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Advanced computational models and simulations to unravel the complexities

of brain function have known a growing interest in recent years in the field

of neurosciences, driven by significant technological progress in computing

platforms. Multicompartmentmodels, which capture the detailedmorphological

and functional properties of neural circuits, represent a significant advancement

in this area providing more biological coherence than single compartment

modeling. These models serve as a cornerstone for exploring the neural basis

of sensory processing, learning paradigms, adaptive behaviors, and neurological

disorders. Yet, the high complexity of these models presents a challenge

for their real-time implementation, which is essential for exploring alternative

therapies for neurological disorders such as electroceutics that rely on biohybrid

interaction. Here, we present an accessible, user-friendly, and real-time emulator

for multicompartment Hodgkin-Huxley neurons on SoC FPGA. Our system

enables real-time emulation of multicompartment neurons while emphasizing

cost-e�ciency, flexibility, and ease of use. We showcase an implementation

utilizing a technology that remains underrepresented in the current literature

for this specific application. We anticipate that our system will contribute

to the enhancement of computation platforms by presenting an alternative

architecture for multicompartment computation. Additionally, it constitutes a

step toward developing neuromorphic-based neuroprostheses for bioelectrical

therapeutics through an embedded real-time platform running at a similar

timescale to biological networks.

KEYWORDS

SoC FPGA, multicompartment neurons, Hodgkin-Huxley, real-time, spiking neural
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1 Introduction

Millions of individuals globally experience the debilitating effects of neurological

disorders, which significantly impact their cognitive and/or motor functions (World

Health Organization, 2020). While there is a growing array of technologies and solutions

being developed for the treatment of these conditions, they often only serve to

slow progression or alleviate symptoms (Chin and Vora, 2014; French et al., 2016).
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In addition to medical interventions involving chemical

processes, artificial devices are being developed to enhance

the quality of life for individuals. Bringing neuroprostheses

to realization requires consideration of the behavior of

biological neurons and their connections and interactions

with artificial neural networks. Consequently, investigating

the interaction of neuronal cell assemblies is necessary

to comprehend and replicate specific behaviors driven

by intrinsic spontaneous activity. Moreover, achieving

long-term replacement of damaged brain regions with

artificial devices necessitates an understanding of their

neurophysiological behaviors.

In this context, there is a pressing need for new therapeutic

approaches and technologies aimed at promoting cell survival and

regenerating local circuits (Farina et al., 2021), as well as restoring

long-distance communication between disconnected brain regions

and circuits (Bouton et al., 2016). Therefore, the characterization

and modeling of biological neural networks (Panuccio et al., 2018;

Semprini et al., 2018) are crucial for the development of a new

generation of neuroprostheses. These prostheses aim to mimic

biological dynamics and provide adaptive stimulation at biological

timescales, following the principle of electroceutics (Famm et al.,

2013; Reardon, 2014; Donati and Valle, 2024).

With the advent of new neuromorphic platforms, conducting

biohybrid experiments is gaining increasing relevance. This is

not only crucial for advancing neuromorphic biomedical devices

(Famm et al., 2013; Reardon, 2014) but also for gaining insights

into the mechanisms of information processing in the nervous

system. Recent advancements in neuroprostheses have significantly

contributed to this progress (Panuccio et al., 2018; Semprini et al.,

2018). Neuromorphic devices now have the capability to receive

and process input, while also delivering their output locally or

remotely through various means such as electrical, chemical, or

optogenetic stimulation (Christensen et al., 2022).

The significant advancements in bioelectronics and

neuroprosthetics resulted in technologies able to replace and

retrain either brain (Chiappalone et al., 2022) or somatosensory

functions (Raspopovic et al., 2021; Iberite et al., 2023), block

seizures in epilepsy (Geller et al., 2017), and relive symptoms in

neurodegenerative diseases such as Parkinson’s disease (Pycroft

et al., 2018; Milekovic et al., 2023).

In order to conduct bi-directional biohybrid experiments and

devise bioelectrical therapeutic solutions for healthcare, such as

electroceutics (Famm et al., 2013; Reardon, 2014; Donati and Valle,

2024; Di Florio et al., 2023), it is essential to incorporate real-time

bio-physics interfaces and SNN processing. These components are

imperative to facilitate interactions at the biological time scale

(Corradi and Indiveri, 2015; Sharifshazileh et al., 2021).

A new generation of neuro/brain prostheses, termed “twins”,

has emerged with the capability to replace damaged brain tissue.

These innovations span from peripheral interventions (Donati and

Valle, 2024; Valle et al., 2018; Romeni et al., 2020) to central

nervous system interfaces (Rowald et al., 2022). Despite primarily

existing as proof of concepts, neuromorphic twins hold promise for

revolutionizing healthcare (Donati and Valle, 2024; Buccelli et al.,

2019; Keren et al., 2019; Mosbacher et al., 2020; Beaubois et al.,

2024).

Hence, this generation of neuroprostheses pushes the need for

biophysically detailed neuron model. For instance, as disorders

in nervous system and neuronal network can be induced from

ion channel morphology (Lai and Jan, 2006; Spillane et al., 2016),

the capability to reproduce the shape of the action potential with

biophysical detail and biological meaningfulness to relate changes

in its shape to biophysical values is important. Consequently, the

most suitable candidate is the Hodgkin-Huxley (HH) paradigm

(Hodgkin and Huxley, 1990) that is one of the most biologically

meaningful model (Izhikevich, 2004; Brette, 2015).

While the single compartment HH model is mostly used

over multicompartment model, as it is simpler and less resource-

intensive, it remains limited due to its inability to capture the

complex morphology of neurons (Beaubois et al., 2022). In

contrast, multicompartment models offer a more comprehensive

and biologically realistic approach, thus providing deeper insights

into neuronal function and information processing, finding interest

in multiple fields from biological interest as a study model for

neurological disorders, and learning mechanism to computing

interest inspired from the dendritic architecture of the neurons

(Markram et al., 2015).

Multicompartmental modeling notably allows the investigation

of the role of dendrites in neurons. Dendrites, particularly

important regions for vital computations tied to their spatial

morphology (Forrest et al., 2018), undergo learning-related

changes, as evidenced in dendritic compartments (Godenzini et al.,

2022). Dendrites also facilitate a greater diversity of presynaptic

terminal classes, leading to different learning laws (Froemke

et al., 2005; Sardi et al., 2018) and contribute to support diverse

information processing strategies in neural networks (Markram

et al., 2015). Moreover, they are known to exhibit physiological

and morphological abnormalities during postnatal development

in motor neurons affected by amyotrophic lateral sclerosis (ALS)

(Martin et al., 2013) andmarked changes in their structure (Fogarty

et al., 2016).

Moreover, studies such as Brette (2015) shows that there

are phenomena such as frequency-dependent attenuation of

membrane as a function of frequency or the presence of wide

variations in voltage which may be induced by the presence of

active conductances distributed along the axon and dendrites.

Thus, important biophysical phenomena such as spike initiation

(Naundorf et al., 2006) in the axon initial segment (AIS) (Debanne

et al., 2011) or in the dendrites (Gasparini et al., 2004) can be

modeled. Phenomena such as dendritic spikes are, for example,

known to play a part in stimulus selectivity in cortical neurons

(Smith et al., 2013). Hence, the multicompartmental modeling is

undoubtedly crucial to the creation of faithful and reliable model

providing enough biological meaningfulness to study neurological

disorders through artificial models.

The state of the art in multicompartment Hodgkin-Huxley

(HH) neurons has been significantly advanced by the development

and continuous updating of software platforms such as NEURON

(Carnevale and Hines, 2006; Kumbhar et al., 2019; Awile et al.,

2022) or integration of its computing core as in Zhang et al. (2023).

NEURON is a simulation environment for modeling individual

neurons and networks of neurons, allowing for the creation

of complex neural models that incorporate multicompartment
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HH models mainly scripting in hoc with Python interfaces.

While NEURON stands out for its comprehensive features and

widespread use in computational neuroscience, other software

platforms such as Arbor (Abi Akar et al., 2019) and Brian (Stimberg

et al., 2019) also contribute to the landscape of neural simulation.

Arbor is optimized for high-performance simulation of large

neural networks, emphasizing multicore CPUs and GPUs, while

Brian is known for its simplicity and flexibility. Additionally, an

other notable GPU implementation is Kobayashi et al. (2021)

that explores the use of an explicit solver to reduce computation

time. Another implementation using an explicit solver designed

for FPGA-based datacenter/cloud paradigm, with a focus on

computational power and additional features such as gap junctions,

can be found (Miedema et al., 2020; Miedema and Strydis, 2024).

Benefiting from a flexible and real-time architecture identical

to BimuS (Beaubois et al., 2024), a real-time biomimetic single

compartment SNN, this contribution is intended to propose a

novel hardware architecture for multicompartment HH neuron

emulation using SoC FPGA promoting ease of use and versatile

interconnection. Furthermore, this study takes advantage of High-

Level Synthesis (HLS) design methods (Cong et al., 2011; Nane

et al., 2015) paired with standard hardware design to improve

portability, reduce development time, and open contributions to a

larger part of the community. Consequently, this system constitutes

a first step toward a real-time multicompartment HH neuron

emulation platform on SoC FPGA that could easily integrate

biohybrid closed-loop system to explore the electroceutic approach

and potentially contribute to the development of neuroprostheses

and neuromorphic twins.

2 Materials and methods

This section introduces the system, outlining its architecture

and the methods for numerical solving.

2.1 Neuron model

Neurons are multicompartment neurons following the

Hodgkin-Huxley (HH) (Hodgkin and Huxley, 1990) paradigm

that is based on the one dimensional cable equation applied to the

HH paradigm corresponding to Equation 1, thus introducing the

spatial dimension x in the equation (Carnevale and Hines, 2006).

1

2πa

∂

∂x

(

πa2

Ra

∂V

∂x

)

= Cm
∂V

∂t
+ IHH (1)

where a is the radius of the compartment, Ra the resistance of

the axon, Cm the membrane capacitance, IHH the currents of

the HH model, and V the membrane potential in the middle of

the compartment.

Neurons implement ion channels of the Pospischil model

(Pospischil et al., 2008) introducing six conductance-based currents

and a stimulation current. Neurons are divided in sections

that share the same electrical properties and represent different

elements of the neuron similarly to Carnevale and Hines (2006)

as illustrated in Figures 1A, B. An electrical equivalent circuit of

the multicompartmental model using HH paradigm is shown in

Figure 1C.

The spatial discretization involves the second order correct

approximation of ∂2V/∂x2 (Equation 1) equated in Equation 2

(Carnevale and Hines, 2006). A representation showing cable

equations discretized using “compartmentalization” that

approximates the cable equations by a series of compartments (also

called segments) connected by resistors is shown in Figure 1D.

∂2V

∂x2
≈

V(x+1x)− 2V(x)+ V(x−1x)

1x2
(2)

The discretized model can be seen as the computation of

spatio-temporally continuous variables over a set of discrete points

in space (“grid” of “nodes”) for a finite number of instants in

time (Carnevale and Hines, 2006). Therefore, values of functions

will refer at points on the grid function equated in Equation 3

(Mascagni, 1990).

Gn
i ≡ G (i1x, n1t) (3)

where 1t is the time step and 1x = L
N the grid width computed

from L the length of the cable and N the number of spatial

grid points.

The membrane potential is then evaluated at the middle of each

compartment. The boundary condition that states that no axial

current flows at the ends of the cable is respected by adding virtual

points at the extremities of the cable.

While the use of explicit methods is suggested to be applicable

for multicompartmental model solving according to Kobayashi

et al. (2021), explicit methods remain limited for real-time systems

because of the significant constraint imposed by the very small time

step required. While the explicit Runge-Kutta-Chebyshev method

with a very small time step is shown stable for multicompartment

modeling (Kobayashi et al., 2021), simpler explicit solvers of lower

accuracy as the Forward Euler used for the single compartment

modeling are known unstable for multicompartment modeling

(Carnevale and Hines, 2006).

A numerically stable solver appropriated for stiff systems

and widely used is the Crank-Nicholson method. It relies on an

evaluation at half a time step using Backward Euler advanced

over the full interval with Forward Euler and is known stable and

accurate (Carnevale and Hines, 2006; Hines, 1984). The equation

applied to the membrane potential is equated in Equation 4.

Vn+1
i = 2V

n+ 1
2

i − Vn
i (4)

The second order correct and numerically stable solution of the

finite difference form of Equation 4 is expressed in Equation 5 as a

tridiagonal linear system evaluated at half a time step.

LiV
n+ 1

2
i−1 + DiV

n+ 1
2

i + UiV
n+ 1

2
i+1 = Bi (5)

where L is the lower diagonal, D is the main diagonal, U is the

upper diagonal, and B the right-hand side of the system defined
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FIGURE 1

Multicompartment neuron model. (A) Schematic of multicompartment neuron model. (B) Representation of multicompartment modeling showing

di�erent parts of the neuron modeled as connected cylinders (sections). (C) Electrical equivalent circuit of multicompartmental neuron model. The

neuron is compartmentalized in cylinder of various length and diameters representing di�erent elements of the neuron and their properties. Iinj is the

current injected. (D) Spatial discretization of a section where a cable is approximated as a series of connected cylinders named segments (or

compartments). Virtual points are added at the extremities of the section to verify the no current leak condition.

in Equation 6.

Li =
1

2πai1x

πa2i−1
Ra1x

Ui =
1

2πai1x

πa2i+1
Ra1x

Di = −

(

Li + Ui +
2Cm

1t
+ g

n+ 1
2

tot

)

Bi =
2Cm

1t
Vn
i + g

n+ 1
2

Na ENa + g
n+ 1

2

Kd
EK + g

n+ 1
2

M EK

+ g
n+ 1

2
T ECa + g

n+ 1
2

L ECa + g
n+ 1

2

Leak
ELeak

+ g
n+ 1

2
Syn Esyn + δi0

Iinj(t)

2πa1x

(6)

with gNa, gKd, gM , gT , gL, gLeak, and gSyn representing the

conductances for sodium, potassium, slow voltage-dependent

potassium, high-threshold calcium, low-threshold calcium,

leakage currents, and receptor-dependent synaptic conductance,

respectively. gtot the sum of all the conductances. ENa, EK ,

ECa, ELeak, and ESyn the reversal potentials, respectively, for

sodium ions, potassium ions, calcium ions, leakage, and receptor-

dependent synaptic currents. Iinj the current injected, and δi0 the

Kronecker delta.

The complete structure of the neuron corresponds to a

tree of unbranched cables (sections) divided in N segments

(or compartments), thus adding off-diagonal coefficients to the

tridiagonal linear system (Hines, 1984) (Figures 2A, B). Through

wise numbering of the nodes in the tree, the tridiagonal matrix

resulting is solvable thanks to Hines matrix solver.

All the segments of neurons can be connected through

fully configurable biomimetic synapses mimicking AMPA,

NMDA, GABAA, and GABAB synaptic receptors (Destexhe

et al., 1998) to allow fast and slow synaptic excitation

or inhibition.

2.2 Computation core

The architecture of the pipelined computation core using 32-bit

floating-point coding is presented in Figure 3.

The computation core employs the Crank-Nicholson solver for

its numerical stability and accuracy (Carnevale and Hines, 2006;

Beaubois et al., 2022). Instead of relying on resource-intensive

matrix inversion, a more efficient alternative is employed utilizing

strategic compartment numbering and the Hines algorithm

(Hines, 1984). Originally designed for CPU architecture, a

variant of this algorithm utilized in the GPU-oriented simulator

Arbor developed by the Human Brain Project community

(Abi Akar et al., 2019) and in Valero-Lara et al. (2018)

was implemented.

The algorithm uses a parent node vector p so the matrix can

be stored using two vectors corresponding to the main diagonal

D and upper diagonal U. Branching points are then reconstructed

due to the parent node vector. Algorithm 1 solves the matrix, and

Algorithm 2 generates the main diagonal D.

The computation of ion channel states is based

on “premultiplied” HH rate function tables as

described in Hines (1984), simplifying computation to

a single multiply and add from table values looked-

up based on the membrane voltage (Equation 7).

This method eliminates the FPGA-specific limitations

for complex mathematical functions such as division
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FIGURE 2

System of equations and solving of multicompartment model. (A) Illustration of mainly tridiagonal matrix with sparse coe�cients (Hines matrix) at

branches points generated by the multicompartmental neuron structure. (B) Illustration of the tridiagonal systems of equations corresponding to the

computation of the membrane potential in a section of a multicompartmental neuron.

and exponential.

xn+1 = r1(Vn)× xn + r2(Vn) (7)

where xn+1 and xn are, respectively, the new and current value

of the ion channel state, Vn is the membrane voltage at previous

time step, and r1 and r2 are the ion rate tables decoded from the

membrane voltage.

The premultiplied tables for common equations of ion channel

states correspond to Equations 8, 9.

r1(V) = 1− dt × (αx(V)+ βx(V))

r2(V) = dt × αx(V)
(8)

r1(V) = 1−
dt

taux(V)

r2(V) =
dt × x∞(V)

taux(V)

(9)

where r1 and r2 are the pre-computed rate tables for ion channel

states decoded from the membrane voltage, dt the time step in ms,

and taux, x∞, αx, and βx the equations of the ion channel state

depending on the formalism used.

The calculation module for synapses is adapted from BiœmuS

(Beaubois et al., 2024) to match multicompartment equations

allowing a fully configurable synaptic connection so all nodes can be

connected and independently weighted. As for BiœmuS computed

using 18-bit fixed-point coding, parameters of the synaptic models

are set through AXI-Lite and pre-computed tables are used to

encode the exponential rates of the synaptic receptors.

As the solving algorithm of the matrix includes sequential

divisions and multiplications, the stability of the solving requires

high accuracy that is better translated by floating point. Indeed,

the coefficients greatly vary with the geometrical dimensions of

the neurons that may create larger orders of magnitude that are

delicate to handle with fixed point. Hence, 32-bit floating point was

implemented to offer floating-point accuracy with limited resource

consumption compared to 64-bit floating-point coding that shows

significantly higher implementation cost in programmable logic for

a limited gain in accuracy for this application.

The parameters of the model are loaded in BRAM through

AXI-LITE registers controlled by the software application, hence

facilitating interconnect of several cores thanks to AXI (Advanced

eXtensible Interface) protocol. The AXI communications are

clocked at 100 and 200 MHz, respectively, for ZynqMP and

Versal architecture, while the rest of the design operates at 200

and 400 MHz, respectively, for ZynqMP and Versal architecture

expect for the synapses that are clocked at 400 MHz for

both architectures.

The computation core starts by loading the previous membrane

voltage to decode the rate tables for ion channel states computation

and allow computation in other modules. The computation

of the values for ion currents is output as two separate

coefficients D and B. The system solving includes two computation

blocks that perform the backward and forward sweep of the

Algorithm 1 along with context FIFOs to keep track on the

solving state.

The coefficients for each segment are then stored in one dual-

port RAM (lower addresses is D and upper addresses are B) with

one BRAM per neuron. These BRAMs act as buffer memory for

the operations of the forward and backward sweep by loading and
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FIGURE 3

Block diagram of the computation core. Ion channel states variables are calculated from premultiplied rates and used to compute ion currents as

two coe�cients D and B. Dual-port bu�er RAMs for D and B of each neuron load and store data to and from the forward and backward sweep cells.

Parameters of the model are stored in block RAMs initialized by the PS through AXI-Lite. sfixed; signed fixed-point. float32; 32-bit floating-point. HLS,

High-Level Synthesis using AMD Vitis HLS.

storing the values of segments at each iteration until the matrix is

completely solved.

Main computation modules were designed using High-Level

Synthesis (HLS) through AMD Vitis HLS facilitating optimization,

portability, and integration. Optimal HLS modules can be

generated for each target and integrated easily in the design by

adjusting the latency in the generic HDL.

A comparison with the NEURON software (Carnevale and

Hines, 2006) has been conducted in prior work of the team

(Beaubois et al., 2022) for the soma of a motor neuron including

only sodium, potassium, and leak currents modeled using five

segments of identical length, diameter, and properties. The

emulation shows a slight difference with the NEURON software

explained by the difference of solver that is CVODE for NEURON

and Crank-Nicholson for the software emulation but mostly by

the hardware architecture constraints in terms of data coding and

operations. Indeed, the hardware is operating on 32-bit floating

1: function solve(d, u, p, b, nseg)

// Backward sweep

2: for i← nseg − 1 to 0 step −1 do

3: factor← u[i]/d[i]

4: d[p[i]]← d[p[i]]− factor · u[i]

5: b[p[i]]← b[p[i]]− factor · b[i]

6: end for

// Forward sweep

7: b[0]← b[0]/d[0]

8: for i← 1 to nseg step 1 do

9: b[i]← b[i]− u[i] · b[p[i]]

10: b[i]← b[i]/d[i]

11: end for

12: return b

13: end function

Algorithm 1. Hines algorithm used in Abi Akar et al. (2019).
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1: function formatD(d, u, p, nseg)

2: for s← 0 to nseg − 1 do

3: d[s]← d[s]− u[s]

4: if p[s] 6= −1 then

5: d[p[s]]← d[p[s]]− u[s]

6: end if

7: end for

8: end function

Algorithm 2. Initialize format main diagonal.

point by a FPGA instead of 64-bit floating point on software with a

CPU for NEURON.

The selected architecture for the computation core designed

is promoting the scaling in segments rather than neurons as the

emphasized is put on the morphology of neurons better translated

by a high number of segments. For example, the allocation of one

BRAM per neuron allows for the storage of up to 576 segments

per neuron.

2.3 Platform

The system corresponds to the integration of the computation

core on SoC FPGA, specifically AMD Zynq UltraScale+ MPSoC

and AMD Versal Adaptive SoCs, that can be organized in two

parts: Programmable Logic (PL, i.e., FPGA) and processors in a

Processing System (PS) part. The implementation on the low-

cost System-on-Module (SOM) K26 (ZynqMPSoC architecture)

embedded on either AMD Kria KR260 Robotics Starter Kit

or Kria KV260 Robotics Starter Kit is capable of running up

to 16 neurons of 64 compartments each with up to 1,048,576

fully configurable continuous conductance-based synapses. It

includes on-board monitoring and offers external communication

options such as Ethernet and expansion PMODs (standard

peripheral module interface) allowing different compromises

for monitoring and interconnection. Implementation on more

performing architecture, such as AMD Versal Premium Series

(VPK120 Evaluation Kit), increases the number of compartments

to 96 segments each for an identical number of neurons using the

same computation core.

The platform, allowing for emulation and monitoring as

presented in Figure 4A, was developed using three different

languages that correspond to three distinct parts as shown in

Figure 4B.

Python language is used for the configuration scripts and

monitoring to provide user-friendly and rapid-prototyping as it

is aimed to be used by non-specialists. The C++ language is used

to develop the application responsible for setup and control in

the PS part to provide better performances and proximity with

hardware. VHDL was used to describe the hardware circuit in

the PL part that implements the computation core of the neural

network. Additionally, C++ code was used to generate the HLS

IP used in the computation core. Figure 4B illustrates the different

parts of the system and indicates their hardware or software nature

for a configuration and monitoring on an external computer. The

configuration of the network in Python can also be executed locally

due to the operating system running in PS as shown in Figure 5A.

All parameters of the HH model including the ion channels

equations and geometrical properties are configurable from

configuration scripts, enabling the emulation of various neuron

types and morphologies, such as dendritic trees. Similarly, all

parameters of the synapses are configurable via the configuration

scripts, allowing for the emulation of various network topologies

with great detail, due to fully configurable synapses that can

connect all nodes. The platform is capable of running either a

commercial Linux operating system with Canonical Ubuntu to

maximize compatibility and stability or custom Linux generated

using AMD PetaLinux toolchain which allows easier customization

such as pre-empted kernel.

The system allows for different monitoring channels illustrated

in Figure 5B. The membrane potential waveforms of up to 64

compartments can be retrieved in the user space of the operating

system from the computation core due to a DMA (Direct Memory

Access) interfaced with AXI and controlled by a kernel driver.

Then, the waveforms can be either stored locally or forwarded

through Ethernet using the open-source networking library

ZeroMQ. Another monitoring channel directly connecting to the

hardware is available via a DAC (Digital-to-Analog Converter)

outputting up to eight membrane voltages waveforms.

The hardware computation core computing the neurons as well

as DAC monitoring is running in hard real time at a period of

31.25 µs, while the software monitoring through DMA is running

in soft real time, implying fluctuating latency potentially larger

than the deadline that is, however, not inducing a failure of the

system, at a programmable period between 1 and 15 ms. Indeed,

the hard real-time operation of the computation core is ensured by

its implementation in programmable logic.

3 Results

3.1 Performances

The implementation of a single computation core was

performed on AMD Zynq UltraScale+ MPSoC architecture

(ZynqMP) on AMD Xilinx KR260 Robotic Starter Kit (KR260) and

AMD Versal Adaptive SoCs (Versal) on Versal Premium Series

VPK120 Evaluation Kit (VPK120). The computation core is capable

of emulating in real-time 16 neurons of 64 segments each on KR260

and 16 neurons of 96 segments each on VPK120. This capability

enables the exploration of parameter sets, particularly for affected

neuron models, by emulating multiple neurons simultaneously in

parallel. Through hardware generics, the computation core can

be adjusted to compromise between the number of neurons and

the number of segments. For instance, reducing the number of

neurons would permit the implementation of more segments. The

evaluation of the maximum number of segments that could be

implemented for a computation core of a unique neuron is equated

in Equation 10 (100 segments for KR260 and 150 for VPK120).

nb segmentsmax <
dt × fclk

latload context + latbackward sweep + latforward sweep

(10)
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FIGURE 4

System overview of the real-time hardware-based emulator for multicompartment Hodgkin-Huxley neurons. The nature of each part of the system

(software or hardware design) is identified by red and brown symbols. The on-board configuration and monitoring are also available but not

displayed on the figure. (A) Overview of the platform integrating hardware neurons allowing users to configure and monitor the system through

Python scripts and Qt-based GUI. The platform allows for real-time emulation of multicompartment Hodgkin-Huxley (HH) neurons with

configurable parameters. (B) The system can run on carrier boards integrating di�erent architecture of SoC featuring CPU in a processing system part

(PS) and FPGA in a programmable logic part (PL), being either Zynq MPSoC through the System-on-Module K26 (SOM) or AMD Versal Adaptive SoC.

The real-time hardware neurons are implemented in PL part and controlled through a C++ control application running in the PS part. The PS part

runs either a Canonical Ubuntu or a custom Linux (generated using PetaLinux toolchain) allowing standard interfacing and operation. Monitoring is

performed by a Qt-based GUI and setup by configuration scripts in Python ran either on-board or on another computer.

where nb segmentsmax is the maximum number of segments that

can be implemented for one neuron, dt the time step, fclk the

clock frequency, latload context the latency in clock cycles to load the

solver context, and latbackward sweep and latforward sweep the latencies

in clock cycles to compute one operation of the backward and

forward sweep.

The resource utilization reports are compared in Figures 6A,

B, respectively, showing the detailed utilization in components and

summarized as memory, DSP (Digital Signal Processing), and logic

for the main modules of the design. While the implementation on

KR260 shows an overall moderate usage of the resources, except

for the BRAM, the implementation on VPK120 shows significantly

lower utilization percentage. This difference is explained by a larger

availability of resources but also a reduced utilization of certain

components due to improved components such as native floating-

point DSP or new network of interconnect using Network-on-

Chip (NoC). The high BRAM usage is due to the large number

of parameters that need to be stored for the multicompartment

HH model, as well as the large FIFO operating in packet mode

for monitoring.

The 32-bit floating-point computation of the HH currents

shows an overall low utilization of DSP, LUT (LookUp Table),

and FF (Flip-Flop) for KR260 due to operations being mostly

multiplications that translate to an even lower utilization on

VPK120 that benefits from a more recent architecture integrating

native floating-point DSP. The Versal architecture also leverages

the use of Network-on-chip (NoC) to reduce FF and LUT used for

AXI interconnect.

Because of the use of a pipeline solver cell, the resource

utilization associated with the matrix solver is significantly lower

than the other modules. Hence, adding parallel solving cells would

allow a consistent improvement of performances for an acceptable

cost in resource utilization.

The system also benefits from a low power consumption of

5.6 W on KR260 and 9.6 W on VPK120 (Figure 6C) compared to

CPU and GPU solutions usually larger than the tens of watts. The

main power consumption corresponding to the monitoring was

associated with AXI DMA and processors.

Since real-time multicompartment Hodgkin-Huxley (MHH)

emulation is quite rare in the literature, this study is compared

to other embedded implementations of biomimetic neural

networks aimed at biohybrid interaction, as shown in Table 1,

without limiting the comparison to multicompartment models.

While prominent neuromorphic platforms typically focus on

neuromorphic computing and are usually not suited for biohybrid

interaction, low-power Loihi chips (Davies et al., 2018; Orchard

et al., 2021) and the demonstrated mobile setup of BrainScaleS-2

(Pehle et al., 2022; Stradmann et al., 2022) computing faster than

real-time show sufficient suitability with embedded applications to

be included.

This iteration on SoC FPGA shows promising results supported

by the capability of emulating up to 16 neurons of 64 segments

each parallelly in real-time per computation core where current

solutions are showing much higher computation times. As for

example, the software emulation of 1 s of a similar structure using

NEURON took an average 3.5 s for 1 neuron on an Intel i7-10875H

(without synapses).

Another benefit from the system is its versatile communication

as it shares the same system integration as BiœmuS (Beaubois

et al., 2024) that shows various communication interfaces and their

potential for biohybrid experiment setups. As for example with the

current solution, the waveform monitoring using the DAC allows
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FIGURE 5

Platform configuration, control, and monitoring. (A) Platform configuration. Configuration scripts (Python) ran either locally or on another station

generate configuration files. The configuration files are loaded by the control application (C++) running in the user space of the operating system

(Canonical Ubuntu or custom Linux) in the PS part to set up the SNN in PL part. Emulation scripts allow emulation of the configuration beforehand to

predict the behavior. (B) Platform control and monitoring. The platform can be controlled and monitored either remotely via SSH or on-board from

the desktop through the control application. The membrane potentials of neurons can be monitored concurrently using Ethernet forwarding,

on-board file saving, and visualization on scope by probing the Digital-to-Analog Converter (DAC).

monitoring up to eight membrane potentials in real-time per DAC

while the transfer to PS allows monitoring of up to 64 membrane

potentials that can be forwarded through Ethernet. Furthermore,

considering the affordable price of the KR260 board along with

the performances obtained for this entry-level FPGA, the system

benefits from a great affordability.

3.2 Application

To offer a tangible demonstration case of the system, an

application targeting a model of neurons was affected by ALS, a

rapidly progressive and devastating neurodegenerative disease that

targets principally motor neurons.

Motor neurons affected by ALS, specifically motor neurons

of SOD1 mice at embryonic state, were modeled from patch

clamp recordings (Branchereau et al., 2016, 2019; Martin et al.,

2020). The models were developed with a high level of biological

meaningfulness. The dynamics of the neurons were reproduced

accurately because of amodeling based on patch clamp recording of

each ion channels. Most notably, the models include highly detailed

modeling of the morphology of the neuron, thus enforcing the use

of a multicompartment modeling.

The models were developed using the NEURON software,

thus not adequate for real-time emulation of a network,

hence encouraging the development of this system to emulate

multicompartmental neurons.

The model used for this application is the motor neuron at

day E13 presented in Branchereau et al. (2016) that implements

133 segments (or compartments) distributed in soma, axons, and

dendrites sections. The morphology of the neuron generated from

the NEURON model is presented in Figure 7A. The currents

involved in the model are the potassium, sodium, and leakage

currents that show different conductances depending on the

section. As for instance, only the active axon and the rest of the axon

integrate sodium current. Figure 7B recapitulates the morphology

of the neuron and shows how the sections are connected.

The model was reduced to a total of 64 segments to implement

16 neurons to match the computation core capabilities while

preserving the sections and their interconnections. The simplified
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FIGURE 6

Resource utilization and power consumption. Distributed resource utilization and power consumption on AMD Xilinx KR260 Robotic Starter (KR260)

and Versal Premium Series VPK120 Evaluation Kit (VPK120) for one computation core. hh_currents: computation of the ion currents of the HH model

and parameters storage. hmatx_solver: Hines matrix solver computation paired with the context and bu�er memory. monitoring: DMAs, related

bu�er memories and CPUs. (A) Detailed resource utilization exported from Vivado 2023.2. (B) Resource utilization represented by main resource

groups exported from Vivado 2023.2. (C) Distributed power consumption exported from Vivado 2023.2.

model was compared to the original model in NEURON software

in response to a stimulation of 15 ms inserted in the soma to assess

the coherence of the simplifiedmodel as shown in Figure 7C.While

the simplified model is not capable of accurately reproducing the

spatial morphology of the neuron, its accuracy remains satisfying

in this application aiming to validate the system and showcase its

potential. Indeed, the membrane potential of the simplified model

is closed to the original at two distant points being the soma, where

the stimulation is inserted, and at the end of the axon.

The parameters of the simplified model were then translated in

the configuration scripts that allow to generate the configuration

file and emulate its behavior in software. The configuration file

generated was then ran on the KR260 board, and the membrane

potentials of the 64 segments were monitored using the local file

saving through DMA.

The membrane potentials obtained were then compared to

the software emulation as shown in Figures 8A, B. Figure 8A

presents the 64 segments of a neuron overlapped, showing that the

action potentials in all compartments highlight the correspondence

between software and hardware emulation. Figure 8B shows

the membrane potentials arranged by segment index for both

software emulation and hardware emulation, allowing visualization

of all membrane voltages and the fitting of the hardware

emulation with the reference. Hence, these results validate the

implementation of the system and demonstrate its ability to

emulate multicompartmental neurons in real time.

Another demonstration case highlights how tuning system

parameters can adapt to various neuron models and network

topologies. This case demonstrates various synaptic receptor

types by integrating a neuron model with different ion channel

equations and parameters, specifically using the Fast Spiking

(FS) neuron model from the Pospischil model (Pospischil et al.,

2008).

Fast Spiking (FS) neuron somas, with a length of 70 µm and a

diameter of 9µm, were modeled using 64 compartments, involving

the implementation of different parameters and ion channel

equations compared to those used for the previously presented

motor neuron. AMPA and NMDA receptors, which mediate fast

and slow excitations, respectively, were demonstrated by creating

synapses from a stimulated neuron to a non-stimulated neuron

to observe excitatory activity. Similarly, GABAA and GABAB

receptors, responsible for fast and slow inhibition respectively,

were demonstrated by creating synapses between stimulated

neurons to observe inhibitory activity. The configurations were

emulated in hardware using six neurons with increased synaptic

weights to quickly observe the effects of synaptic receptors

through a single synapse. This demonstration case is illustrated in

Figure 9.
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TABLE 1 Comparison with embedded systems implementing biomimetic neural network for biohybrid interaction and mobile solutions of prominent

neuromorphic platforms [Loihi neuromorphic chips (Davies et al., 2018; Orchard et al., 2021) and mobile demonstration of BrainScaleS-2 (Pehle et al.,

2022; Stradmann et al., 2022)].

Hardware Neuron
model

Synapse type # neurons # synapses

This work SoC FPGA MHH Continuous 16 1,048,576

BioemuS (Beaubois et al., 2024) SoC FPGA HH Continuous 1,024 1,048,576

Xu et al. (2018) FPGA HH Continuous ∼10,000 ∼3,200

Cheslet et al. (2024) FPGA HH Continuous 100 100

Buccelli et al. (2019) FPGA IZ Continuous 100 2,500

Keren et al. (2019) VLSI/FPGA LIAF Continuous 2,880 12,700,000

Vallejo-Mancero et al. (2024) SoC FPGA QLIF Continuous 1,280 40,960

Hwang et al. (2023) SoC FPGA LIF Event driven 60 3,600

Stradmann et al. (2022) ASIC/SoC FPGA AdEX Event driven 512 131,072

Loihi (Davies et al., 2018) ASIC LIF Event driven 128,000 128,000,000

Loihi 2 (Orchard et al., 2021) ASIC LIF, AdEX, IZ Event driven 1,000,000 120,000,000

# segments Real-time Application focus Interface

This work 64/neuron 1× Biohybrid interaction Ethernet, DAC, GPIO

BioemuS (Beaubois et al., 2024) / 1× Biohybrid interaction Ethernet, Wi-Fi, DAC, GPIO

Xu et al. (2018) / 1× Biohybrid interaction Ethernet, GPIO

Cheslet et al. (2024) / 1× Biohybrid interaction Wi-Fi, GPIO

Buccelli et al. (2019) / 1× Biohybrid interaction UART

Keren et al. (2019) / 1× Biohybrid interaction Ethernet

Vallejo-Mancero et al. (2024) / 1× Biohybrid interaction Ethernet, HDMI

Hwang et al. (2023) / 1× Biohybrid interaction GPIO

Stradmann et al. (2022) Emulable 1,000× Neuromorphic computing USB, SDXC, I2C

Loihi (Davies et al., 2018) / >1× Neuromorphic computing Proprietary asynchronous

Loihi 2 (Orchard et al., 2021) / 5,000× Neuromorphic computing SPI, GPIO, Ethernet

Bold values emphasize points of novelty for comparison presented in this work.

4 Discussion

The system could find several application for the study of

neurological disorders. As for instance, this system could serve

as a highly biomimetic stimulation source in a neuromorphic-

based open-loop setup for neuroprosthetic applications to be

exploited in post-stroke rehabilitation studies (Panuccio et al.,

2018; Semprini et al., 2018; Di Florio et al., 2023). Additionally,

the system could serve as a tool for studying the biohybrid

interactions crucial for advancing neuroprostheses, akin to

Beaubois et al. (2024). As the system shares the same design

base as Beaubois et al. (2024), additional features such as Wi-Fi

monitoring could also be added seamlessly to the system on the

same principle.

The main limitation of the current solution limiting its

potential is the number of neurons and segments. This could

be greatly improved by alleviating the current bottleneck created

by the usage of only one pipelined solver cell by implementing

multiple parallel backward and forward cells. Considering the

resource footprint of the backward and forward cells, multiple cells

could be implemented in one core, allowing for more neurons

to be computed in the same time. Additionally, for larger targets

such as Versal Adaptive SoCs, performances could be improved

because of the larger amount of resources available allowing for the

implementation of multiple cores as well as greater optimizations

in terms of computation architecture through native floating-point

DSP and higher clocking frequency.

Concerning the scaling of the system, as the computation core

is interfaced using AXI protocol, interconnection of modules is

simplified and facilitates the implementation of multiple cores.

Hence, this design enables significant scalability on larger targets

by integrating additional cores. Furthermore, because of the

various communication interfaces proposed by the SOM K26

carrier boards, such as Ethernet, the system could support

clusters of targets, each with multiple cores, allowing for a larger

number of neurons or segments. Additionally, since the hardware
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FIGURE 7

Demonstration case with a model of motor neuron. The multicompartment model of motor neuron at day E13 from Branchereau et al. (2019)

designed using NEURON software has been reduced to 64 segments to allow emulation by the system. (A) Morphology schematic of the motor

neuron at day E13. (B) Morphology of the neuron decomposed in sections of varying geometrical and electrical properties (length, diameter, ion, and

leakage currents). Sections are decomposed in fewer segments (or compartments) in the simplified modeling. (C) Comparison of the evolution of the

membrane potential in response to a 15 ms stimulation pulse inserted in the soma. Membrane potentials are recorded in the soma and at the end of

the axon.

FIGURE 8

Validating hardware implementation. Comparison of membrane potentials in software emulation through the Python scripts and hardware

implementation. Membrane potentials in implementation were recorded using the on-board file saving through DMA. (A) All 64 segments overlapped

in both emulation using the Python scripts and implementation on KR260. (B) All 64 segments sorted by segment index for both emulations using the

Python scripts and implementation on KR260. Membrane potentials retrieved from the hardware emulation are shown in black for all segments.

computation core features are adjustable from HDL generics,

accommodating different configurations to optimize either the

number of neurons or segments, to adapt to the specific needs of

real-life neuronal networks, may benefit from various topologies

either favoring the number of segments or neurons. Along with the

tuning of network topologies, the acceptable level of accuracy of

the model compared to other software emulation can be compared

with the software model running in Python to allow users to

evaluate their accuracy criteria based on their specific needs. Along

with tuning network topologies, the accuracy of the model can

be compared to other software emulations through the software

emulation in Python, allowing users to evaluate accuracy based on

their specific needs.

A promising enhancement to the computation core could

involve leveraging the Artificial Intelligence Engines (AIE)

integrated into AMDVersal AI Core and AI Edge series. This could
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FIGURE 9

Showcasing synaptic connection types and a di�erent neuron model. Slow and fast excitation and inhibition modeled using a conductance-based

synaptic receptor model with parameters from Destexhe et al. (1998) on Fast Spiking (FS) neurons with parameters from Pospischil et al. (2008). The

synaptic receptor conductances were set to gAMPAR = 0.0875 nS, gNMDAR = 0.45 nS, gGABAAR = 0.15 nS, and gGABABR = 1.5 nS. Additionally, synaptic

weights were multiplied by 128. Injected stimulation current was set to 0.3 nA.

lead to more efficient system solving or easier implementation of

alternative algorithms, capitalizing on the GPU-like architecture of

the cores. Similarly to the HLS-generated computation modules,

AIE-based computation modules could be linked with the

generic HDL.

5 Conclusion and perspectives

This study explores an alternative platform for

multicompartment HH neuron emulation utilizing an architecture

underrepresented in literature for this specific application. It

leverages SoC FPGA architecture that combines programmable

logic and processors to integrate real-time computation with FPGA

capabilities, while also providing a standardized interface through

the CPUs and operating system at low latency.

This study highlights the potential of the platform to enable

real-time emulation while enhancing accessibility, portability, and

interconnection capabilities.

Indeed, real-time emulation capability, that is a crucial

requirement for the realization of electroceutic therapies, paves the

way for this system to be used as a novel tool to drive stimulation

at a higher level of biological meaningfulness through the use of

multicompartmental model.
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