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The ability to detect animates (as compared with inanimates) rapidly is 
advantageous for human survival. Due to its relevance, not only the adult 
human brain has evolved specific neural mechanisms to discriminate animates, 
but it has been proposed that selection finely tuned the human visual attention 
system to prioritize visual cues that signal the presence of living things. Among 
them, animate motion—i.e., the motion of animate entities -, is one of the most 
powerful cues that triggers humans’ attention. From a developmental point of 
view, whether such specialization is inborn or acquired through experience is 
a fascinating research topic. This mini-review aims to summarize and discuss 
recent behavioral and electrophysiological research that suggests that animate 
motion has an attentional advantage in the first year of life starting from 
birth. Specifically, the rationale underlying this paper concerns how attention 
deployment is affected by animate motion conveyed both by the movement 
of a single dot and, also, when the single dot is embedded in a complex array, 
named biological motion. Overall, it will highlight the importance of both 
inborn predispositions to pay attention preferentially to animate motion, mainly 
supported by subcortical structures, and the exposure to certain experiences, 
shortly after birth, to drive the cortical attentional visual system to become the 
way it is in adults.
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1 Introduction

To identify conspecifics and to differentiate them from other kinds of entities is of 
paramount adaptive value, because they feed us, interact (or at least they should) successfully 
with us, love us, and help us to hand down our genetic endowment (Bonatti et al., 2002). From 
an evolutionary point of view, it is plausible to hypothesize that we have inherited ancestrally-
derived and highly conserved mechanisms, shared with other species (i.e., chicks, non-human 
primates), deputed to detect biologically relevant entities, such as prey, predators, and social 
companions. Indeed, it has been suggested that the human visual system is evolved to pay 
attention and to prioritize animates on the basis of some pictorial cues, such as the presence 
of a face, eye-gaze, and body structure. The way they move is another cue that attracts humans 
and non-humans’ visual attention toward animate entities.

Motion of living beings, here referred to “life motion” as conceptualized by Troje (2013), 
which includes any kind of visual stimulus that elicits the percept of something being alive, 
has specific features that are not shared with motion of inanimate objects, such as the capability 
to start from rest or to change speed and trajectory without external forces (i.e., 
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self-propulsion). In Troje’s taxonomy, life motion is further 
differentiated between extrinsic and intrinsic motion. Extrinsic motion 
refers to animate motion perception elicited by motion of single dot or 
geometrical shapes (Heider and Simmel, 1944; Carey, 2009; 
Rutherford and Kuhlmeier, 2013; Scholl and Gao, 2013), whereas 
intrinsic motion refers to biological motion (BM) perception 
(Johansson, 1973).

Neuroscientific evidence and neuropsychological lesion studies 
(Battelli et al., 2003; Gilaie-Dotan et al., 2011) suggested that in the 
adult brain life motion detection is subserved by relatively specific set 
of both subcortical and cortical areas within the so called Social Neural 
Network (SNN) (Caramazza and Shelton, 1998; Blakemore et al., 2003; 
Schultz et al., 2005; Adolphs, 2009; Frith and Frith, 2010; Santos et al., 
2010; Stosic et  al., 2014). Not only, but it has been proposed that 
selection finely tuned the human visual attention system to prioritize 
visual cues that signal the presence of living things (New et al., 2007). 
Further, SNN atypicalities lead to impairments in animate (Rutherford 
et al., 2006) and BM motion perception (Federici et al., 2020) observed 
in Autism Spectrum Disorders (ASD, Sato and Uono, 2019).

Ontogenetically, whether such a level of neural and functional 
specialization for life motion detection found in adults is present from 
birth or is the result of developmental processes, is still an open 
question. Several behavioral studies demonstrated in human 
newborns the presence of inborn attentional predispositions toward 
visual cues of motion that trigger both animate and BM perception in 
adults (Simion et al., 2008; Bardi et al., 2011, 2015; Bidet-Ildei et al., 
2014; Di Giorgio et al., 2017, 2021a). However, the missing piece of 
the puzzle concerns the experience-dependent or experience-
independent nature of the mechanisms underlying such attentional 
biases, as well as their neural bases.

Starting from the evidence of the presence of specialized brain and 
attention systems in human adults, here we sought to overview and 
discuss the current state of the art on (i) the role of attentional 
predispositions in triggering visual attention toward both extrinsic 
(animate) and intrinsic (biological) motion at birth and in the first 
months of life, and (ii) the experience-independent or experience-
dependent nature of the underpinning mechanisms thought to 
be involved in such attentional advantage.

2 Life motion in the adult brain: neural 
and functional specialization

Adults perceive animacy based on some basic visual cues of 
motion, such as self-propulsion, movement speed, contingency 
(Tremoulet and Feldman, 2000; Santos et al., 2008). Neuroimaging 
studies have revealed that the adult brain is equipped with a highly 
specialized neural network, the SNN, devoted to process such animate 
motion (Santos et al., 2010), that includes both subcortical—i.e., insula 
and amygdala—and cortical structures—i.e., the ventromedial 
prefrontal cortex (vmPFC), the superior temporal gyrus (STG) and 
sulcus (STS), the fusiform gyrus (FG) (Blakemore et al., 2003; Van 
Overwalle, 2009; Frith and Frith, 2010; Grill-Spector and Weiner, 
2014). Similarly to what we known about non-human primates (Oram 
and Perrett, 1994; Tomonaga, 2001; Jellema et al., 2004; Jastorff et al., 
2012), converging brain structural and connectivity evidence suggests 
that STS plays a key role in extrinsic and intrinsic motion processing 
(Schultz et al., 2005; Pavlova et al., 2006; Wheatley et al., 2007; Gobbini 

et al., 2011; Herrington et al., 2011; Pavlova, 2012; Sokolov et al., 2012; 
Yokoyama et al., 2021).

This brain specialization is coupled, at the behavioral and 
functional level, with an attentional advantage for stimuli that are 
characterized by animate motion and BM. According to the animate-
monitoring hypothesis (New et al., 2007), humans’ visual attentional 
system has evolved to prioritize and monitor visual cues central to our 
survival. Despite some studies that have questioned this hypothesis 
(Hagen and Laeng, 2016; Cox et al., 2022), it has been shown that 
animates were detected more quickly and accurately, rather than 
inanimates, in different attentional tasks, such as attentional blink 
(Calvillo and Hawkins, 2016; Guerrero and Calvillo, 2016), 
inattentional blindness (Calvillo and Jackson, 2014), change blindness 
(New et al., 2007; Altman et al., 2016), and visual search (Abrams and 
Christ, 2003; Pratt et al., 2010).

Likewise, some evidence suggested that a similar attentional 
advantage is present also for BM (Chandler-Mather et al., 2020). BM 
elicits faster saccadic reaction (Bardi et al., 2015) and more accurate 
responses (Shi et al., 2010; Hirai et al., 2011) in a cueing paradigm 
when compared with other motion types, and it can be processed 
incidentally in a flanker task (Thornton and Vuong, 2004). Based on 
this and other results, some authors postulated the presence of an 
inborn mechanism sensitive to BM, namely perceptual life detector 
(Johnson, 2006; Troje and Westhoff, 2006).

From a developmental perspective, it is plausible to hypothesize 
that animate and BM perception has an early ontogenetic origin 
because in adults it is based on fast and automatic visual processing, 
which is mainly constrained by a collection of low-level visual motion 
cues. Whether similar attentional advantages found in adults for 
animate and BM are present at birth, as well as the experience-
dependent or experience-independent nature of perceptual 
mechanisms postulated at the basis of it, are relevant and intriguing 
open questions.

3 How animate motion affects visual 
attention in newborns and infants

Controversy still exists about the origin of animate motion 
perception (Biro and Leslie, 2007; Rakison et al., 2008). Some authors 
have hypothesized that infants come into the world equipped with 
inborn domain-specific mechanisms (Leslie, 1995), otherwise referred 
as core-knowledge (Spelke and Kinzler, 2007), that allow them to 
be  sensitive to visual cues of motion that characterize animates. 
Others suggested that domain-general inborn predispositions to such 
visual cues of motion might be  a sort of building blocks to the 
development of animacy perception through learning mechanisms 
(cue-based bootstrapping model, Biro and Leslie, 2007).

To disentangle the issue, developmental studies have mainly 
focused on few-month-old infants’ ability to attribute goals, intentions 
and emotions based on the objects’ motion (Poulin-Dubois et al., 
1996; Luo and Baillargeon, 2005; Biro et al., 2007; Luo et al., 2009; 
Mahajan and Woodward, 2009), named intentional agency (Carey, 
2009). However, on which visual cues infants used to infer such an 
abstract concept from early on, that is animate motion perception, is 
much a relatively unexplored topic of research.

At the behavioral level, some studies suggested that animate 
motion captures infants’ visual attention. For instance, Träuble 
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et  al. (2014) showed that speed and direction changes by self-
propulsion induce animacy perception in 7-month-old infants. 
Infants’ visual attention was not only attracted by single object 
events, but also by objects that move contingently as in the case of 
chasing events. It has been demonstrated that 5-and 12-month-old 
infants orient their attention to and attend preferentially toward 
the agent that initiates an interaction within a chasing event 
(Galazka and Nyström, 2016). Frankenhuis et  al. (2013) 
demonstrated an attentional bias for chasing events based on 
visual cues of motion (acceleration, high turning rates, and 
attraction) and their combination (chasing) in 4-and 
10-month-old infants. Further, using a change-detection 
paradigm, it has been shown that 11-month-old infants are able 
to detect changes faster to animate compared to inanimate stimuli 
(Hofrichter et al., 2021).

This behavioral evidence is further corroborated by the results 
obtained in an ERP study with infants of 9 months. By this age infants 
allocate more attentional resources to an object moving inanimately 
than an animate object as evidenced by the increased negativity in the 
fronto-central Nc component, a component that indexes general 
attentional arousal, demonstrating differential sensitivity to animate 
and inanimate motion (Kaduk et al., 2013).

All these studies concern infants of a few months with a certain 
degree of visual and social experience, leaving the question about the 
origin of such perception open. To the best of our knowledge, only 
two recent studies demonstrated newborns sensitive toward some 
low-level visual cues of motion that trigger animacy perception in 
adults, which are self-propulsion and speed changes without external 
forces. In a series of visual preference experiments, 2-day-old 
newborns orient their attention preferentially toward an object that 
started from rest (Di Giorgio et  al., 2017), and changed its speed 
without external forces (Di Giorgio et al., 2021a), compared to an 
object that did not start to move or change speed by its own. Authors 
interpreted the presence of such inborn attentional biases as a sort of 
bootstrapping point to the development of animacy and agency 
perception found later during development, corroborating the 
cue-based bootstrapping model (Biro and Leslie, 2007), which 
emphasizes the interplay between such inborn predispositions and the 
role of experience and learning mechanisms during development.

As for other visual cues that indexed the presence of animate 
beings (i.e., faces and BM), these attentional biases are thought to 
be  mainly guided by subcortical neural structures (the superior 
colliculi) which appear to contribute to the specialization of the brain 
cortical circuits that, during development, carry out more 
sophisticated social information processing. Broadly speaking, such 
inborn experience-independent biases not only cause newborns to 
orient reflexively their attention toward animate beings, but they may 
serve to bias voluntary cortical-mediated visual attention toward 
relevant stimuli over the first weeks and months of life to promote the 
typical progressive specialization of the SNN (Johnson, 2005; Johnson 
et al., 2015). It has been suggested that such a shift from reflexive-to-
cortical-mediated visual mechanisms could be altered in ASD (Di 
Giorgio et al., 2021b), leading to a cascading effects on animate and 
BM perception atypicalities (Rutherford et al., 2006).

While recent findings on the currently elective animal model 
(domestic chicks) is very promising in shedding new light on neural 
and physiological mechanisms underlying inborn attentional biases 
(Lorenzi et al., 2017; Mayer et al., 2019; Rosa-Salva et al., 2021), in 

human newborns the neural signature of such biases remains almost 
speculative (see Buiatti et al., 2019).

4 How biological motion affects visual 
attention in newborns and infants

As shown so far, infants’ and newborns’ attention are triggered by 
animate motion conveyed by the movement of a single dot. Life 
motion detection may also be driven by more specific types of motions 
cues, such as when the relative motion of many dots in a complex 
point light display (PLD) are organized and perceived as a particular 
form of vertebrates’ motion such as a human walker (Johansson, 1973; 
Scholl and Gao, 2013). In a complex array of dots, each single dot has 
self-propelled motion and follows the acceleration and deceleration 
motion pattern. When these cues of motion are applied to dots that 
composed complex arrays as in the case of BM, adults are able to 
extract, simply analyzing motion, a lot of social information.

Historically, the first study that investigates sensitivity toward BM 
during development, through use of PLD, was done by Fox and 
McDaniel (1982) testing 4-and 6-month-old infants. Starting from 
this first evidence, a growing number of studies tried to understand 
the origin of the sensitivity to BM.

Following the evidence coming from newly hatched chicks that 
demonstrates visual preference for BM rather than other motion types 
in this species (Vallortigara et  al., 2005), Simion et  al. (2008) 
investigates whether also in human newborn this attentional bias was 
present. In a series of experiments, it has been shown that that even 
3-day-old human newborns have a predisposition to selectively orient 
their visual attention toward BM when compared with other motion 
types (random or rigid motion, Simion et al., 2008; Bardi et al., 2011, 
2015; Bidet-Ildei et  al., 2014). These results seem to support the 
hypothesis of the presence of a perceptual life detector which allows 
newborns of different species to orient preferentially their visual 
attention toward the local information (i.e., the motion of the limbs of 
an animal in locomotion) vehiculated by BM (Johnson, 2006; Troje 
and Westhoff, 2006). As for the inborn biases for animate motion, it 
has been hypothesized that attentional biases for BM at birth should 
be  considered as a predisposed and experience-independent 
perceptual mechanism supported by subcortical structures (Simion 
et al., 2008; Chang et al., 2018).

Based on this assumption, several authors tried to better define 
the developmental trajectory of the sensitivity toward BM. In a series 
of studies, Bertenthal et al. (1984, 1987), investigated infants’ ability to 
organize complex arrays of dots as a coherent figure. Five-month-old 
infants are able to discriminate PLD walker from the same stimulus 
with scramble spatial relationship or with perturbed local rigidity 
between joints, suggesting the emergence of sensitivity toward global 
information level of BM. This suggests that the visual system at birth 
can use visual information to prefer and discriminate between 
coherent displays but not to integrate the individual motion 
information to form the global percept of a PLD. The ability to process 
configural relations in BM must involve, therefore, a more specialized, 
late-developing, higher-level processing; hence requiring more visual 
experience and cortical maturation (Hirai and Senju, 2020).

This evidence, coupled with the ones by Fox and McDaniel (1982), 
supports the hypothesis that the second mechanism that would 
be  responsible in recognizing and identifying agents based on 
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configural information would not be inborn, but rather an experience-
dependent mechanism that becomes functioning during development 
(Troje and Westhoff, 2006). The extraction of relevant social 
information would be supported by this second mechanism (Chang 
and Troje, 2009), that might be used to pay voluntary attention and to 
interpret other intentions.

From a neural point of view, fNIRS studies showed that the 
selective activation of rSTS for BM processing emerges around 
7–8 months (Lisboa et al., 2020a,b). The same pattern of results was 
found also in a neurophysiological study with 8-month-infants, where 
a modulation of ERP component peaking around 200–300 ms post-
stimulus onset have been observed only in the right hemisphere (Reid 
et al., 2006). More recently, Hirai and Hakuno (2022) demonstrated 
that even at 6 months of age infants are able to extract a coherent 
human figure from PLDs, showing a larger ERP component for BM 
rather than scrambled motion, peaking around 500–600 ms post-
stimulus onset.

Starting from this state of the art, research has attempted to 
investigate the functional meaning of BM walking direction 
processing, contemporarily probing the hypothesis according to 
which the walking direction of legged vertebrates may produce an 
attentional advantage in processing relevant information (Bardi et al., 
2015; Lunghi et al., 2019, 2020). In these studies, authors tested 3-and 
6-months-old infants using a cueing paradigm (Posner, 1980) with 
BM as central cue. Behaviorally, shorter saccadic reaction time for the 
target that appears in congruent position to the walking direction of 
BM was found. At the neural level, 3-and 6-month-old infants showed 
a modulation of ERPs sensory component (P1) for congruent targets 
even before the oculomotor response, suggesting that already at 
3 months BM elicits a covert orienting of attention toward relevant 
information (Lunghi et al., 2019).

Overall, these findings suggest that the inborn sensitivity to BM, 
supported by an experience-independent mechanism, should 
be considered as a bootstrapping point to the development of the 
ability of infants and adults to extract social information from motion. 
Behavioral results showed atypical visual orienting toward BM stimuli 
in newborns and 4-month-old infants at high-risk for ASD (Di 
Giorgio et al., 2016, 2021b), corroborating the idea of the alteration to 
such mechanisms early in life.

5 Conclusion and future directions

The studies reviewed here seem to corroborate the hypothesis that 
life motion that characterizes living beings modulates visual attention 
starting from birth. Humans and non-human newborns (Mascalzoni 
et al., 2010; Rosa-Salva et al., 2016; Lemaire et al., 2022; Rosa-Salva 
et al., 2023) orient their visual attention reflexively toward visual cues 
of motion that characterized animate motion and BM since birth.

As proposed by Frankenhuis and Barrett (2013), it is plausible that 
starting from birth, infants use a “coarse attentional filter that navigates 
their attention toward social interactions.” Such a filter is shared with 
other vertebrates, therefore phylogenetically old, and it is sensitive to 
general properties of both animate motion and BM regardless of their 
content. Only later during development, infants are able to infer the 
social meaning conveyed by such visual cues of motion, thanks to 
more sophisticated cognitive (and cortical-guided) mechanisms 
dedicated to comprehending goals and intentions.

Recent groundbreaking studies are telling us that for 
understanding how cognition originates and develops, and which is 
the role of experience, some answers can be found before birth, in 
fetuses (Reid, 2024). Fetuses show impressive perceptual capabilities 
in visual (Reid et  al., 2017; Donovan et  al., 2020), auditory 
(Vogelsang et  al., 2023), and motor domains (Zoia et  al., 2007), 
making them a promising model for future studies on the origin 
of knowledge.

If the presence of such bootstrapping inborn attentional biases is 
not questioned, the neural signatures underlying such biases remain 
unexplored. For instance, albeit based on indirect evidence in human 
newborns, such inborn attentional biases are thought to be mainly 
guided by a rapid and reflexive subcortical orienting mechanisms, and 
that, around 2–3 months of life, are being replaced by voluntary 
cortical-mediated visual attention mechanisms (Johnson, 2005). In 
line with the recent findings about the neural substrates underlying 
face detection in human newborns (Buiatti et al., 2019), future studies, 
taking advantage from non-invasive methods such as EEG or fNIRS, 
should investigate which are the neural pathways involved in animate 
and BM perception, mainly unexplored at birth as well as in the first 
years of life.

Finally, the study of the neural bases underlying animate and BM 
perception is important in typical-developing populations. But it is 
even more important in ASD high-risk populations, where the need 
for noninvasive and sensitive biomarkers reflecting altered key 
functional circuits is urgent. This would corroborate studies, currently 
controversial (Dawson et  al., 2023), that suggest altered inborn 
attentional predispositions as potential predictive risk factors for ASD.
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