sholl analysis (Sarkar et al., 2013; Khalil

et al., 2022) and TMD (Kanari et al., 2018) to classify or cluster

neurons. For example, Kanari et al. (2019) use TMD to classify

cortical pyramidal cells in rat somatosensory cortex. Khalil et al.

(2022) treat the multiple topological or spatial features of neurons

as a function of distance from the soma and builds new Sholl

descriptors. Their single descriptors perform better than traditional

hand-crafted morphometrics in separating specific neuron types.

More importantly, their results prove that combined descriptors

can produce better classification or clustering performance than

single descriptors. This motivates us to explore the fusion of

multiple features for better classification or clustering for neuronal

morphology.

2.2 Deep features-based neuron
classification

Inspired by the advancements in deep learning techniques,

some studies utilize CNNs to extract deep features from the

3D neuron data or 2D images (Lin and Zheng, 2018; Li et al.,

2018; Zhang et al., 2021; Sun et al., 2023; Li et al., 2021; Zhao

et al., 2022; Kanari et al., 2024). These methods directly feed 3D

neuron data or 2D images into CNNs to automatically learn deep

feature representation. Importantly, compared to the hand-crafted

morphometrics, deep features obtained through CNNs are good at

characterizing holistic structures of neurons (Li et al., 2018; Zhang

et al., 2021). However, there are many difficulties in extracting deep

features via CNNs directly from 3D neuron data. Specifically, the

number of points in 3D space for neuron data varies greatly among

various neuron samples. Consequently, creating a general neural

network to extract deep characteristics from 3D neuron data is

challenging. Additionally, if 3D neuron data is projected into 2D

images, neuronal morphology information inevitably is lost during

the projection process. As a result, the performance of these 2D

projection-based approaches is constrained. Recent researches (Li

et al., 2018; Zhang et al., 2021) attempt to create a feature vector

by directly concatenating different features. While their results

demonstrate that the fusion of diverse feature representations leads

to performance gains, these improvements are constrained. This is

because they do not consider the complementary and redundant

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1465642
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun and Zhao 10.3389/fnins.2024.1465642

information among the different features. Therefore, our method

aims to leverage the strengths of these features and effectively fuse

them to provide a precise characterization of neuronal morphology.

2.3 Attention model

Attention mechanisms discern and emphasize pivotal local

regions, building more discriminative and pertinent features.

Attention mechanisms have showcased remarkable success across

various applications, such as image classification (Hu et al., 2018;

Woo et al., 2018; Park et al., 2018; Hassanin et al., 2024),

machine translation (Gehring et al., 2017; Vaswani et al., 2017),

and visual question answering (Yu et al., 2017; Gao et al., 2018).

For instance, in the domain of image classification, SENet (Hu

et al., 2018) introduces a channel attention block to augment the

representational capacity of neural networks. Woo et al. (2018)

further extend these advancements by integrating channel and

spatial attention modules into a unified block structure. Later,

Vaswani et al. (2017) achieve another significant advancement in

attention-based models based on the self-attention mechanism.

The self-attention captures long-range dependencies effectively and

provides interpretability by highlighting the relevance of different

input components (Vaswani et al., 2017; Lin et al., 2017). It is highly

scalable, parallelizable, and can be easily stacked in layers for more

complex modeling. Here, our approach leverages a variant of self-

attention, referred to as the cross-attention module, to effectively

harness the dependencies and relationships of different features.

This aims to facilitate the interaction of features extracted from

different branches, promoting a more cohesive and integrated

feature representation.

3 Methodology

The proposed multi-level feature fusion network dexterously

integrates the morphological information derived from hand-

crafted morphometrics and 2D images (as presented in Figure 3).

It enhances the feature presentation within each branch while

establishing connections between disparate feature representations

to convey information effectively. Therefore, our method can

achieve more accurate representation learning by taking full

advantage of different feature representations and distinguishing

information between them. Our multi-level feature fusion network

mainly consists of two branches. Specifically, one branch utilizes

an FCN to extract local geometric information from hand-

crafted morphometrics. The other branch employs a CNN to

capture deep features from the projected 2D images. The extracted

deep features offer a more comprehensive characterization

of the holistic structure of neurons. Moreover, the MLFM

is embedded behind multiple feature extraction blocks for

information enhancement and communication. MLFM first

thoroughly mines the discriminative information of each feature

representation using the channel attention-based FEM. Then, it

discovers and transmits the interacted information between the

FCN andCNNbranches via cross-attention-based FIM. In this way,

these two branches can comprehensively learn the morphological

features of neurons. Finally, features extracted from these two

branches are further fused to build a more distinguishing feature

descriptor. The fused descriptor effectively reveals the differences

and similarities among various neuron types.

3.1 Data preprocessing

In our work, the hand-crafted morphometrics and 2D

images are taken into account simultaneously to learn a more

distinguishing representation of neuronal morphology. Hand-

crafted morphometrics almost measure the local geometry

information of neurons, while deep features extracted from 2D

projected images better characterize the holistic structures of

neurons (Li et al., 2018).

There are many predefined feature measurements to measure

neuronal dendrites and axons (Laturnus et al., 2020; Uylings

and Van Pelt, 2002). Based on the neuron data stored in the

SWC file, morphological features computed by the L-Measure

toolbox (Scorcioni et al., 2008) are widely used to characterize

morphologies of neurons quantitatively. They consist of total

branch length, average branch diameter, average depth, number

of bifurcations, maximum branch order, etc. As done in (Lin

et al., 2018; Lin and Zheng, 2019; Li et al., 2018), we calculate

43 hand-crafted morphometrics (Figure 1D) using the L-Measure

toolbox (Scorcioni et al., 2008) to measure the morphological

characteristics of neurons comprehensively.

Designing a generalized 3D network to directly process 3D

neuron data is challenging. This is due to the inherent characteristic

of neuron reconstructions (e.g., relative sparse in 3D space,

dramatic difference in the number of points). Therefore, we first

project the 3D neuron data into 2D images as done in Li et al.

(2018), Li et al. (2021), and Sun et al. (2023) and then utilize a

2D CNN to extract morphological features. We first extract the

coordinates of neuron points and employ principal component

analysis to normalize neurons into a normalized axis. Such an

operation ensures the axis is consistent across neurons, without

considering the origin axis provided bymultiple laboratories. Then,

to reduce the loss of morphological information, the 3D neuron

data is projected orthogonally into three angles of view (i.e., x-y,

y-z, and x-z planes). Thus, three projected images are obtained to

fully describe different neuronal morphology (shown in Figure 4).

Subsequently, these three projected images are stacked together

along the channel and fed into CNN.

3.2 Multi-level fusion network

Given a 3D digital neuron reconstruction, we first preprocess

it to obtain the hand-crafted morphometrics and 2D projected

images. Subsequently, an FCN branch and a CNN branch are

applied to extract neuronal morphological features from these

two data formats. When the information flows through the

two branches, the MLFMs we developed are embedded into

the feature extraction block for information enhancement and

communication. Besides, each branch can utilize the information

from the other to facilitate their representation learning.

For the FCN branch, considering that the hand-crafted

morphometrics are statistical summary values and the number

of them is limited, we opt to employ a shallow FCN to extract
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FIGURE 4

The projected 2D images of one granule cell. One 3D neuron data (the left one) is projected orthogonally into three angles of view (i.e., x-y, y-z, and

x-z planes).

features. It consists of several FCN blocks. Note that the number

of FCN blocks is consistent with the number of blocks in the

CNN for better information communication. Besides, each FCN

block includes three Fully Connected (FC) layers, two Batch

Normalization (BN) layers, and two ReLU (Nair and Hinton, 2010)

layers. The dimensions of the output of the first two FC layers are

half and a quarter of the dimension of the input, respectively. To

better perform information exchange channel-wise between two

networks in the MLFM, the dimension of the output of the third

FC layer is set to be the same as the number of channels of the

corresponding convolution block in the CNN.

For the CNN branch, we first stack three projected images

together along the channel and then feed them into CNN to extract

deep features. Here, we set the CNN as the ResNet-50 (He et al.,

2016). Considering that the output of the first block is relatively

specific, information communication with the FCN occurs starting

from the second convolution block. Therefore, three MLFMs are

added to bridge the information communication between the

FCN and CNN. Each MLFM receives the features extracted from

the FCN and CNN. Then, it enhances each feature through the

channel attention-based FEM. Next, it discovers and transmits the

interacted information between the FCN and CNN branches via

cross-attention-based FIM. In this way, these two branches can

comprehensively learn the morphological features of neurons with

the help of the other branch.

To achieve a more comprehensive characterization of neuronal

morphology, we further fuse features extracted from the FCN and

CNN branches to generate a more informative vector as the final

descriptor (denoted as Fj). Subsequently, a classifier, consisting of

two FC layers, is employed to categorize neurons based on this final

descriptor. The dimensions of the output of these FC layers are the

dimension of the lasted fused feature and the number of neuron

types, respectively.

3.3 Multi-level fusion module

To fully capture the neuronal morphology, some approaches

concatenate different feature vectors into a vector directly (Li

et al., 2018; Zhang et al., 2021). However, these methods

do not thoroughly consider the complementarity of different

features. To capture informative features for each branch and the

complementarity between different branches, we introduce the

MLFM. It includes a channel attention-based FEM and a cross-

attention-based FIM.

As presented in Figure 5A, the MLFM takes the output

(denoted as F and C) of the feature extraction block in the FCN

and CNN branch as the input. It first utilizes the channel attention-

based FEM in each branch to capture the salient features (F′ and

C′). Then, the salient features are fed to cross-attention-based FIM

to mine the complementary features between F′ and C′. Finally,

the outputs of these two modules are concatenated to generate a

more informative feature (i.e., fl and fc for FCN and CNN branches,

respectively). The fused feature is then fed into the next feature

extraction block to facilitate the presentation learning of each

branch. To keep the dimension of the concatenated features as same

as the input (F), an FC layer in the FCN branch is employed to

reduce the dimension of the fused features. Similarly, a convolution

layer with a kernel size of 1 × 1 in the CNN branch is utilized to

reduce the feature dimension. Therefore, the concatenated features

can be directly fed back into the FCN and CNN branches to further

convey information in the next feature extraction block.

Feature EnhancementModule (FEM). The FEMmines salient

features within a single branch to dynamically enhance and update

reliable information. Here, we illustrate the FEM using the FCN

branch as a representative example (as shown in Figure 5B).

To enhance the discriminability of features, especially given the

sparseness of neurons, we develop a channel attention-based FEM.

As depicted in the green box of Figure 5B, the FEM first calculates

the weights (Wf ) for F. This is achieved through two FC layers and

a sigmoid function as follows,

Wf = σ
(

fc
(

δ
(

BN
(

fc (F)
))))

, (1)

where δ is the ReLU function (Nair and Hinton, 2010), fc is the

FC layer, and σ is the sigmoid function. The feature dimensions of

FC layers are half and full of the dimension of F, respectively. The

sigmoid layer σ enables ourmodule to learn non-linear interactions

between channel features. It allows for the emphasis of multiple

channel features. The enhanced features Fe are then defined by
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FIGURE 5

Multi-Level Feature Fusion Module (MLFM) (A). It mainly consists of the channel attention-based Feature Enhancement Module (FEM) (B) and the

cross-attention-based Feature Interaction Module (FIM) (C). The FEM is first utilized to obtain the enhanced features within each branch (F′ for the

FCN branch or C′ for the CNN branch) and then the FIM is used to mine the relationships and shared information between two branches. To fully use

the features of each branch and the shared features, the MLFM integrates them to produce a more distinguishing feature (fl or fc).

applying the calculated weights to the normalized features as,

Fe = Wf ∗ BN(F). (2)

Such operations ensure that the FEM effectively improves the

discriminative power of features by leveraging channel attention

mechanisms.

Furthermore, to address the morphological diversity of

neuronal arbors, we implement a group-wise refinement process

for the global features F. Specifically, we divide the global features

(F) into Ns parts along the channels, resulting in grouped features

(Fs). As illustrated in Figure 5B, the green, orange, and light blue

rectangles represent different grouped features. Drawing from the

optimal outcomes of our previous research, we set Ns as 3. For

each group, we apply a feature learning module M to enhance

the grouped feature. The M consists of two FC layers and a BN

layer. The enhanced grouped features Fs1 are then constructed by

concatenating the outputs of the module M applied to each group

as follows:

Fs1 = [M(Fs0 ),M(Fs1 ), · · · ,M(FsNs )], (3)

where [·] is the concatenation operation. Subsequently, the final

enhanced global features (F′) are generated by concatenating the

previously enhanced features Fe with the newly enhanced grouped

features Fs1. Besides, an FC layer is utilized to reduce the dimension

of the F′ as the same as F.

For the CNN branch, the same operation is conducted to

capture the final enhanced features (C
′
). Note that the feature (C) is

first fed to one average pooling layer to get global features and then

fed into the FEM to extract enhanced features. Moreover, a 1 × 1

convolution layer is utilized to reduce the dimension of the C′ as

the same as C.

Feature Interaction Module (FIM). The proposed FIM

(as shown in Figure 5C) is designed to facilitate dynamic

interaction between the two representations. It facilitates our

model to effectively extract more distinctive and comprehensive

morphological representations for neuronal morphology.
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We obtain the enhanced features F′ and C′ through FEM

for the FCN and CNN branches, respectively. The FIM first

transforms them into one-dimensional feature vectors with the

same dimension. This can be achieved through average pooling

or reshaping operations. We leverage the principles of the cross-

attention mechanism (Galassi et al., 2020; Woo et al., 2018; Park

et al., 2018) to uncover the relationships and shared information

between different branches, thereby enhancing the feature learning

for each branch. In this process, features from one branch act as

the query (Q), while those from the other branch serve as the key

(K) and value (V). The shared features between the FCN and CNN

branches are obtained through a scaled dot-product operation, as

delineated as:

Qe = softmax(QK
T

√
d
)V , (4)

where d is the channel dimension of features. The captured

shared features are crucial for promoting the mutual refinement of

different branches.

To amplify the distinctive traits of the FCN branch, we fully

utilize the input Q (i.e., F′) to generate the final interactive feature

F′′. This involves a multi-step process, including the application of

an addition layer, an FC layer, and a BN layer, as expressed as:

F′′ = BN(fc(BN(F′)+ Qe))+ F′, (5)

where fc represents the FC layer, and BN signifies batch

normalization. Similarly, we can obtain C′′ for the CNN branch

through the same operations. In this way, the FIM is meticulously

designed to fortify the branch’s distinctiveness by integrating the

adaptive attention features and fostering collaborative learning

between the two branches.

3.4 Loss function

The designed multi-level feature fusion network

comprehensively characterizes neuronal morphology by fully

improving the feature learning of FCN or CNN and tactfully

integrating different features. Therefore, our learning goal is to

train the CNN and FCN to extract distinguishable characteristics

and promote the accurate classification of neurons. The objective

function is:

L = −
1

N

∑N
i=1

∑c
j=1yijlog(pij), (6)

where N is the number of samples, c is the number of classes,

and yij is the true neuron type provided by experts. As shown in

Figure 2, the pij is the prediction given by the classifier based on the

fused features Fj, where Fj are derived from the features Fl and Fc
extracted from the FCN and CNN branches.

4 Experimental results

In this part, we first introduce the validation dataset and

experimental settings. Then we present the performance of our

method and the comparison results with other methods. Next,

we verify the generalization of our approach. Finally, we perform

multiple ablation studies to specifically analyze the performances

of our modules.

4.1 Datasets and implementation details

4.1.1 Dataset
Several types of neurons from different brain

regions and species can be found in publicly available

NeuroMorpho.org (Ascoli et al., 2007). Here, neurons belonging

to different species and brain regions are selected and downloaded

from NeuroMorpho.org (Ascoli et al., 2007) to evaluate the

effectiveness of our multi-level feature fusion network. To make a

fair comparison, we utilize the same neuron types reported by the

work (Cervantes et al., 2019). This dataset includes 5,000 neurons

from 10 types, denoted as NeuroMorpho-10. As shown in Figure 6,

the NeuroMorpho-10 dataset includes chimpanzee pyramidal

cells, granule cells, human pyramidal cells, medium spiny, mouse

ganglion cells, mouse pyramidal cells, rat GABAergic, and nitrergic

interneurons, and rat pyramidal cells in the hippocampus and

neocortex. For clarity, they are denoted as C1, C2, C3, C4, C5, C6,

C7, C8, C9, and C10, respectively. For each class, there are 500

digital reconstructions of neurons. All data can be found in our

Google drive.1

4.1.2 Implementation details
The multi-level feature fusion network is implemented in

PyTorch and trained on two NVIDIA GTX 2080Ti GPU cards. For

the CNN branch, all projected images are obtained and resized to

224 × 224. For the FCN branch, 43 hand-crafted morphometrics

are computed by L-measure tool (Scorcioni et al., 2008) as the

input of the FCN. The weights of CNN are initialized with the

pre-trained weights on ImageNet. Our preliminary results find that

the CNN initialized with pre-trained weights outperforms that is

trained from scratch. Furthermore, batch normalization is applied

to every hidden layer. Dropout with a ratio of 0.5 is applied after the

FC layers of the classifier. We use an Adam (Kingma and Ba, 2014)

optimizer with an initial learning rate of 1e-3 with cosine learning

rate decay to optimize our multi-level feature fusion network. A

total epoch of 100 is conducted with a mini-batch size of 16.

4.1.3 Evaluation metrics
The average overall accuracy of 10-fold cross-validation is

exploited to validate the performance of the proposed network.

Additionally, the precision, recall, and F1-score are employed to

measure the efficiency of our method. Furthermore, the Receiver

Operating Characteristic (ROC) curves and the Area Under the

Curve (AUC) are utilized to evaluate our model. Moreover, we

provide the feature distribution plots computed by the t-SNE

tool (Van der Maaten and Hinton, 2008) and confusion matrix

to clearly show the performance of our multi-level feature fusion

network.

1 Data is available in: https://drive.google.com/file/d/

1ymYnpMaP6Ocqyllf4JDXKI1slHQtFGDf/view?usp=drive_link.
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FIGURE 6

The class distribution (A) and class name (B) of the NeuroMorpho-10 dataset.

TABLE 1 Performance comparison of di�erent methods based on di�erent feature representations.

Method Precision Recall F1-score Accuracy (%)

CNN 0.855 0.854 0.854 85.44

FCN 0.827 0.824 0.820 82.40

Ours 0.952 0.952 0.952 95.18

4.2 Performance of our method

The proposed multi-level feature fusion network mines

the salient information from 2D images and hand-crafted

morphometrics from multiple levels. It conveys fused and

complementary features to CNN and FCN to enhance their

representation learning. We first verified the performance of

the CNN and FCN based on the images and hand-crafted

morphometrics, respectively. As illustrated in Table 1, the

classification accuracy of CNN with images as input can reach

85.44%. The FCN with geometric statistics as input can identify 10

types of neurons with an accuracy of 82.40%. The proposed multi-

level feature fusion network makes full use of features obtained

from these two inputs. It enhances the distinguishing features from

one network and propagates the distinguishing information across

these two networks on multiple levels. Therefore, our method

reaches an accuracy of 95.18%.

As shown in Figure 7, our method can accurately and reliably

identify each type of neuron (as shown in Figures 7A, B). Although

different types of neurons share similarities in their shape and

size, the proposed multi-level fusion network is still able to

effectively capture the differences between types and represent

them accurately. Our method achieves excellent AUC and F1-

score for each type of neuron. Specifically, our method achieves

satisfactory AUC values for each type, where AUC values exceed

0.999 for most classes. Furthermore, our method achieves the AUC

values of 1.000 for C4 and C8, indicating our method can be used to

precisely analyze the neurons from C4 and C8 types. Moreover, our

method yields an average F1-score of 0.94 and the F1-scores of all

classes exceed 0.89. This demonstrates that our method effectively

represents the differences among neuron classes and accurately

identifies neurons. Most of themisclassified samples by ourmethod

are from C6 (i.e., mouse pyramidal cells) and C10 types (i.e.,

mouse pyramidal cells) (as shown in Figure 7C). Specifically, 6%

of neurons from the C6 type are misclassified as C10 type, while

6% of neurons from the C10 type are misclassified as C6 type (as

shown in Figure 7C). This is because there are some morphological

similarities between these two types. For example, the average

contraction of neurons from C6 and C10 are 0.8949 ± 0.0571

and 0.8925 ± 0.0611, respectively. The ratio between the diameter

of a daughter and its father of neurons from C6 and C10 are

0.8642 ± 0.1733 and 0.8502 ± 0.0965, respectively. This indicates

that our method should be further modified to effectively learn

and identify these subtle morphological nuances. Therefore, our

future work will focus on improving the ability of our method to

represent subtle differences so that it can accurately describe the

subtle morphological properties of neurons.

Besides, the t-SNE tool (Van der Maaten and Hinton, 2008) is

exploited to visualize the feature distributions of the last layer of

our network. As seen from Figure 7D, each category is grouped into

a cluster and neurons in each cluster are relatively compact. This

indicates that our method can effectively learn and characterize the

morphological features of each type of neuron. Besides, we observe

that the neurons in the C4 cluster (i.e., various principal medium

spiny) distribute relatively sparse compared to other clusters. We

randomly select the neurons of the C4 type without considering

their species and brain regions. Moreover, neurons in the C4 type

have more dendritic spines than other cells. These factors may

cause relatively large morphological differences among neurons in

the C4 type. Nonetheless, our method accurately characterizes the

morphological differences of neurons in the C4 type and groups

them. Furthermore, there is a great deal of distance between
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FIGURE 7

Classification performance of our method evaluated on the NeuronMorpho-10 dataset with 10-type neurons. (A) is the ROC curves of our method

for each type. (B) is the F1-score for each type. (C) is the confusion matrix. (D) is the feature distribution.

different clusters. These results further prove that our method can

precisely different types of neurons and fully using different features

is conducive to recognizing neuron types.

4.3 Comparison of di�erent methods

These neuron classification methods based on hand-crafted

morphometrics and traditional classifiers are re-implemented to

make a comparison with ourmethod, including TMD (Kanari et al.,

2018), novel Sholl analysis (Khalil et al., 2022), Support Vector

Machine (SVM; Lee et al., 2004), Naïve Bayes (NB; Mihaljević

et al., 2015), Linear Regression (LR; Alavi et al., 2009), and k-

Nearest Neighbors (KNN; Wu et al., 2008). The recent methods

that take hand-crafted morphometrics as input and neural

networks as feature extractors are also compared, including

Deep Residual Neural Networks (DRNN; Lin et al., 2018)

and Locally Cumulative Connected Deep Neural Networks

(LCCDNN; Lin and Zheng, 2019). The MorphoGNN (Zhu

et al., 2022) method employs Graph Neural Networks (GNN)

to learn the spatial structure information between the nodes of

reconstructed neuron fibers. Besides, the SCAEs and TRNN+CNN

extract features from 2D neuron images and hand-crafted

morphometrics or SWC data are taken as a comparison (Zhang

et al., 2021; Li et al., 2018). They concatenate different features

directly to generate a feature descriptor. Additionally, we

compare our method to the methods (Lin and Zheng, 2018;

Chen et al., 2022) directly taking the 3D neuron data as

input. Table 2 reports the classification performance of different

methods.

As seen from Table 2, the classification performance of these

methods that only use hand-crafted morphometrics to characterize

neurons is barely satisfactory, and the highest accuracy is only

81.28% achieved by the KNNmethod (Wu et al., 2008). Since hand-

crafted morphometrics are a set of statistical measurements and

have 43 dimensions, they are not good at describing the holistic

structures of neurons with complex morphological structures.

Therefore, these methods perform relatively weaker. In contrast,

our method characterizes neurons by integrating hand-crafted

morphometrics with deep features extracted from 2D view images.
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TABLE 2 Performance comparison of di�erent methods.

Method Data input Feature Precision Recall F1-score Accuracy (%)

SVM (Lee et al., 2004) Statistics Hand-crafted 0.561 0.537 0.487 53.66

NB (Mihaljević et al.,

2015)

Statistics Hand-crafted 0.614 0.651 0.588 65.06

LR (Alavi et al., 2009) Statistics Hand-crafted 0.770 0.769 0.755 76.88

KNN (Wu et al., 2008) Statistics Hand-crafted 0.817 0.813 0.803 81.28

TMD (Kanari et al.,

2018)

3D Neuron Data Hand-crafted 0.754 0.803 0.629 80.27

Sholl (Khalil et al.,

2022)

3D Neuron Data Hand-crafted 0.923 0.901 0.900 90.00

DRNN (Lin et al., 2018) Statistics Deep Feature 0.595 0.540 0.502 54.00

LCCDNN (Lin and

Zheng, 2019)

Statistics Deep Feature 0.604 0.552 0.534 55.20

3D CNN (Lin and

Zheng, 2018)

3D Neuron Data Deep Feature 0.439 0.458 0.429 45.82

TreeMoco (Chen et al.,

2022)

3D Neuron Data Deep Feature 0.756 0.757 0.753 75.70

MorphoGNN (Zhu

et al., 2022)

3D Neuron Data Deep Feature 0.859 0.858 0.858 85.89

TRNN + CNN (Zhang

et al., 2021)

3D Neuron Data +

Images

Deep Feature 0.838 0.850 0.836 85.00

SCAES (Li et al., 2018) Statistics + Images Deep Feature 0.622 0.628 0.623 62.76

Ours Statistics + Images Deep Feature 0.952 0.952 0.952 95.18

The best results are shown in bold.

This allows our method to capture a comprehensive descriptor

for neuronal local and holistic structures. Consequently, our

approach effectively identified neuronal types. The novel Sholl

method built by Khail et al. achieves satisfactory performance

with an accuracy of 90.00%. However, creating a tree structure to

obtain the Sholl descriptors requires higher computation resources

and time, especially for neurons with a larger number of points

(such as those >8,000). While MorphoGNN achieves an accuracy

of 85.89%, it requires processing the number of neuron points

to a unified input size, such as 1,024 or 2,048. The larger the

input size, the higher the computation resources. Note that the

number of neuron points ranges from 10 to 10,000. Therefore,

their method risks losing significant morphological information for

neurons with greater points and introducing noise for neurons with

fewer points. Although our method utilizes the same input as the

SCAEs (Li et al., 2018), our method utilizes the MLFM to facilitate

the information interaction between different inputs at multiple

levels. Conversely, SCAEs directly connect deep features and hand-

crafted morphometrics. Our method can obtain complementary

information between different features and effectively use their

advantages. Therefore, the performance of SCAEs is relatively

lower than that of our method. Besides, the TRNN+CNN (Zhang

et al., 2021) method utilizes CNN and tree-based RNN to capture

morphological features from SWC format data and 2D slice format

data. However, it directly fuses different features only before the

classifier to build the morphological descriptors. Compared to the

SCAEs (Li et al., 2018) and TRNN+CNN (Zhang et al., 2021), our

method fully uses two different features and tactfully integrates

them at multiple scales during feature extraction. Furthermore,

it mines and shares complementary information between two

features via the MLFM. Consequently, our method yields an

accuracy of 95.18% and an F1-score of 0.952, outperforming other

methods.

4.4 Evaluation of generalization ability

Here, we verify the generalization ability of our method from

many aspects. In this section, we utilize the same data preprocessing

described in Section 3.1 and experimental setting reported in

Section 4.1.2 on different datasets to conduct the evaluation

experiments. Researchers analyzing neuronal morphology can

conveniently find the datasets on our Google drive (see text

footnote1).

In the work of Zhang et al. (2021), a tree-based RNN

is used to process the SWC format data, and a CNN is

employed to extract features from 2D slice images. To verify their

method, they download 35,000 digital neuron reconstructions from

NeuroMorpho.org (Ascoli et al., 2007). Moreover, they augment

the training images to 98,700 and SWC-format data to 99,996.

The model concatenates the features extracted by CNN and RNN

and achieves an accuracy of 91.90%. The same dataset as that

in their work is exploited to evaluate our proposed method

(denoted as NeuroMorpho-12). NeuroMorpho-12 includes the 12

types of cells (as shown in Figures 8A, B). We use only 5,752
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FIGURE 8

Class distribution of NeuroMorpho-12 and NeuroMorpho-17 datasets and ROC curves of our methods for each type. The 12 types of neurons (A)

and type name (B) of the NeuroMorpho-12 dataset. (C) is the ROC curves of our method for 12 types of neurons in the NeuroMorpho-12 dataset, (D,

E) are the 17 types of neurons and the name of the NeuroMorpho-17 dataset, respectively, (F) is the ROC curves of our method for each type in the

NeuroMorpho-17 dataset.

TABLE 3 Validation of the generalization of our method evaluated on other two datasets.

Dataset Precision Recall F1-score Accuracy (%)

NeuroMorpho-12 0.922 0.920 0.919 92.00

NeuroMorpho-17 0.909 0.901 0.902 90.10

cells provided in their study (Zhang et al., 2021) and do not

utilize data augmentation techniques. Figure 8C shows the ROC

curves of our method for each type. Our method identifies 12

types of neurons with satisfying AUC values. See from Table 3,

our method achieves a classification accuracy of 92.00%. Note

that, our method makes comparable results with Zhang et al.

(2021), but the number of neurons used in our method only

is 1/19 of that in Zhang et al. (2021). Our multi-level fusion

method not only enhances the individual feature representations

but conveys the interacted information between different feature

representations. Consequently, our method achieves comparable

results with smaller neurons compared to that (Zhang et al., 2021)

directly concatenating feature presentations.

Besides, a dataset (denoted as NeuroMorpho-17) consisting

of 17 classes of cells is utilized to verify the performance of the

proposed method. The NeuroMorpho-17 consists of 47,460 cells

downloaded from the NeuroMorpho.org (Ascoli et al., 2007). As

shown in Figures 8D, E, this dataset includes more types compared

to the NeuroMorpho-10 and NeuroMorpho-12 datasets. The

number of neurons in each type ranges from 1,000 to 3,000, making

neuron identification challenging. As shown in Figure 8F, our

method yields excellent AUC values for each type. This indicates

that our method fits well in identifying more types of neurons.

Moreover, as shown in Table 3, our method yields an accuracy of

90.10% and an F1-score of 0.902, which is comparable to that of

the other two datasets. Ourmethod extracts morphological features

of neurons from the hand-crafted morphometrics and 2D images

and tactfully fuses them at the multi-level. It can more accurately

characterize the structure of neurons and the differences between

different neurons. Therefore, although neurons in this dataset have

more complex arbors and exhibit more morphological diversity,

our method still effectively characterizes their morphologies and

accurately identifies them.More importantly, these results show the

capability of our method to discern a broader range of neuron types

and open up a novel avenue for the analysis of large-scale neuronal

morphology.

4.5 Ablation studies

4.5.1 Evaluation of di�erent modules
In the MLFM, FEM aims to enhance feature learning within

one network, and FIM aims to explore distinguishing and shared

information between different features extracted from the CNN

and FCN. Here, we verify the impact of these two modules on our

model, and the results are shown in Table 4.
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We observe that the method that directly concatenates the

features from the two networks achieves an accuracy of 87.78%.

It has improvements of 2.34% and 5.38% than 85.44% and

82.40% only using CNN and FCN, respectively. This shows

that the fused features can better represent the morphology of

neurons and facilitate the classification of neurons. When the

FEMs are introduced, each network can pay more attention

to the discriminative features, which can further improve the

classification performance. FIM enables CNN and FCN to make

better use of the shared and transfer information between different

feature representations. This improves the accuracy of our method

to 90.35%. When the multi-layer fusion modules containing these

two modules are embedded in the feature extraction block, our

model can both enhance the salient features within the branch and

fully mine the interaction information between different features.

Therefore, our method achieves a satisfactory accuracy of 95.18%.

4.5.2 Performance of our method with di�erent
fusion strategies

We employ element-wise summation to fuse the features from

the CNN and FCN to obtain the descriptors of neurons. The fusion

strategies, such as concatenation and average, are also commonly

used to combine different features. Therefore, we evaluate our

method based on different fusion strategies.

As shown in Table 5, our method based on the concatenation

fusion strategy yields an accuracy of 93.57%. By applying the

average fusion strategy to combine various features, our method

improves accuracy to 94.78%. Our method based on the element-

wise summation fusion strategy achieves an accuracy of 95.18%.

Based on the MLFM, our method effectively utilizes different

morphological features and characterizes neuronal morphology

fully. Therefore, the feature descriptors generated through these

fusion strategies capture the morphological properties of neurons

more effectively. Different fusion strategies haveminimal impact on

accuracy compared to other modules. Consequently, we select the

element-wise summation fusion strategy as our final fusion method

due to its superior performance.

4.5.3 Performance of our method with di�erent
CNNs

Here, the performance of the multi-level feature fusion network

using different CNNs is verified, and the results are shown in

Table 6. When the VGG (Simonyan and Zisserman, 2014) network

is employed to learn neuronal characteristics, the obtained feature

maps cannot properly reflect the characteristics of neurons and

even confuse neuron samples with very simple structures (e.g.,

neurons only with two arbors). On the other hand, when using

ResNet (He et al., 2016) networks with a short connection

structure, each layer’s input and output are fully utilized so that the

feature maps thoroughly reflect the structure and characteristics of

neurons. Therefore, the identification of neurons is more accurate

with the CNN based on ResNet (He et al., 2016) as the image

feature extractor. The neuron data is relatively sparse, overfitting

may occur when the deeper ResNet serves as the image feature

extractor. Our method based on the ResNet-50 achieves the highest

accuracy of 95.18% while that of ResNet-101 is 92.83%. Therefore,

ResNet-50 is used as an image feature extractor in the CNN branch

for more accurate representation learning.

5 Discussions

Neuronal morphology varying in size and shape can result

in challenges in accurately identifying neuron types. Previous

studies employ both hand-crafted morphometrics (Uylings and

Van Pelt, 2002; Costa et al., 2010; Vasques et al., 2016; Zehtabian

et al., 2022; Wan et al., 2015; Bird and Cuntz, 2019) and

deep features extracted by neural networks from 2D images (Li

et al., 2018; Zhang et al., 2021; Li et al., 2021) to characterize

neuronal morphology. The hand-crafted morphometrics provide

statistical values for neuronal local and global structure. However,

it often struggles to identify neurons with complex dendrites (Zhao

et al., 2022; Chen et al., 2022). In contrast, deep features

effectively capture the holistic structure of neurons (Li et al.,

2018). However, converting 3D neuron data into 2D images

results in a loss of structure information. It may lead to a

decrease in classification performance. Our multi-level fusion

network leverages the strengths of both hand-crafted and deep

features and effectively combines them. Therefore, our approach

enables the effective capture of discriminative descriptors for

neuronal morphology. Furthermore, our method achieves superior

performance on the NeuroMorpho-10, NeuroMorpho-12, and

NeuroMorpho-17 datasets.

Our multi-level fusion network incorporates MLFMs to

facilitate feature enhancement and interaction between different

features. Each MLFM consists of a FEM and a FIM. The FEM

enhances distinctive features within each feature learning network,

while the FIM mines the relationships of different features and

extracts complementary and salient features across different feature

learning networks. Although these modules significantly boost

the performance of our method (as shown in Table 4), they

also lead to a notable increase in model complexity. Specifically,

compared to the baseline method without the MLFMs, the

number of parameters in our method is increased by 2 times.

Therefore, our model demands higher computation resources

and longer training time. To reduce the model complexity

while maintaining performance, we will explore reducing the

model complexity by decreasing the dimensionality of the input

features of the MLFMs. By reducing feature dimensions, we

can significantly lower model complexity, particularly for the

FIM module (as illustrated in Figure 5). The complexity of

weight calculations in our FIM module is proportional to the

square of the feature dimension. In future work, we will also

investigate implementing the FIM functionality using linearly

complex modules.

Although our method achieves superior performance across

multiple datasets and exhibits strong generalization ability, it does

have limitations. During training, our approach quickly achieves

a satisfactory level of performance, as illustrated in Figure 9. We

observe that fluctuations in loss and accuracy arise, especially at

the later phase of training. It may caused by the great sparsity

of the 2D images (as shown in Figure 4). Most regions of these

images are background. Noise and background in these images can

lead the model to overfit specific morphological features at certain
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TABLE 4 Performance of our method with di�erent modules.

FEM FIM Precision Recall F1-score Accuracy (%)

- - 0.877 0.878 0.877 87.78

X - 0.930 0.930 0.930 93.02

- X 0.903 0.904 0.904 90.35

X X 0.952 0.952 0.952 95.18

TABLE 5 Comparison of di�erent fusion methods evaluated on 10 types of neurons.

Method Precision Recall F1-score Accuracy (%)

Concatenation 0.936 0.936 0.935 93.57

Average 0.950 0.948 0.947 94.78

Ours 0.952 0.952 0.952 95.18

TABLE 6 Comparison of the CNN branch of multi-level fusion network under di�erent backbones.

Backbone Precision Recall F1-score Accuracy (%)

VGG-16 0.821 0.808 0.806 80.82

VGG-19 0.874 0.867 0.867 86.66

ResNet-18 0.909 0.903 0.904 90.34

ResNet-34 0.906 0.906 0.905 90.56

ResNet-50 0.952 0.952 0.952 95.18

ResNet-101 0.928 0.928 0.928 92.83

FIGURE 9

Accuracy (A) and loss (B) curves during training and test phases.

epochs. This suggests that our model is sensitive to particular

aspects of the neuron data. To address this, our future work will

incorporate data cleaning techniques (Chen et al., 2022; Zhao et al.,

2022) and regularization strategies to enhance the robustness of

our method. Moreover, higher model complexity coupled with

limited data can adversely affect the performance of our model.

While dropout, batch normalization, and data augmentation

techniques like shifting and flipping are employed in our model,

their efficacy is likely suboptimal. Given the tree-like structure of

neuronal morphology, tailored data augmentation strategies, as

provided in Chen et al. (2022), may yield better results. These

include neuron point transformation, branch deformation, and the

application of random masks to branches. Monitoring the loss and

accuracy curves (as shown in Figure 9) indicates that implementing

early stopping could significantly prevent overfitting. Additionally,

simplifying our model architecture by pruning layers or reducing

feature dimensionality is necessary to enhance the capacity of

our model. By introducing these strategies, our model can

be a reliable and convenient tool for large-scale neuronal

morphology analysis.

6 Conclusions

This paper proposes a multi-level feature fusion network for

neuronal morphology classification. It thoroughly explored the
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salient information extracted from hand-crafted morphometrics

and 2D images and the shared information between different

features through the Multi-Level Fusion Module (MLFM). The

MLFM consists of a channel attention-based Feature Enhancement

Module (FEM) and a cross-attention-based Feature Interaction

Module (FIM). It is embedded in multiple feature extraction

blocks to enhance feature learning and facilitate interaction

between different features at multiple levels. With the multi-

level fusion strategy, the combined neuron descriptors focus on

distinguishing spatial features, effectively characterizing neuronal

morphology. Our proposed multi-level feature fusion network

accurately identifies 10-type neurons with an accuracy of 95.18%

and outperforms other methods. Furthermore, the satisfactory

performance of the other two datasets demonstrates that our

approach can provide a reliable and convenient tool for neuronal

morphology analysis.
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