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Introduction: Wearable exoskeletons assist individuals with mobility

impairments, enhancing their gait and quality of life. This study presents

the iP3T model, designed to optimize gait phase prediction through the fusion

of multimodal time-series data.

Methods: The iP3T model integrates data from stretch sensors, inertial

measurement units (IMUs), and surface electromyography (sEMG) to capture

comprehensive biomechanical and neuromuscular signals. The model’s

architecture leverages transformer-based attention mechanisms to prioritize

crucial data points. A series of experiments were conducted on a treadmill with

five participants to validate the model’s performance.

Results: The iP3T model consistently outperformed traditional single-modality

approaches. In the post-stance phase, themodel achieved an RMSE of 1.073 and

an R2 of 0.985. The integration ofmultimodal data enhanced prediction accuracy

and reduced metabolic cost during assisted treadmill walking.

Discussion: The study highlights the critical role of each sensor type in providing

a holistic understanding of the gait cycle. The attention mechanisms within the

iP3T model contribute to its interpretability, allowing for e�ective optimization

of sensor configurations and ultimately improving mobility and quality of life for

individuals with gait impairments.

KEYWORDS

multimodal data fusion, gait phase prediction, wearable exoskeleton, transformer, IMU,

sEMG, stretch sensors

1 Introduction

With the rapid progression of global aging, the proportion of the elderly population has

significantly increased, leading to a notable decline in mobility and a rise in gait disorders

among older adults. Additionally, the number of patients with hemiplegia and other motor

disorders, caused by conditions such as stroke, spinal cord injuries, and multiple sclerosis,

is also growing annually (Hobbs and Artemiadis, 2020; Murray et al., 2014; Huang and

Krakauer, 2009). These elderly individuals and patients require long-term rehabilitation

and assistive devices to enhance their quality of life (Morawietz and Moffat, 2013). In this

context, lower limb powered exoskeletons, as an emerging rehabilitation assistive device,

have gradually demonstrated their importance (Schwartz and Meiner, 2015; Ding et al.,

2005). A lower limb powered exoskeleton is a wearable device that assists or enhances lower

limb movement through mechanical and electronic control systems (Yan et al., 2015).
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As illustrated in Figure 2, gait phase prediction is essential for

providing active assistance with lower limb exoskeletons during

walking. Human walking is typically a cyclical motion, where the

interval between successive occurrences of the same gait event

is termed a gait cycle (Ren et al., 2007). Gait events include toe

off, initial contact, and heel off. Continuous gait phase prediction

divides the cyclical motion into time steps ranging from 0 to 100%,

while discrete gait cycle prediction segments the gait cycle into

different phases based on various movement states. This work

delineates four gait phases: pre-stance (0–30%), post-stance (31–

60%), pre-swing (61–80%), and post-swing (81–100%).

In recent years, many gait phase prediction methods have

utilized one or more wearable sensors to capture kinematic

information about human walking and employed deep learning

methods to predict gait cycles. These sensors include IMUs, sEMG,

angle sensors, and force-sensitive resistors (FSRs; Su et al., 2020;

Wang et al., 2022b; Luo et al., 2019; Wu et al., 2021; Malcolm et al.,

2013; Mohr et al., 2019; Suo et al., 2010; Heo et al., 2015; Wang

et al., 2023a,b, 2022a, 2020). However, many of these models lack

interpretability and struggle with the computational complexity of

high-dimensional data. The iP3T model leverages the strengths of

multimodal data fusion and transformer architectures to address

these limitations, providing more accurate and interpretable

predictions. These approaches enable more accurate and real-

time gait phase prediction, thus effectively controlling exoskeleton

devices to provide better assistance to users. Wu et al. proposed a

model based on Graph Convolutional Networks (GCNs) for gait

phase classification, using goniometers and FSRs to control lower

limb exoskeletons (Wu et al., 2021). This model can identify four

phases of one leg gait during walking: heel strike, foot flat, heel off,

and swing, achieving a maximum gait phase classification accuracy

of 97.43%. However, as the input data dimension increases,

the computational complexity of Graph Neural Networks grows

linearly, putting pressure on edge computing devices. Wang et

al. developed a neural network algorithm based on multimodal

information fusion (a two-layer linear feedforward neural network)

for gait phase prediction, employing IMUs and FSRs (Wang et al.,

2023b). This method achieved satisfactory gait phase prediction

performance; however, the linear layer deep learning model makes

it challenging to understand how the model operates, and adding

sensors or increasing channels is difficult. Luo et al. proposed a

low-cost yet effective end-to-end gait subphase recognition system

based on sEMG (Luo et al., 2019). The system comprises a wireless

multi-channel signal acquisition device that simultaneously collects

thigh muscle sEMG and foot pressure signals, and a novel

neural network sEMG signal classifier combining Long Short-

TermMemory (LSTM) networks (Ding et al., 2018) and Multilayer

Perceptrons (MLPs). This system’s average recognition accuracy

is significantly higher than that of other classic methods (SVM;

Li et al., 2016, KNN; Kim et al., 2011, and LDA; Joshi et al.,

2013). However, traditional and LSTM structures rely on sequential

processing with fixed time steps, preventing them from directly

attending to any position within the input sequence.

Different sensors can capture various dimensions of motion

signals; for example, foot pressure signals detect footfall timing,

EMG signals contain muscle contraction information, while IMUs

and angle sensors capture joint angles, angular velocity, and

angular acceleration. The fusion of multiple sensors allows for a

comprehensive analysis of human motion (Nweke et al., 2019).

However, due to the computational power limitations of edge

devices, large datasets are challenging for deep learning models

to fit and can reduce the speed of forward computations (Chen

and Ran, 2019). Simply stacking multiple sensors and channels

does not necessarily improve the accuracy of downstream tasks like

gait phase prediction and may compromise real-time performance.

Traditional deep learning methods, such as CNNs, LSTMs, and

GRUs (Su et al., 2019; Bruinsma and Carloni, 2021), function

as black boxes, making it difficult to understand their forward

computations and optimize sensor configurations.

With the popularity of multimodal general models,

Transformers have been widely applied as backbone networks in

various tasks (Nagrani et al., 2021). The core of the Transformer

model is the self-attention mechanism, which can capture

dependencies between different parts of the input sequence.

Attention weights provide a clear understanding of which parts

of the input the model focuses on during processing. This

interpretability aids researchers and users in understanding the

model’s decision-making process, helping to optimize sensor

configurations (Vaswani et al., 2017).

In this study, we propose an interpretable Patch Time-

series Token Transformer (iP3T) model based on the patch

time series Transformer (PatchTST, Nie et al., 2022) architecture,

predicting continuous gait cycle changes from multiple sensors,

including multi-channel sEMG sensors, angle stretch sensors,

IMUs, and foot pressure signals. The model can determine the

contribution weights of different time-series sequences to gait

phase prediction, allowing for the selection of effective gait

sequences and optimization of sensor channel configurations. It

also demonstrates the attention scope of the model within specific

channels. Additionally, its performance not only surpasses several

classic time-series prediction models, including CNNs, LSTMs,

GRUs, and their combinations (Su et al., 2019; Bruinsma and

Carloni, 2021), but it can also enhance the gait phase prediction

performance of these traditional models by optimizing sensor

channels. This suggests that even with the emergence of more

powerful backbone networks in the future, the proposed iP3T

can still be utilized to further improve the accuracy of gait phase

prediction.

2 Methods

2.1 Gait data acquisition

2.1.1 Participant recruitment
As illustrated in Figure 1, to conduct gait prediction and

validate the method’s effectiveness, we recruited five non-disabled

participants for the experiment. The data of the participants are

shown in the Table 1. The study was approved by the Institutional

Review Board of the Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, in compliance with ethical standards

(Approval No. SIATIRB-231115-H0681). All participants provided

informed consent before the experiment and were informed that

they could withdraw from the study at any time.
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FIGURE 1

Data acquisition. Showing the setup with stretch, IMU, and EMG sensors on the subject. The stretch sensors and EMG channel positions are marked,

along with the IMU’s axis directions (x, y, z) for data collection.

TABLE 1 Participant data statistics.

Participant
ID

Gender Age Height
(cm)

Weight
(kg)

1 Male 28 170 51

2 Female 28 172 65

3 Male 24 173 70

4 Female 23 162 55

5 Male 31 177 81

2.1.2 Sensor settings
Two stretch sensors, as described in Xiao et al. (2023),

with a sampling frequency of 100 Hz, were worn on the knee

joints of both legs to collect angle variation information. The

multi-channel sEMG sensors, as described in Yang et al. (2023),

comprised two patches, each with a sampling frequency of 2,000

Hz. One patch, covering channels 17–48, was placed on the

tibialis anterior of the right leg, while the other patch, covering

channels 1–16 and 49–64, was placed on the right gastrocnemius.

To synchronize the input data, the multi-channel sEMG data

were downsampled to 100 Hz. Five IMUs(Witmotion, China),

each with a sampling frequency of 100 Hz, were attached to

the left thigh, right thigh, left shank, right shank, and trunk,

all oriented with the z-axis pointing in the walking direction.

Each IMU recorded angles, angular velocities, and angular

accelerations along the x, y, and z axes. In total, the stretch

sensors contributed two channels, the sEMG sensors provided

64 channels, and the IMUs added 5 × 3 × 3 channels. The

FIGURE 2

Gait phase segmentation. Four gait events are depicted: initial

contact, heel o�, toe o�, and another initial contact. The

continuous gait phase prediction ranges from 0 to 100%, illustrating

the transition through pre-stance, post-stance, pre-swing, and

post-swing phases.

distributed foot pressure data, used as the label, were averaged

across channels to form a single channel. The foot pressure time-

series data were smoothed using a moving average filter, with

local maxima marked. Linear interpolation between all marked

points was used to scale the data from 0 to 100. The gait phase

segmentation results, shown in Figure 2, use the initial contact

event of the right foot as the starting point for continuous gait

data segmentation. The data processing process can be referred to

Section 2.3.1.
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2.1.3 Data acquisition
After a warm-up session, participants walked on a treadmill

at a speed of 4.5 km/h with the following sensor deployment:

stretch sensors, multi-channel distributed sEMG sensors, IMUs,

and distributed foot pressure sensors. The time-series data were

meticulously synchronized and transmitted to a laptop via a data

acquisition board. The first three sensors provided input data for

the model, while the foot pressure data served as the label.

2.2 iP3T model architecture

As shown in Figure 3, the input to the iP3Tmodel is time-series

data from different sensors obtained through a sliding window

approach, where the total number of channels is M and the time

steps are L. The time series data is represented as T ∈ R
M×L

Ti,patch = Patch(Ti) ∈ R
(L/Pl)×Pl

Ti,proj = Ti,patchWt + bt
Ti,embed = [Ti,token;Ti,proj] ∈ R

(L/Pl+1)×d

Ti,input = Ti,embed + Pt

(1)

where for i = 1, 2, . . . ,M, Wt ∈ R
Pl×d, bt ∈ R

1×d, Ti,token is a

Learnable Token ∈ R
1×d, Pt ∈ R

(L/Pl+1)×d.
Operating independently of the channels, Ti represents a single

channel time-series sequence among the M channels. The patch

operation effectively balances the preservation of the sequential

order and local information of the time series data. Each Ti

is divided into L/Pl patches of length Pl through the Patch

operation. The parameters Wt and bt represent a learnable linear

mapping layer that projects the flattened time-series patches into

the embedding space, mapping the time-series information into d-

dimensional vectors. A learnable global token Ti,token is then used

to aggregate and summarize the time-series information from each

patch through various attention weight distributions (Devlin et al.,

2018). The positional information of the global token and each

patch within the original sequence is encoded by Pt, forming the

input sequence to the Transformer encoder (Vaswani et al., 2017).

Ti,encoded = Encodert(Ti,input)

Ttokens = [T1,encoded[0];T2,encoded[0]; . . . ;TM,encoded[0]]

Tfeature = CrossAttention(T′WQ,TtokensWK ,TtokensWV )

ŷpred = MLPpred(Tfeature)

(2)

whereWQ,WK ,WV are the projection matrices for the query, key,

and value, Ttokens ∈ R
M×d, and T′ is a Learnable Token ∈ R

1×d.
Both cross-attention and attention mechanisms utilize dot-product

attention.

Ti,encoded represents the encoded result from the Transformer

encoder. From each of the M channels, the Ti,token is extracted

to form Ttokens. A learnable global time-series token, T′, is then
used in CrossAttention to aggregate the characteristic information

from all the time-series channels. The resulting Tfeature is processed

through an MLP layer to obtain the prediction result, ŷpred, which

is a two-dimensional vector ∈ R
2.

Input: Time series data T

Output: Predicted values ŷpred

1: Patch, project, and encode the time series data

for each channel:

2: for each channel i do

3: Ti,patch ← Patch(Ti), Ti,proj ← Ti,patchWt + bt,

Ti,embed ← [Ti,token;Ti,proj], Ti,input ← Ti,embed + Pt,

Ti,encoded ← Encodert(Ti,input)

4: end for

5: Collect the encoded time series tokens:

Ttokens ← [T1,encoded[0],T2,encoded[0], . . . ,TM,encoded[0]]

6: Apply cross attention:

Tfeature ← CrossAttention(T′,Ttokens,Ttokens)

7: Make predictions:

ŷpred ← MLPpred(Tfeature)

8: return ŷpred

Algorithm 1. Interpretable P3T encoder.

This prediction is then converted back to the gait cycle using

the following formula:

θ = atan2(ŷpred[0], ŷpred[1])

if θ < 0, then θ = θ + 2π

gait phase = θ ·100
2π

(3)

In the Encodert , self-attention is utilized to capture

dependencies within the input sequence. Multi-head attention

combines multiple attention heads to enhance the model’s capacity

to focus on different parts of the input. The self-attention output

is then added to the input and normalized. Following this, a feed-

forward network is applied to the normalized self-attention output,

and the result is again added and normalized. This sequence of

operations constitutes a single layer of the Transformer encoder,

which is repeated for N layers:

Attention(Q′,K ′,V ′) = softmax

(

Q′K′T√
dk

)

V ′

headj = Attention(QWQj ,KWKj ,VWVj )

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headh)WO

Ti,attention = LayerNorm(Ti,input +MultiHead(Q,K,V))

FFN(x) = GeLU(xW1 + b1)W2 + b2
Ti,encoded = LayerNorm(Ti,attention + FFN(Ti,attention))

(4)

where Q = Ti,input,K = Ti,input,V = Ti,input in the Attention,

WQj ,WKj ,WVj are the projection matrices for each head, for j =
1, . . . , h, dk = d.WO is the output projection matrix. The Gaussian

Error Linear Unit (GELU) is an activation function that utilizes

a Gaussian distribution for activation, effectively handling non-

linear and complex features. Layer Normalization (LayerNorm) is

a normalization technique that standardizes each layer’s neurons to

have zero mean and unit variance, thereby enhancing the training

stability and convergence speed of the model.
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FIGURE 3

iP3T model architecture. The iP3T model processes M channels of time-series data, denoted as T, with each channel Ti independently divided into

patches. Each patch is linearly projected into the embedding space using parameters Wt and bt. The patches, along with a learnable global token

Ti, token, are encoded with positional information Pt and fed into the Transformer encoder. The attention mechanism in the encoder assigns

importance to di�erent segments of the time-series data, with cross-attention refining the predictions. The model outputs predictions ypred through

a Multi-Layer Perceptron (MLP). The symbols at the bottom left mark the key components in the model.

2.3 Experiment settings

2.3.1 Gait data processing
The collected multi-modal time-series data from Section 2.1

underwent channel selection. The foot pressure sensor averaged the

distributed data into a single channel to serve as the label for gait

phase segmentation. For the IMU data, we selected 16 channels:

the x-axis angle, angular velocity, and angular acceleration for

both the left and right thighs; the x-axis angle, angular velocity,

and angular acceleration, as well as the z-axis acceleration, for the

left and right shanks; and the x-axis angle, angular velocity, and

angular acceleration for the trunk. These channels were labeled

as follows: L_T_agl_x (left thigh x-axis angle), L_T_gyro_x (left

thigh x-axis angular velocity), L_T_acc_x (left thigh x-axis angular

acceleration), R_T_agl_x (right thigh x-axis angle), R_T_gyro_x

(right thigh x-axis angular velocity), R_T_acc_x (right thigh x-

axis angular acceleration), L_S_agl_x (left shank x-axis angle),

L_S_gyro_x (left shank x-axis angular velocity), L_S_acc_x (left

shank x-axis angular acceleration), L_S_acc_z (left shank z-axis

acceleration), R_S_gyro_x (right shank x-axis angular velocity),

R_S_acc_x (right shank x-axis angular acceleration), R_S_acc_z

(right shank z-axis acceleration), Tk_agl_x (trunk x-axis angle),

Tk_gyro_x (trunk x-axis angular velocity), and Tk_acc_x (trunk

x-axis angular acceleration).

For the stretch sensors, we collected signals from the left and

right legs, labeled as L_leg_str (left leg stretch) and R_leg_str (right

leg stretch), comprising two channels.

For the sEMG, we selected 16 channels from the 64

available channels, with every fourth channel being chosen:

EMG_1, EMG_5, EMG_9, EMG_13, EMG_17, EMG_21, EMG_25,

EMG_29, EMG_33, EMG_37, EMG_41, EMG_45, EMG_49,

EMG_53, EMG_57, and EMG_61. Channels 17, 21, 25, 29, 33, 37,

41, and 45 captured signals from the tibialis anterior muscle, while

the others captured signals from the gastrocnemius muscle.

The foot pressure sensor averaged the distributed data into a

single channel to serve as the label for gait phase segmentation.

To enable the model to perceive contextual information over a

longer time span, we applied a sliding window of sizeM× 100 time

steps, with M being the total number of channels and a stride of

one time step, across the input data sources (IMU, Stretch, sEMG).

This enriched our dataset, resulting in each sample having a size of

M × 100.

The value range of the gait phase, obtained from local maxima

points in the foot pressure data through linear interpolation, was

0–100, which was then converted to label values using the formula

(Kang et al., 2019):

ylabel[0] = sin(gait phase× 2π/100)

ylabel[1] = cos(gait phase× 2π/100)
(5)

This conversion prevented the model from yielding inaccurate

predictions near boundary values, as the kinematic information at

0 and 100% is nearly identical.

2.3.2 Training and evaluation performance metric
After processing with the sliding window, our dataset

comprised 16,000 samples, which were split into training and

testing sets at a 7:3 ratio. After training the iP3Tmodel on the IMU,

Stretch, and sEMG data sources, we analyzed the cross-attention

weights of T′.

Weights = Softmax

(

QKT√
dk

)

(6)
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where Q = T′WQ and K = TtokensWK

Based on these weights, we selected the top 8 prioritized time-

series channels from EMG and IMU to form a 16-channel multi-

modal data source (IMU+EMG). Similarly, we selected the top

14 channels from EMG and IMU and added 2 channels from

the stretch sensors to form the 16-channel multi-modal data

sources (Stretch+EMG, IMU+Stretch). Finally, we selected the top

7 channels from IMU and EMG and added 2 channels from the

stretch sensors to form the 16-channel multi-modal data source

(IMU+Stretch+EMG).

We then trained the iP3T model on these new data sources and

validated the performance improvements in gait phase prediction.

Additionally, we used classical time-series prediction methods,

including CNN, LSTM, GRU, CNN+LSTM, and CNN+GRU,

as baselines (Su et al., 2019; Bruinsma and Carloni, 2021).

These models were trained on the multi-modal data sources

(IMU+Stretch+EMG) and compared against the proposed iP3T

model for performance metrics.

Training was conducted on a server with the following

specifications: CPU: 12th Gen Intel(R) Core(TM) i7-12700, GPU:

NVIDIA GeForce RTX 3080Ti, RAM: 32GB. The software

environment included Python 3.8, Pytorch version 1.11.0+cu115,

CUDA Version 11.5, and cuDNN version 8302. The Adaptive

Moment Estimation (Adam) optimizer was used, with a batch size

of 32 and a learning rate of 4e-6. Training ran for 200 epochs, with

RMSE and R2 metrics used to evaluate model performance. The

mean square loss (MSE loss) was employed as the loss function.

The formulas for RMSE, R2, andMSE Loss are given as follows:

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2 (7)

R2 = 1−
∑n

i=1(yi−ŷi)2
∑n

i=1(yi−ȳ)2
(8)

MSE Loss = 1
n

∑n
i=1(ypredi − ylabeli )

2 (9)

In the iP3T model, the patch size(Pl) was set to 10 with no

overlap between patches. The vector dimension d was set to 768,

with 12 attention heads and 6 layers. The FNN usedW1 to expand

the d-dimensional vector to 4d and W2 to reduce it back to d. For

the CNN baseline, we aligned the input channel with our dataset

while maintaining the dual-channel convolutional neural network

architecture as implemented by Su et al. (2019). The LSTM,

GRU, CNN+LSTM, and CNN+GRU models were implemented

according to the configurations in Julia’s paper (Bruinsma and

Carloni, 2021), with the hidden layer dimensions for LSTM and

GRU set to 128, each having four RNN blocks. The CNN+LSTM

and CNN+GRU models consisted of three CNN blocks connected

to three LSTM or GRU blocks, with input dimensions adjusted

accordingly.

2.4 Exoskeleton platform setting

Finally, we validated the enhanced performance of the iP3T

model’s gait phase predictions achieved through multimodal

data fusion by comparing the exoskeleton assistance on the

treadmill with that based on single-modality stretch predictions.

The COSMED K5, a wearable metabolic system, was used

for this validation. As shown in Figure 4, after equipping the

recruited subjects with Stretch, IMU, and EMG sensors, metabolic

consumption experiments were conducted on a treadmill at speeds

of 3.2, 4.3, and 5.4 km/h. Data were transmitted to a computer

in real-time via a data acquisition board. We employed a FIFO

queue to implement a sliding window, enabling real-time collection

of multimodal linear time-series data, which were then fed into

the iP3T model deployed on the computer. Our platform’s flexible

exoskeleton for the assistive treadmill, consisting of four motors

and four Bowden cables attached at the knee joints, provided hip

assistance. On the assistive treadmill, predictions were made using

the iP3T model trained on Stretch and IMU+Stretch+EMG data,

yielding continuous gait cycles. The assistance was based on force

mapping functions (The hip assistance curves used in this study

are derived from Bryan’s work, Bryan et al., 2021), where positive

values represent clockwise pulling to assist hip extension (force-he)

and negative values represent counterclockwise pulling to assist hip

flexion (force-hf). These force mapping functions drove the motors

to pull the Bowden cables accordingly, providing the necessary

support based on the predicted gait cycles.

3 Results and discussion

3.1 Predictions from di�erent data sources
in the iP3T model

Figures 5, 6 demonstrate the performance of the iP3T

model across seven different data sources: Stretch, sEMG,

IMU, IMU+Stretch, Stretch+sEMG, IMU+sEMG, and

IMU+Stretch+sEMG. In Figure 5, the bar charts represent

the mean values, with error bars indicating the 95% confidence

intervals. In Figure 6, the blue solid line represents the mean

predicted values, while the shaded area indicates the standard

deviation. This visual representation clearly illustrates that

multimodal time-series data fusion enhances gait phase prediction

performance. However, we observe boundary effects at the

edges (0 and 100) across all data sources, where the prediction

accuracy deteriorates. This occurs because, to improve the model’s

generalization, we mapped the gait phase to Cartesian coordinates.

Directly using Cartesian coordinates with MSE loss could lead

to larger losses near the boundaries (0 and 100), but mapping to

Cartesian coordinates minimizes this issue. Consequently, when

mapped back, the prediction variance near the boundaries may be

larger.

For the Stretch sensor data, the consistency between predicted

and actual values is relatively good, although there is notable

variability, especially at the start of the gait cycle (0–20%). These

regions exhibit higher standard deviations and greater fluctuations,

indicating lower reliability in these phases. However, there is no

significant boundary effect in the late swing phase. Similarly, the

sEMG data shows reasonable consistency with the actual values

but displays greater variability in the mid-gait cycle, making it

the data source with the highest standard deviation among the

three single data sources. In contrast, the IMU data predictions

closely match the actual values with minimal deviation throughout
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FIGURE 4

The experimental setup for validating the iP3T model is depicted. Input data from IMU, Stretch, and sEMG sensors are collected and transmitted to a

computer via a data acquisition board. A FIFO queue captures real-time multimodal linear time-series data using a sliding window. The iP3T model

predicts the gait phase, informing assistive force curves (force-he and force-hf) that drive motors attached to Bowden cables, providing hip

assistance. The setup includes a K5 face mask for metabolic measurement, showcasing the integration of sensors and the assistive treadmill to

enhance gait assistance.

A

B

FIGURE 5

Overall R2 and RMSE performance of iP3T on di�erent data sources.

the gait cycle. The IMU data has the smallest standard deviation

compared to other single sensor data sources, indicating more

reliable predictions.

Combining data sources improves performance. For instance,

the IMU+Stretch sensor combination slightly enhances prediction

accuracy and reduces variability compared to using the Stretch
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FIGURE 6

Predicted results visualization displays the iP3T model’s gait phase prediction results using various data sources: Stretch, EMG, IMU, IMU+Stretch,

Stretch+EMG, IMU+EMG, and IMU+Stretch+EMG. Blue solid lines represent the mean predictions, while shaded areas indicate the standard

deviation. The orange dashed reference line marks the ideal prediction range (0–100).

sensor alone, as evidenced by the reduced standard deviation.

Similarly, the Stretch+sEMG combination shows significant

improvements over using sEMG alone, reducing both prediction

error and variability. The combined use of IMU and sEMG yields

predictions nearly as accurate as using IMU alone but with notable

error reduction, as indicated by the lower standard deviation,

suggesting more robust model performance. The best performance

is achieved with the combination of IMU, Stretch, and sEMG data

(IMU+Stretch+sEMG). This combination produces predictions

very close to the actual values throughout the gait cycle and has

the smallest standard deviation among all data sources, indicating

highly reliable predictions.

From the Table 2, it is evident that the iP3T model’s

performance varies significantly across different data sources.

Single data sources have limitations; for instance, Stretch and sEMG

data perform poorly in the Pre-Stance and Post-Swing phases,

with high RMSE values and even negative R2 values, indicating

large prediction errors and low correlation with actual data. In

contrast, the IMU data source performs relatively well across all

phases, especially in the Post-Stance and Pre-Swing phases, with

significantly lower RMSE values and R2 values close to 1. This

suggests that IMU sensors have a strong advantage in capturing the

kinematic information of the gait cycle, likely due to their ability to

provide detailed angle, angular velocity, and angular acceleration

data, comprehensively reflecting joint and limb movements.

The advantage of multimodal data fusion lies in its ability to

capture dynamic information from different dimensions of the

gait cycle. For example, the angle change information provided

by Stretch sensors can complement the motion data from IMU

sensors, while the muscle activity signals captured by sEMG

sensors provide additional information about motor control. This

complementary information enhances the model’s robustness and

accuracy in handling complex gait cycle variations.

Combining IMU data with other sensor data sources,

such as IMU+Stretch, IMU+sEMG, and IMU+Stretch+sEMG,

significantly improves prediction performance. Notably, the

IMU+Stretch+sEMG combination shows the lowest RMSE and

highest R2 values across all gait phases, indicating that this

multimodal data fusion strategy effectively leverages the strengths

of each sensor and compensates for the limitations of single sensors,

providing more accurate and reliable gait predictions. This suggests

that multimodal data fusion strategies have important applications

in gait phase prediction, offering more precise active assistance

control for exoskeleton devices and enhancing the walking ability

and quality of life for patients and the elderly. From these analyzes,

we can conclude that the fusion of multimodal sensor data is

crucial for improving gait phase prediction performance. This

not only enhances prediction accuracy but also provides more

reliable control signals for practical applications in exoskeleton

devices, thereby more effectively assisting patients and the elderly

in walking.

3.2 Time-series channel weights for the
iP3T

Figure 7 illustrates the weight distribution for each channel

within the cross-attention mechanism of the iP3T model across

various data sources: EMG, IMU, IMU+Stretch, Stretch+EMG,
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TABLE 2 iP3T model metric performance.

Gait phase Pre-stance Post-stance Pre-swing Post-swing

Data source RMSE R2 RMSE R2 RMSE R2 RMSE R2

Stretch 26.148 -8.103 2.823 0.899 2.116 0.86 4.114 0.401

EMG 17.617 -3.132 3.824 0.815 3.364 0.647 23.121 -17.931

IMU 11.06 -0.629 1.261 0.98 1.269 0.95 12.83 -4.829

IMU+Stretch 23.403 -6.292 2.504 0.921 2.251 0.842 6.013 -0.281

Stretch+EMG 16.188 -2.489 2.601 0.914 2.286 0.837 5.924 -0.243

IMU+EMG 6.521 0.434 1.272 0.98 1.57 0.923 9.964 -2.516

IMU+Stretch+EMG 4.612 0.717 1.073 0.985 1.108 0.962 5.848 -0.211

The bolded values represent the highest-performing metrics in the tables.

FIGURE 7

Channel weights visualization illustrates the weight distributions for various data sources (EMG, IMU, IMU+Stretch, Stretch+EMG, IMU+EMG, and

IMU+Stretch+EMG) within the iP3T model. Bar lengths denote the weight magnitude, while colors distinguish di�erent channels.
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IMU+EMG, and IMU+Stretch+EMG. These weights are crucial as

they indicate the relative importance of each channel in predicting

gait phases. Analyzing these distributions reveals the contribution

of different sensor modalities to model performance.

In the pure EMG data source, channels such as EMG_53,

EMG_57, and EMG_61, corresponding to the gastrocnemius

muscle, hold higher weights, highlighting their significant

contribution to the prediction. The gastrocnemius muscle plays

a crucial role in the gait cycle, especially during the stance and

push-off phases, as the calf muscles need to contract strongly to

propel the body forward. Electrodes on the tibialis anterior muscle,

such as EMG_37, EMG_41, and EMG_45, also show relatively high

weights, emphasizing their role in capturing muscle activity during

the swing phase, which is essential for foot lift-off and forward

swing.

In the pure IMU data source, the highest weights are attributed

to the left shank’s angle sensor (L_S_agl_x) and gyroscope sensor

(L_S_gyro_x). This indicates the critical role of the left shank

in gait phase prediction. Although the right leg’s gait phase is

being predicted, the left leg’s data provides significant reference

value. The gait cycle is a coordinated bilateral process, where the

movement of one leg directly affects the other. Thus, analyzing

the left shank’s angle and angular velocity can provide crucial

information about the entire gait cycle, aiding in predicting the

right leg’s gait phase. The lower weights for the trunk suggest its

relatively stable motion during the gait cycle, contributing less

directly to gait phase changes. The lower weights for the right leg

may be due to themodel effectively capturing sufficient information

from the left leg to predict the right leg’s gait phase, indicating a high

degree of correlation between the movements of both legs.

In the IMU+Stretch data source, the left shank’s sensors

again show the highest weights, specifically the angle sensor

(L_S_agl_x) and gyroscope sensor (L_S_gyro_x), reaffirming the

left shank’s crucial role. This may be attributed to the left

shank sensors being positioned below the knee, allowing precise

capture of angle and angular velocity changes during walking.

These data provide detailed kinematic information essential for

accurate gait phase prediction. The stretch sensors, despite having

moderate weights, still play an important role. Positioned at the

knee joint, they capture extension and flexion changes during

walking, providing critical data that complement the IMU’s

angle and angular velocity readings. Stretch sensors offer a

direct reflection of knee joint movements, aiding in refined gait

phase prediction.

In the Stretch+EMG and IMU+EMG data sources, the majority

of the weight is held by the Stretch and IMU sensors, reflecting

their critical role in gait phase prediction. The relatively lower

weights for EMG sensors may be due to their primary focus on

muscle electrical activity, which, while closely related to movement

control, may not be as directly impactful for specific gait phase

prediction as kinematic data from angle and velocity sensors.

The high-frequency sampling of EMG provides detailed muscle

activity information, but its effectiveness in gait prediction might

not be as straightforward as motion sensor data. Additionally,

EMG signals are susceptible to noise, such as sweating during

exercise, potentially affecting signal stability and resulting in lower

model weights.

For the IMU+Stretch+EMG data source, despite the lower

weights for EMG sensors, the combined use of IMU, Stretch, and

EMG sensors outperforms the IMU+Stretch sensor combination,

as indicated in Table 2. This highlights that integrating data from

various sensors enables themodel to capture subtle variations in the

gait cycle more comprehensively, enhancing prediction accuracy

and robustness. While EMG sensors have lower weights, they still

provide valuable supplementary information during specific gait

phases.

The analysis of cross-attention weights across different data

sources in the iP3T model emphasizes the importance of

multimodal data fusion. Each sensor type whether capturing

muscle activity, joint angles, or limb dynamics adds a unique layer

of information crucial for comprehensive gait phase prediction.

The balanced weight distribution in multimodal configurations,

such as IMU+Stretch+EMG, underscores the complementary

nature of these data sources. EMG sensors offer detailed muscle

activity data essential for understanding neuromuscular control of

movement. IMU sensors capture precise kinematic data, crucial

for tracking the mechanical aspects of limb and body movements.

Stretch sensors measure joint angles, providing critical insights

into joint kinematics and overall movement patterns. The higher

accuracy and lower variance in predictions from multimodal

data sources indicate that the iP3T model effectively utilizes the

complementary information provided by each sensor type.

3.3 Attention scope for the iP3T

As shown in Figure 8, the attention scope visualization of the

iP3T model using IMU, Stretch, and EMG data sources reveals

crucial insights into how the model prioritizes different segments

of time-series data during gait phase prediction. The attention

mechanism assigns varying importance to different parts of the

input sequence, with brighter areas on the heatmap indicating

higher attention weights.

A key observation is the bright spots on the right side of

the heatmap. These areas highlight the model’s focus on the

most recent data points when predicting the current gait phase,

which intuitively makes sense as these points are likely to be

most directly correlated with the current state of the gait cycle.

The high attention weights here suggest that the model relies

heavily on the latest sensor readings for accurate predictions,

which is critical for real-time applications such as gait phase

prediction in wearable exoskeletons. Additionally, bright spots at

certain peaks earlier in the sequence indicate that the model also

considers specific historical data points that may represent critical

events or transitions within the gait cycle. These peaks likely

correspond to key phases such as heel strike, toe-off, or mid-stance,

where significant biomechanical changes occur. By assigning higher

attention weights to these points, the model effectively integrates

temporal context, understanding how past movements influence

the current gait phase.

Moreover, the use of multimodal data sources like IMU, Stretch,

and EMG enhances the model’s ability to capture a comprehensive

picture of the gait cycle. Each sensor type contributes unique

information IMUs provide detailed kinematic data, stretch sensors
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FIGURE 8

Attention scope visualization shows the attention scope of the iP3T model using IMU+Stretch+EMG data, highlighting the average attention values

from the last six heads of the final three layers for a specific sample. The color gradient from purple to yellow represents increasing attention weights,

indicating the importance of data points in predicting the current gait phase.

offer insights into joint angles and movements, and EMG sensors

capture muscle activation patterns. The attention mechanism

leverages these complementary data streams, assigning higher

weights where each sensor type offers critical information. The

iP3T model effectively uses both recent and historical data points,

focusing on key events within the gait cycle to make accurate

predictions. This multimodal approach enhances the model’s

capability to integrate diverse and complementary information

from different sensor types, achieving high accuracy and robustness

in gait phase prediction, which ultimately benefits applications in

wearable exoskeletons and other assistive technologies.

3.4 Comparison of various models with
iP3T using di�erent data sources

Table 3 lists the performance metrics (RMSE and R2)

of different models in predicting gait phases using the

IMU+Stretch+EMG data source, comparing CNN, GRU, LSTM,

CNN+GRU, and CNN+LSTM with the iP3T model across four gait

phases: pre-stance, post-stance, pre-swing, and post-swing.

In the pre-stance phase, the iP3T model had an RMSE of 4.612,

significantly lower than the next best model, CNN+GRU, which

had an RMSE of 9.439. The iP3T model also showed a positive

R2 value (0.717), indicating better fit, while all other models had

negative R2 values, indicating poorer performance. In the post-

stance phase, the iP3T model had an RMSE of 1.073 and an R2 of

0.985, outperforming all other models. The next best RMSE was

1.786 from the CNN+LSTM model, but its R2 was still lower than

that of the iP3T. In the pre-swing phase, the iP3Tmodelmaintained

excellent performance with an RMSE of 1.108 and an R2 of 0.962.

The second-best model, CNN+LSTM, had an RMSE of 2.289 and

an R2 of 0.837, indicating the robustness and accuracy of iP3T

in this phase as well. In the post-swing phase, the iP3T model

continued to lead with an RMSE of 5.848, while all other models

had significantly higher RMSE values, such as 21.046 for LSTM

and 18.715 for CNN. The iP3T model’s R2 value was -0.211, which,

although negative, was still better than the substantially negative R2

values of the other models.

The iP3T model consistently showed lower RMSE and

higher (or less negative) R2 values across all gait phases,

highlighting its superior performance in predicting gait phases

using the IMU+Stretch+EMG data source. This performance can

be attributed to iP3T’s attention mechanism, which prioritizes the

most relevant segments of the time-series data. As visualized, the

model focuses mainly on the most recent data points, crucial

for real-time gait phase prediction. Additionally, the attention

mechanism identifies and emphasizes key historical data points
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TABLE 3 Metrics performance of di�erent models on IMU+Stretch+EMG.

Gait phase Pre-stance Post-stance Pre-swing Post-swing

Model RMSE R2 RMSE R2 RMSE R2 RMSE R2

CNN 14.786 -1.911 3.194 0.871 2.577 0.793 18.715 -11.404

GRU 15.122 -2.044 2.872 0.896 3.823 0.544 20.382 -13.712

LSTM 14.936 -1.97 2.341 0.931 2.535 0.8 21.046 -14.686

CNN+GRU 9.439 -0.186 2.538 0.918 3.235 0.673 26.391 -23.664

CNN+LSTM 10.304 -0.414 1.786 0.96 2.289 0.837 14.107 -6.047

iP3T 4.612 0.717 1.073 0.985 1.108 0.962 5.848 -0.211

The bolded values represent the highest-performing metrics in the tables.

FIGURE 9

Metabolic cost at di�erent speeds for the Stretch and

IMU+Stretch+EMG conditions is shown. Light blue bars represent

the IMU+Stretch+EMG condition, while dark blue bars represent the

stretch condition. Metabolic costs were measured at speeds of 3.2,

4.3, and 5.4 km/h. P-value significance levels are denoted as

follows: ****p < 1e− 4, ***p < 1e− 3, **p < 1e− 2, *p < 0.05, and ns,

not significant.

representing critical gait events. In summary, compared to other

traditional time-series models, the advanced architecture of the

iP3T model and its effective utilization of multi-modal sensor

data significantly enhance gait phase prediction performance.

This makes iP3T highly suitable for applications in wearable

exoskeletons and other assistive technologies, providing more

accurate and reliable gait phase prediction.

3.5 The exoskeleton K5 metabolic cost
measurement

As shown in Figure 9, the left bar chart represents the K5

oxygen consumption results from the iP3T model trained on

IMU+Stretch+EMGdata, while the right bar chart shows the results

from the model trained on Stretch data. The mean values indicate

that the gait cycle assistance guided by the iP3T model trained on

IMU+Stretch+EMG data is significantly lower than that guided by

the model trained on Stretch data. By providing external support

or reducing leg burden, the assistance system can lower metabolic

cost, as evidenced by reduced oxygen consumption.

In our study, participants showed no significant statistical

differences. Compared to the single-modal Stretch data, the iP3T

model trained on multimodal data significantly reduced metabolic

cost: at 3.2 km/h, the cost decreased by 5.2% (p < 0.05); at 4.3 km/h,

it decreased by 9.8% (p < 1e − 4); and at 5.4 km/h, it decreased

by 6.1% (p < 1e − 3). The assistance system alleviates the burden

on lower limb muscles, reduces muscle fatigue, and stabilizes the

gait cycle. The positive impact of the assistance system on the gait

cycle is evident, and the iP3T model effectively predicts gait cycle

changes on the assisted treadmill. These findings provide significant

insights for further optimizing the design of assistance systems and

the application of the iP3T model.

4 Conclusion

In this study, we focused on developing and applying the iP3T

model, emphasizing its interpretability, multimodal time-series

data fusion, and exceptional performance in predicting gait phases.

The iP3T model represents a significant advancement in wearable

exoskeleton technology, specifically designed to assist and enhance

gait for individuals with mobility impairments. By integrating

data from multiple sensor modalities, including stretch sensors,

IMUs, and sEMG, the iP3T model captures a comprehensive range

of biomechanical and neuromuscular signals, providing a more

detailed and accurate prediction of gait phases. Leveraging the

strengths of each sensor type, the iP3T model achieves a level of

precision and reliability that surpasses traditional single-modality

approaches.

A key feature of the iP3Tmodel is its interpretability, facilitated

by attention mechanisms that assign varying levels of importance

to different segments of the input time-series data. This capability

allows us to understand which data points are most influential

in the model’s predictions. Visualizations of the attention weights

reveal that the model prioritizes recent data points, which are most

directly relevant to the current gait phase, while also considering

critical historical data points that signify key gait events. This

not only enhances the model’s accuracy but also provides insights

into the underlying biomechanical processes of gait, enabling more

targeted and effective interventions.

Our experiments demonstrate the iP3T model’s superior

performance across various gait phases compared to traditional
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time-series models such as CNN, GRU, LSTM, and their

combinations. The iP3T model consistently shows lower RMSE

and higher R2 values, indicating better fit and prediction accuracy.

These results highlight the model’s robustness and its ability to

effectively utilize the complementary information provided by the

multimodal sensor data.

In practical applications, the iP3T model was tested on an

assistive treadmill setup equipped with a flexible exoskeleton. The

results showed that using the iP3T model for predicting gait phases

significantly improved the effectiveness of the assistive system,

reducing metabolic cost and enhancing stability. This demonstrates

the potential of the iP3T model to provide real-time, accurate

assistance, thereby improving mobility and quality of life for

individuals with gait impairments.

The study also highlighted the critical role of each sensor

type in the multimodal setup. For instance, the IMU sensors

provided detailed kinematic data, the stretch sensors captured joint

angle changes, and the sEMG sensors recorded muscle activation

patterns. The fusion of these diverse data streams allowed the iP3T

model to form a holistic understanding of the gait cycle, which is

crucial for precise and adaptive assistance.
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