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Zoltán Bálint1*
1Department of Biomedical Physics, Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca,
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Introduction: Magnetic resonance imaging (MRI) is conventionally used for

the detection and diagnosis of multiple sclerosis (MS), often complemented

by lumbar puncture—a highly invasive method—to validate the diagnosis.

Additionally, MRI is periodically repeated to monitor disease progression and

treatment efficacy. Recent research has focused on the application of artificial

intelligence (AI) and radiomics in medical image processing, diagnosis, and

treatment planning.

Methods: A review of the current literature was conducted, analyzing the use of

AI models and texture analysis for MS lesion segmentation and classification. The

study emphasizes common models, including U-Net, Support Vector Machine,

Random Forest, and K-Nearest Neighbors, alongside their evaluation metrics.

Results: The analysis revealed a fragmented research landscape, with significant

variation in model architectures and performance. Evaluation metrics such

as Accuracy, Dice score, and Sensitivity are commonly employed, with some

models demonstrating robustness across multi-center datasets. However, most

studies lack validation in clinical scenarios.

Discussion: The absence of consensus on the optimal model for MS lesion

segmentation highlights the need for standardized methodologies and clinical

validation. Future research should prioritize clinical trials to establish the real-

world applicability of AI-driven decision support tools. This review provides a

comprehensive overview of contemporary advancements in AI and radiomics

for analyzing and monitoring emerging MS lesions in MRI.

KEYWORDS

multiple sclerosis, MRI, artificial intelligence, computer assisted diagnosis, U-Net,
radiomics, textural analysis

1 Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system
(CNS) that is manifested by the presence of demyelinated areas in the CNS (Kuhlmann
et al., 2017). This disease affects approximately 2.8 million people globally, with a higher
incidence in women aged 20–50 years (Wijeratne and Carroll, 2021). According to 2017
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McDonald criteria (Thompson et al., 2018), diagnosis of
MS combines clinical, imaging, and laboratory evidence.
Neurological examination is combined with imaging [magnetic
resonance imaging (MRI) or optical coherence tomography] and
neurophysiological testing (visual evoked potentials). In patients
who have clinical symptoms and lesions on MRI, cerebrospinal
fluid is collected through lumbar puncture. The presence of
oligoclonal bands in cerebrospinal fluid confirms the diagnosis of
MS (Thompson et al., 2018).

Magnetic resonance imaging techniques such as double
inversion recovery, phase-sensitive inversion recovery, and
magnetization-prepared rapid acquisition with gradient echo
sequences are used to highlight MS lesions of cerebral cortex.
These regions are areas of hyperintense white matter present in
MRI images acquired by the T1, T2, or fluid attenuated inversion
recovery (FLAIR) method (Hitziger et al., 2022). On Figure 1A,
there is an example MRI T1 image with two lesions which appear
as hyperintense areas of white matter (Sarica and Seker, 2022).
An area of hyperintensity which has at least 3 mm in long axis is
considered a lesion (Thompson et al., 2018). The monitoring of the
evolution of the disease, but also the efficiency of the treatment is
analyzed by the appearance or absence of new lesions on the yearly
follow-up MRI images (Martínez-Heras et al., 2023).

Manual identification and delimitation of demyelinated areas
on MRI images (Figure 1B) has some drawbacks, being time-
consuming and requiring qualified personnel. Whereas its results
depend on the experience of the expert interpreting MRI images.
In addition to the subjectivity of the human factor, differences may
occur due to MRI images acquired at different resolutions or with
various qualities. To reduce these shortcomings, several automatic
solutions for diagnosing and monitoring MS have been proposed
(Shoeibi et al., 2021). Results comparable to expert annotation were
obtained by using neural networks in deep learning algorithms
combined with textural analysis (Commowick et al., 2021a).

Textural analysis is a known and promising technique in
medical image processing with notable results in detecting sclerotic
lesions (Elahi et al., 2020; Boca et al., 2023). Usually, attempts
are made to detect lesions through those characteristics that are
image invariant to variations in intensity, lighting, geometric
transformations, or noise. For this the interrelationships of pixel
intensities and pixel distribution are quantified, thus, obtaining
numerous features. These features can be divided into the
following categories: first-order features (gray-level histogram
analysis), second-order features (gray-level dependence matrices),
spectral features, and fractal features (wavelet transform and
Fourier transform). The pixels identified with random texture are
categorized as noise (Friconnet, 2021). To improve the signal-to-
noise ratio and to reduce noise, preprocessing operations consisting
of mathematical filtering are applied to the MRI images. As
an example, Gaussian bandpass filters are used to remove the
background noise (Kumar et al., 2023).

Due to the appearance of automatic methods for detecting
lesions in medical images (Lambin et al., 2012), it was necessary to
develop a methodology to analyze and evaluate the reproducibility
and quality of results by automatic detection methods. Radiomics
has been gradually applied to the analysis of pathological damage,
diagnosis, differential diagnosis, and prognosis of MS. Machine
learning (ML) models that use radiomics features are developed
to detect MS lesions (Peng et al., 2021). The methods of radiomics

consists of converting medical images into mineable data via the
extraction of various quantitative imaging features (Lu et al., 2019).

The purpose of this article is to provide a review that presents
the current state of use of artificial intelligence (AI) and ML in
diagnosing and monitoring MS. The aim of our work was to explore
how MS is diagnosed and monitored using AI/ML methods applied
on MRI images and whether the texture features of these imagining
modality are considered. The motivation that drives us to conduct
this systematic literature review (SLR) is given by the following
reasons:

1. To characterize the state-of-the-art to identify and understand
the ongoing scientific research on MS identification; and

2. To position our future work in the current research.

To address the goal of our SLR the following research
question was defined: What are the most effective machine learning
algorithms for diagnosing multiple sclerosis?

2 Materials and methods

2.1 Literature research and study
selection

For this review article, we used PRISMA principle to
perform an objective search of publications investigating MRI-
based radiomics applications to MS without time constraint. The
following key terms were used: “multiple sclerosis” AND “magnetic
resonance imaging” AND “Neural Network” AND (“radiomics”
OR “texture analysis”) AND (“AI” OR “Artificial intelligence” OR
“Machine Learning”).

Based on the above-mentioned criteria, we selected the
publications that: (1) evaluated MS or other brain damage using an
MRI-based radiomics approach; (2) had human participants and
(3) were written in English.

Exclusion criteria included the following: (1) studies based on
other imaging modalities, e.g., ultrasound, CT, and PET-CT; (2)
publications designed as letters to the editor, editorial, conference
abstract, and review; (3) were performed on animals; (4) did
not use AI or ML.

We first obtained a number of 1,157 articles from WOS and
Scopus, whereas at the end there were only 20 articles which
satisfied all the criteria (8 articles from Scopus and 12 articles from
WOS). The articles were initially independently retrieved from both
databases, followed by an exclusion of the duplicates. Additionally,
studies focusing on imaging techniques outside the scope of our
research, as well as non-English articles, were excluded. In the final
step of the selection, 50 articles met the eligibility criteria, and after
careful handpicking based on their relevance to the topic under
investigation, only 20 remained eligible (Figure 2).

2.2 Data extraction

To have a better overview, we searched and extracted manually
the general data and put them in a pre-defined table with:
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FIGURE 1

(A) Axial T1 MRI image of a person with MS lesions; (B) manually annotated MS lesions in an axial T1 MRI image (Sarica and Seker, 2022).

FIGURE 2

PRISMA flowchart.

1. General features, including the name of authors, publication
year, and journal;

2. Study characteristics, including general aim, sample size,
study design (prospective and retrospective), and MRI

technical data (e.g., type of scanner, field of strength, and
sequences used for radiomics analysis); and

3. Details of radiomics analysis including image preprocessing,
segmentation method, software used for segmentation and
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feature extraction, number and type of extracted features,
feature selection methods/machine learning classifiers, and
number of radiomics features used.

3 Results

3.1 Data collection methods used in the
included studies

Using the above-mentioned keywords, we retrieved a number
of 1,157 articles from WOS and Scopus. After successively
filtering them according to the above-mentioned criteria,
we obtained 20 articles which were included in this review.
These articles are from the timespan: 2015–2023, with 60%
(12 out of 20) of them from the last 2 years. On Figure 2
the PRISMA diagram used to filter the relevant articles is
presented. It shows the sorting process and explains the
exclusion criteria applied. Exclusion criteria included the
following:

1. Studies based on other imaging modalities, e.g., ultrasound,
CT, and PET-CT;

2. Publication types as letters to the editor, editorials, conference
abstracts, or review papers;

3. Studies which were performed on animals;
4. Or which did not use AI or ML.

As shown in Table 1, the 20 articles were published in 18 distinct
scientific journals. Notably, only two journals—Computerized
Medical Imaging and Graphics and Frontiers in Neuroscience—
had two articles, highlighting the diverse range of publications
included in the analysis.

Out of the 20 articles received, only two were prospective
studies, indicating that the use of AI in diagnosing MS is still
evolving and additional research and testing are necessary before
it can be deemed suitable for clinical implementation.

The sample size is a crucial factor for reliable AI and machine
learning (ML) analysis. Altogether the 20 articles included in the
review sum up a total of around 18,000 patient datasets. The
number of patients varied between 31 and 9,390, with a median
of 100 and interquartile range (IQR) of 229.75 [−257; 661.8].
However, most published articles address the challenge of analyzing
enough samples, with the majority reporting less than 100
patients during the training phase. The MRI sequences analyzed
varied between studies, thus, making it difficult to compare the
classification and segmentation results across different research.

T1, T2, and FLAIR sequences of the MRI acquisition protocols
were used to extract the radiomics characteristics. Five articles
out of 20 used only T1 and another 4 articles used only T2. The
rest of the studies used images acquired through the combined
sequences to extract the characteristic features. All the identified
20 articles provided information about the intensity of the MRI
field upon acquisition. In 3 articles the field strength was 1.5T,
whereas in 10 articles a 3T field and in 1 article a 7T field was
used. Six articles report a combination of these two magnetic field

strengths. It should be noted that in 13 articles 3D images were used
for the analysis.

Some articles focus solely on addressing basic classification
tasks, such as assigning a single label to an MRI scan, while others
tackle more complex challenges, performing classification at the
pixel or voxel level, e.g., image segmentation.

In 12 of the reviewed articles, the process for achieving
ground truth segmentation was explicitly described. In two studies,
annotations were manually performed by an expert with 20 years
of experience. In five other studies, two experts, either neuro-
oncologists or neuroradiologists, independently annotated the
MRI images, and their results were compared. Any discrepancies
between the annotations were reanalyzed and resolved through
consensus. One article involved three experts: a senior expert with
10 years of experience annotated all images, while two experts with
5 years of experience independently reviewed the annotations for
comparison. In four studies, annotations were performed by a panel
of four or more experts using a voting system, with a senior expert
holding veto power. Various tools were used for segmentation and
annotation across the studies, including ITK-Snap, TextRad, 3D
Slicer, MATLAB, and custom-built software.

The number of radiomic features analyzed across the studies
ranged from 6 to 3,655, with a median of 156. After feature
extraction, only stable features were retained, while those with
low variance were discarded. Additionally, to improve robustness,
features influenced by MRI noise and imaging heterogeneity were
excluded (Boca et al., 2023). Statistical analysis of these features was
conducted using R or MATLAB software.

Eleven articles focused on classifying specific regions within the
imaging data as their output. Among ML classifiers, Support Vector
Machines (SVMs) and Random Forest (RF) were the most used,
appearing in seven and six studies, respectively. Six articles focused
on segmentation tasks, with five of them employing variations
of the U-Net model. In eight studies, at least two different ML
algorithms were compared. There was no fixed sequence of steps
followed across the articles. Data augmentation techniques were
applied in 6 of the 20 studies, and 9 studies involved image
resampling. Similarly, image normalization was performed in 12
studies. A summary of the data can be found in Tables 1, 2.
As shown in Table 2, depending on the workflow selected and
developed by the authors, certain steps were omitted (marked
with X). For a clearer representation of the key steps involved in
detecting MS lesions, Figure 3 illustrates the primary stages of the
process.

Elahi et al. (2020) effectively emphasize the significant influence
of various preprocessing steps on the final model accuracy,
illustrating how these steps can markedly alter the model’s
predictive performance. Their work demonstrates the importance
of careful consideration and optimization of preprocessing
techniques to enhance the reliability and precision of ML models
in medical image analysis. The author achieved an 8.80% increase
in model accuracy by applying their proposed normalization
method, compared to cases without normalization. Also, they
observed that downsampling the original MRI images to lower
resolutions significantly improves classification accuracy. Their
findings suggest that this adjustment in image resolution can
substantially enhance the performance of machine learning models
in differentiating between various conditions in medical image
analysis. Their study analyzed classification accuracy across three
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TABLE 1 General characteristics of included studies.

Reference Periodical Study
design

No. of
patients
(train vs.
test
cohort)

Analyzed
outcome

MRI
sequence

Readers
(no. of
radiologist)

Scanner

Jain et al., 2021 Hindawi
Computational
and
Mathematical
Methods in
Medicine

Prospective 1,374 Classification of
brain degeneration

T1 and T2 1 3T Siemens TIM
Trio, 3T Siemens
Magnetom Vida,
1.5T Siemens
Sonata, 1.5T
Siemens Avanto

Cuocolo et al.,
2020

Neuroradiology Retrospective 89 (71:18) Classification of
adenomas

T2W 1 1.5T Philips; 3T
Siemens

Demirel et al.,
2021

Èeská a
Slovenská
Neurologie a
Neurochirurgie

Retrospective 60 Classification of
brain metastasis

T1W 1 1.5T Philips
Intera and 1.5T
Siemens Aera

Wang et al.,
2023

European
Journal of
Radiology

Retrospective 210 (147:63) Diagnostic
performance of a
hippocampal
radiomics models

T2-FLAIR 2 3T Siemens
Magnetom Trio
Tim and
Magnetom Skyra

Zhong et al.,
2017

Brain Imaging
and Behavior

Prospective 72 Regional gray matter
measures,
classification of MS
participants

T1W 1 3T Siemens
Magnetom Trio
Tim

Zhou et al., 2022 Hindawi
International
Journal of
Clinical Practice

Retrospective 114 (80:34) Tumor grade T1WI 1 3T GE Discovery
MR750 W

Kumar et al.,
2023

Journal of
Personalized
Medicine

Retrospective 83 Tumor grade T2W 2 1.5T Phillips; 3T
General Electric

Lu et al., 2019 European
Radiology

Retrospective 152 (106:46) Classification of
meningioma

T1W, T2W, and
T2-FLAIR

2 3T Verio
Siemens, 3T
DISCOVERY
MR750W, GE

Elahi et al., 2020 Computerized
Medical Imaging
and Graphics

Retrospective 700 (490:210) Detection of
amyotrophic lateral
sclerosis

T1W 1 3T Siemens
Prisma, Siemens
Trio, General
Electric MR750

Dastmalchian
et al., 2021

European
Journal of
Nuclear
Medicine and
Molecular
Imaging

Retrospective 31 Differentiation
between intra-axial
adult brain tumors

T1 and T2 2 3T Verio and
Magnetom
Skyra; Siemens

Ortiz-Ramón
et al., 2020

Physica Medica Retrospective 100 (80:20) Classification
between glioma and
brain metastasis

T1W 1 1.5 T Philips
Achieva

Ortiz-Ramón
et al., 2019

Computerized
Medical Imaging
and Graphics

Prospective 200 Presence/absence of
a stroke

T1W, T2W, and
FLAIR

1 1.5T GE Signa
LX

Eshaghi et al.,
2021

Nature
Communications

Retrospective 9,390
(6,322:3,068)

Classification of MS
subtypes

T1W, T2W, and
FLAIR

1 3T and 7T

Combès et al.,
2021

Frontiers in
Medicine

Retrospective 95 Segmentation of new
lesions

T1W, T2W, and
T2-FLAIR

3 3T Siemens
Magnetom
Verio and 3 T
Siemens VB17

(Continued)
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TABLE 1 (Continued)

Reference Periodical Study
design

No. of
patients
(train vs.
test
cohort)

Analyzed
outcome

MRI
sequence

Readers
(no. of
radiologist)

Scanner

Lefkovits and
Lefkovits, 2022

Acta
Universitatis
Sapientiae,
Informatica

Retrospective 369 (303:66) Segmentation of
brain tumors

T1, T1ce, T2,
and FLAIR

2 3T Siemens
Magnetom
Verio

Fenneteau et al.,
2021

Journal of
Medical Imaging

Retrospective 51 (45:6) Segmentation of MS
lesions

FLAIR 4 1.5T and 3T

Sarica and Seker,
2022

Frontiers in
Neuroscience

Retrospective 100 (60:40) Detection of new MS
lesions

T2 and FLAIR 4 1.5T and 3T

Ashtari et al.,
2022

Frontiers in
Neuroscience

Retrospective 100 (40:60) Segmentation of new
lesions

FLAIR 4 1.5T and 3T

Friconnet, 2021 Chinese Journal
of Academic
Radiology

Retrospective 300 Correlation of
texture analysis
features with brain
area

T1W, T2W, and
diffusion-
weighted
slices

2 3T Siemens
Connectom

Pardini et al.,
2015

American
Academy of
Neurology

Retrospective 93 (71:22) Motor network
integrity

T2 1 3T Philips
Healthcare

downsampled MR image resolutions (2, 3, and 4 mm) compared to
the original 1 mm images, achieving improvements of 3%, 6%, and
2%, respectively. This highlights the impact of image resolution on
enhancing model accuracy. They also prove that using an ensemble
model of classifiers for classification outperforms the best single
linear classifier by a significant margin up to 2%.

3.2 Performance of the included studies

As shown in Table 3, various performance evaluation metrics
were employed depending on the model’s output. Accuracy was
the most used metric, appearing in nine articles, while the Dice
score was used in four, whereas the area under the curve (AUC)
was used in three. Other evaluation metrics included sensitivity,
connectivity matrix, intraclass correlation coefficient (Koo and
Li, 2016), Pearson’s correlation coefficient (Blyth, 1994), and the
concordance index (Longato et al., 2020).

Notably, various metrics are frequently selected for evaluation
based on their prior use in reference papers for comparison with
newly developed methods. While this approach facilitates direct
comparisons, it also creates a cycle that reinforces the use of
suboptimal metrics (Yeghiazaryan and Voiculescu, 2018).

It is important to note that while accuracy is often used
to quantify classification performance, its application in medical
image segmentation is discouraged due to class imbalance between
regions of interest (ROIs) and background. Consequently, when
selecting an evaluation metric, it is critical to consider how the
metric is affected by factors such as outliers, small segments,
complex boundaries, or poor segmentation quality (Lefkovits and
Lefkovits, 2022). Accuracy, Dice score, and sensitivity are all
metrics derived from a confusion matrix for binary segmentation,
which accounts for the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) (Nghi, 2023).
Accuracy is the number of correct predictions, consisting of correct

positive and negative predictions divided by the total number of
predictions (Nghi, 2023):

Accuracy =
TP + TN

TP + TN + FN + FP
.

Dice score represents the overlap between predicted segmentation
and ground truth (Nghi, 2023):

Dice =
2TP

2TP + FP + FN
.

Sensitivity is the number of true positive results divided by the
number of all samples that should have been identified as positive
(Nghi, 2023):

Sensitivity =
TP

TP + FN
.

The selection of performance metrics for assessing model
performance is predominantly determined by the specific clinical
context of the problem (Reinke et al., 2021). Bias can occur in
different aspects of an ML study, including data handling, model
development, and performance evaluation of models (Faghani
et al., 2022). Given the flexibility in selecting performance metrics,
some researchers, such as Demirel et al. (2021) and Wang et al.
(2023), adopt a comprehensive approach by evaluating multiple
metrics, including Accuracy and AUC, to provide a more robust
assessment of the performance of their model. Lu et al. (2019)
employs both Accuracy and Kappa as performance metrics in their
evaluation. However, certain challenges explicitly specify which
performance metrics should be used, ensuring a standardized
assessment approach. Among the noted limitations and biases,
Accuracy as a performance metric can lead to significant biases,
particularly in scenarios with severe data imbalance. In such cases,
Accuracy may overestimate the model’s performance by favoring
the majority class, thereby failing to adequately reflect the model’s
true predictive capability for the minority class. Zhong et al. (2017)
employed a nested cross-validation strategy for model optimization
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TABLE 2 General steps (X for absence of step and green dot for its presence).

Article ML task Input
data

Mixing
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Image
pre-

processing
filters

Manual
segmenta

-tion

Automatic
segmenta
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Texture
analysis
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Jain et al.,
2021

Classification
of brain
degeneration

3D MRI
images

X X X

Cuocolo
et al., 2020

Classification
of adenomas

3D MRI
images

X X X X X

Demirel
et al., 2021

Classification
of brain
metastasis

2D MRI
images

X X X X

Wang et al.,
2023

Binary
classification

3D MRI
images

X X X X X

Zhong et al.,
2017

Binary
classification

3D MRI
images and
behavior
tests

X X X X X X X

Zhou et al.,
2022

Binary
classification

3D MRI
images and
pathological
tests

X X X X X X

Kumar
et al., 2023

Classification 2D MRI
images and
histological
confirmation

X X X X

Lu et al.,
2019

Classification
of
meningioma

2D MRI
images

X X X

Elahi et al.,
2020

Classification 2D MRI
images

X X X

Dastmalchian
et al., 2021

Classification 2D MRI
images

X X X X X
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TABLE 2 (Continued)

Article ML task Input
data

Mixing
data

Data
augmenta

-tion

Image
resamp

-ling

Image
normali
-zation

Image
pre-

processing
filters

Manual
segmenta

-tion

Automatic
segmenta

-tion

Texture
analysis

Feature
extrac
-tion

Feature
selection

Feature
statistical
analysis

Test
multiple
classifier

Ortiz-
Ramón
et al., 2020

Classification
between
glioma and
brain
metastasis

2D MRI
images

X X X X

Ortiz-
Ramón
et al., 2019

Classification 3D MRI
images

X X X X X X

Eshaghi
et al., 2021

Classification
of MS
subtypes

2D and 3D
MRI images

X X X X X X

Combès
et al., 2021

Segmentation
of new
lesions

3D MRI
images

X X X X X X X

Lefkovits
and
Lefkovits,
2022

Segmentation
of brain
tumors

3D MRI
images

X X X X X X

Fenneteau
et al., 2021

Segmentation
of MS
lesions

3D MRI
images

X X X X X X X X

Sarica and
Seker, 2022

Detection of
new MS
lesions

3D MRI
images

X X X X X

Ashtari
et al., 2022

Segmentation
of new
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FIGURE 3

General diagram of the workflow (Wang et al., 2023; Zhou et al., 2022).

and evaluation. The inner cross-validation loop was used for
tuning and optimizing the model’s parameters, while the outer
loop provided an unbiased assessment of the model’s performance,
ensuring a robust evaluation process.

For handling imbalanced data, performance metrics like the F1
score, receiver operating characteristic (ROC) curve, or precision-
recall (PR) curve may provide a more comprehensive evaluation of
model performance compared to Accuracy (Faghani et al., 2022).
These metrics account for the disparity between classes and offer
a clearer representation of the model’s ability to identify minority
class instances. Ortiz-Ramón et al. (2020) used the ROC curve to
assess performance, highlighting the balance between sensitivity
and specificity. To mitigate bias and ensure reliable results, the
author considered only one lesion per patient and employed a
fivefold cross-validation approach, which was repeated 10 times.

We can conclude that the choice of performance metrics is
critical in evaluating the effectiveness of the models, as it directly
impacts the interpretation of the results. By selecting metrics that
align with the specific task and data characteristics (Faghani et al.,
2022), and by employing techniques to mitigate bias, such as those
demonstrated by Zhong et al. (2017) and Ortiz-Ramón et al. (2020),
researchers can enhance the robustness and reliability of their
findings.

3.3 Assessment of study quality

We used the radiomics quality score (RQS) (Lambin et al.,
2012) to select the articles that, from a radiomic point of view,
had the most rigorous and complex approach. An RQS toward the
upper limit is obtained if certain criteria are ticked, for example:
image protocols are well documented or public protocol is used;
validation is single- or multicentric; it was prepared a report on the
cost-effectiveness of the clinical application; make code and data
publicly available (Lambin et al., 2012).

Table 4 presents the score of each item and the total
score for each study. The mean RQS of all studies was 13.7
(38.05%) points, ranging from 6 (16.67%) to 23 (63.89%)
points. Only five studies scored equal to or above 18 points
(50%).

The article by Ortiz-Ramón et al. (2019) lead the RQS
scoreboard with 23 points (63.89%). The authors sought to classify
scans utilizing RF and SVM classifiers, employing both feature
selection and non-feature selection methodologies. To improve
generalization of the model and robustness against overfitting
in small samples the RF model was designed to combine the
results of a multitude of independent and decorrelated decision
trees in the training process. For the SVM model, a linear kernel
significantly outperformed the others. For evaluating the efficiency
of the classification models, a fivefold cross-validation approach
was used. The best result was obtained using SVM with linear
kernel.

The second article after RQS ranking (22 points or 61.12%)
is from Kumar et al. (2023). The novelty of their approach
was exemplified by extracting radiomics features from a single
cross-sectional image of the T2W MRI sequence. Five different
machine learning classifiers were used in the test cohort. Before
segmentation and ROI delineation, image pre-processing was
performed using the Laplacian of Gaussian (LOG) bandpass filters
to remove the background noise (Gaussian filter) and to enhance
the tumor edges (Laplacian filter). Thirty-six first-order features
were extracted using various spatially scaled filters, and six shape
(topographic) features were extracted without applying filters.
The recursive feature removal method was used to remove weak
features. The article evaluates the performance of five classification
models (RF, Support Vector, Gradient Boosting, Naive Bayes, and
Ada-Boost) and from these the RF classifier performed the best.

With an RQS of 55.56%, Jain et al. (2021) ranked 3rd.
They performed feature extraction by using Pyradiomics Python
package. For data augmentation (i) scaling, (ii) rotation, and (iii)
shear were used. For classification tasks, various ensemble learning
classification algorithms, such as RFs, bagging-based ensemble
classifiers, and gradient-boosted ensemble classifiers like XGBoost
and AdaBoost, were explored. A novel texture analysis matrix,
termed Decreasing Gray-Level Matrix (DGLM), was proposed
in the study. It was observed that boosting ensemble learning
classifiers, such as AdaBoost and XGBoost, outperformed bagging
and randomized classifiers.

Fourth place tied with 5th place: Zhong et al. (2017) and
Combès et al. (2021) with an RQS of 50%. Zhong et al. (2017)
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TABLE 3 Performance of AI models across included articles.

Article AI technique AI output Performance

Jain et al., 2021 XGBoost classifiers HT/DT Accuracy: 97.38%

Cuocolo et al., 2020 Extra Trees classifier ST/FT Accuracy: 93.00%

Demirel et al., 2021 ANN, SVM, LR, RF, and NB M/GBM ANN Accuracy: 91.00%

Wang et al., 2023 SVM HT/DT Accuracy: 86.30%

Zhong et al., 2017 SVM HT/MP/MI Accuracy: 85.61%

Zhou et al., 2022 LR LGG/HGG Accuracy: 84.80%

Kumar et al., 2023 RF, SVM, GB, NB, and AB LGG/HGG RF Accuracy: 83.00%

Lu et al., 2019 DT, CIT, and DF GI, GII, GIII DF Accuracy: 79.51%

Elahi et al., 2020 Stacking of multiple classifiers!
Meta-classifier: SVM (linear), SVM (RBF),
KNN, FCNN (3 layers), and RF

HT/DT Accuracy: 65.60%

Dastmalchian et al., 2021 Hypothesis tests LGG/HGG Area under the curve: 0.95

Ortiz-Ramón et al., 2020 RF, SVM, KNN, NB, and MLP M/GBM MLP area under the curve: 0.91

Ortiz-Ramón et al., 2019 SVM and RF HT/DT SVM area under the curve: 0.77

Eshaghi et al., 2021 Machine learning algorithm: SubStaIn HT/PPMS/SPMS/RRMS Concordance index: 0.63

Combès et al., 2021 nn-UNet HT/DT Sensitivity: 0.90

Lefkovits and Lefkovits, 2022 UNet, VGG16-UNet, and ResNet-UNet WT/ET/TC Ensemble model Dice score: 0.87

Fenneteau et al., 2021 Minimally Parameterized UNet HT/DT Dice score: 65.00%

Sarica and Seker, 2022 UNet with Attention Gate HT/DT/WM Dice score: 58.70%

Ashtari et al., 2022 Pre-UNet encoder-decoder HT/DT Dice score: 40.30%

Friconnet, 2021 Hypothesis tests Correlate TA feature with semantic feature:
repetitiveness, linearity, directionality,
roughness, randomness, coarseness

Intraclass correlation coefficient,
Pearson’s coefficient correlation

Pardini et al., 2015 Spearman and Pearson correlation Parameter correlation: EDSS scores for MS Connectivity matrix

HT, healthy tissue; DT, diseased tissue; ST, soft tissue; FT, fibrous tissue; M, metastases; GBM, glioblastoma; MP, motor function preserved; MI, motor function impaired; LGG, low-grade
gliomas; HGG, high-grade gliomas; GI, grade I; GII, grade II; GIII, grade III; PPMS, primary progressive MS; SPMS, secondary progressive MS; RRMS, relapsing-remitting MS; WT, whole
tumor; ET, enhanced tumor; TC, tumor core; WM, white matter; EDSS, Expanded Disability Status Scale.

performed minimal manual editing to remove nonbrain tissues and
fill the holes in the white matter that occurred due to lesions. Pre-
processing data was done and included (i) slice timing, (ii) motion
correction with reference to the mean volume, (iii) skull stripping,
and (iv) band-pass filtering. Three sets of features were investigated
for classification ability: Set 1, structural features only; Set 2,
functional features only; and Set 3, concatenated structural and
functional features. Structural features performed slightly better
than functional features. A linear SVM was employed for all feature
sets. Classification performance was tested using leave-one-out
cross-validation.

The other paper scored 50%, Combès et al. (2021) developed
a complete workflow to facilitate the monitoring of new lesions
on longitudinal MRI of MS patients. The workflow consists of
three main components: (i) a software component that allows for
automated and secured anonymization and transfer of MRI data,
(ii) a fully automated segmentation core that enables detection of
focal longitudinal changes in patients, and (iii) a dedicated web
viewer that provides an intuitive visualization of new lesions to
radiologists and neurologists. A 3D U-Net model employing 6
input channels was utilized for segmentation. Data post-processing
consisted of first a softmax outputs map, second connected
components extracted from the resulting binary map and third only
connected components with volume >12 mm3 were considered.

3.4 Segmentation of new MS lesions

Out of the 20 articles eligible for this review, 5 aimed to segment
and detect new lesions (Elahi et al., 2020; Combès et al., 2021;
Fenneteau et al., 2021; Ashtari et al., 2022; Sarica and Seker, 2022).
They evaluated the performance by computing Sensitivity (Elahi
et al., 2020; Combès et al., 2021) and Dice scores (Fenneteau
et al., 2021; Ashtari et al., 2022; Sarica and Seker, 2022). An
impediment to compare the performances obtained by different
authors is that different research teams use different metrics. The
best sensitivity was obtained by Combès et al. (2021) (90%). They
analyzed T1W, T2W, and T2-FLAIR images, and proposed the
following workflow: a software to automatically, securely, and
anonymously transmit the images to a server where they were
processed, a fully automatic lesion segmentation system and a web
application dedicated to visualizing the lesions. This article used a
3D U-Net model with six input channels (for each sequence and
each time point). The preprocessing operations were: (I) volumes
were reoriented in RAS coordinates, (II) skull and skin tissues were
removed from the data, and (III) bias due to spatial inhomogeneity
was estimated using the N4 algorithm and removed from the data.
For data augmentation (i) isotropic re-scaling, (ii) 3D rotation, (iii)
mirroring in the sagittal plane, (iv) smooth elastic deformations,
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TABLE 4 Radiomics quality score results.
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ment
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testing

6. Multi-
variable
analysis

with
non-

radio-
mics

features

7. Bio-
logical
corre-
lates

8.
Cut-off
analysis

9.
Discri-

mination
statis-

tics

10.
Calibra-

tion
statis-

tics

11.
Prospec-

tive
study

12.
Valida-

tion

13.
Compari-

son to
gold
stan-
dard

14.
Poten-

tial
clinical
utility

15.
Cost-

effective-
ness

analysis

16.
Open

science
and data

17. Total 18. RQS
(%)

Score range 0–2 0–1 0–1 0–1 0–3 0–1 0–1 0–1 0–2 0–2 0–7 0–5 0–2 0–2 0–1 0–4 0–36 0–100

Ortiz-Ramón
et al., 2019

1 1 0 1 3 1 0 0 2 1 7 2 2 2 0 0 23 63.89

Kumar et al.,
2023

1 1 0 1 3 0 0 0 2 1 7 2 2 2 0 0 22 61.12

Jain et al., 2021 1 0 0 0 3 0 0 0 1 1 7 2 2 2 0 1 20 55.56

Zhong et al.,
2017

1 1 0 1 3 0 0 0 2 1 7 2 0 0 0 0 18 50.00

Combès et al.,
2021

1 1 0 1 0 0 0 1 0 0 7 2 2 2 0 1 18 50.00

Eshaghi et al.,
2021

1 1 0 0 3 0 1 0 1 1 0 5 0 2 0 1 16 44.44

Lu et al., 2019 1 1 0 1 3 1 1 0 1 1 0 2 2 2 0 0 16 44.44

Ortiz-Ramón
et al., 2020

1 1 0 0 3 0 0 1 2 1 0 2 2 2 0 0 15 41.67

Cuocolo et al.,
2020

1 1 0 0 3 0 1 0 2 2 0 2 2 0 0 0 14 38.89

Wang et al.,
2023

1 1 0 0 3 1 0 1 2 1 0 2 0 2 0 0 14 38.89

Fenneteau et al.,
2021

1 1 0 1 0 0 0 0 1 1 0 3 2 2 0 1 13 36.12

Sarica and Seker,
2022

1 1 0 1 3 0 0 0 0 0 0 2 2 0 0 2 12 33.33
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TABLE 4 (Continued)

Reference 1. Image
proto-

col
quality

2.
Multiple
segmen-
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16.
Open

science
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17. Total 18. RQS
(%)

Ashtari et al.,
2022

1 1 0 1 0 0 0 0 1 1 0 2 2 2 0 1 12 33.33

Zhou et al., 2022 1 1 0 0 3 0 0 0 1 1 0 2 0 2 0 0 11 30.56

Elahi et al., 2020 1 0 0 0 3 0 0 0 0 0 0 5 2 0 0 0 11 30.56

Dastmalchian
et al., 2021

1 1 0 0 3 0 0 1 1 1 0 0 2 0 0 0 10 27.78

Demirel et al.,
2021

1 1 0 0 3 0 0 0 2 0 0 2 0 0 0 0 9 25.00

Lefkovits and
Lefkovits, 2022

1 1 0 0 0 0 0 0 0 0 0 2 2 0 0 1 7 19.44

Pardini et al.,
2015

1 0 0 0 0 1 1 0 1 1 0 0 0 2 0 0 7 19.44

Friconnet, 2021 1 1 0 0 0 1 0 0 1 0 0 2 0 0 0 0 6 16.67
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and (v) intensity enhancements were used. The performance of
the proposed workflow was evaluated by comparing the maximum
sensitivity obtained by three neuroradiological experts, working
without the workflow (0.74) and the sensitivity (0.9) with the
workflow.

Fenneteau et al. (2021) obtained the highest score (65%). They
used an MPU-net (Minimally Parameterized U-net) type model,
which uses a small number of parameters, proving that it is possible
to learn a performant model with only 10 fully annotated examples.
Nine variations of the MPU-net architecture were analyzed. Adding
batch normalization, dropout layers and including residual blocks
in the encoder part of the model. For the MPU-net++ template,
the number of consecutive convolutions in each block was also
evaluated.

4 Discussion

By implementing successive filtering based on exclusion criteria
(such as non-English versions, non-MRI techniques, and exclusion
of animal studies) 20 articles were identified and included in this
review. Following the calculation of the RQS, only five articles
achieved a score exceeding 50%. All five of these articles were
prospective studies, which inherently awarded them an additional
7 points, resulting in a relative increase of 19.44% in their scores.
Given the influence of study design on scoring, we conducted a
separate evaluation for retrospective studies, revealing that three
articles in this category scored above 40%. It is essential to recognize
that a lower RQS does not necessarily imply a lack of scientific
validity. One straightforward method to enhance an article’s RQS
(by up to 4 points or 11.11%) is to provide open-source access
to the underlying code, ROIs, radiomic features, or the imaging
data used in the study. This approach promotes transparency and
reproducibility, which are critical elements in radiomics research.

The data in Table 3 show that there is no consensus on the
model used to segment or classify MS lesions. For classification the
established models are used, e.g., U-net for segmentation (Combès
et al., 2021; Fenneteau et al., 2021; Sarica and Seker, 2022) and SVM,
RF, or K-Nearest Neighbors (Zhong et al., 2017; Ortiz-Ramón
et al., 2020; Wang et al., 2023). Nonetheless, sometimes different
solutions are also used: e.g., Subtype and Staging Inference (Eshaghi
et al., 2021) or a Meta-classifier (Elahi et al., 2020).

Regarding the evaluation of the performance of the models,
there is no unanimous criterion used. For segmentation of lesions,
the authors used standard metrics to evaluate medical image
segmentation performance: Accuracy, Dice score, and Sensitivity.

We analyzed the articles that obtained the best result according
to Accuracy, Sensitivity, and Dice score (see Table 3) with the aim
to identify the differences between these studies and to determine
the factors contributing to their results.

To enhance accuracy, Jain et al. (2021) applied data
augmentation and feature selection, combined with gradient-
boosted ensemble learning classifiers, to improve model
performance and increase classification accuracy. The model’s
performance can be enhanced by incorporating external datasets.

Combès et al. (2021) achieved the best segmentation
performance, with a sensitivity of 0.9. They used longitudinal
MRI data, integrating radiomic features with deep learning

models. They employed an open-source nnU-Net model with six
input channels, one for each MRI sequence and timepoint.
Each input image was first resampled, and then each set
of six images was divided into patches of a specified size.
Finally, each such six patches were processed independently
and aggregated to others to form the final softmax output
map. However, the results must be interpreted in the context
of the specific population used in the study. In addition,
all FLAIR, T2-w, and T1-w images were used as input
to the automatic lesion detection segmentation module,
therefore, if not all three sequences are available, it needs to
be adjusted.

Lefkovits and Lefkovits (2022) achieved the highest Dice
score, evaluating the performance of the U-Net model, VGG16-
UNet, and ResNet-UNet, respectively. They concentrated on both
preprocessing and post-processing steps to enhance detection
performance. The intensity of the original images was adjusted,
correcting the images and transforming the varying intensity ranges
into the 8-bit grayscale domain to standardize tissue intensities
while maintaining the original histogram shapes. In addition,
they demonstrated that combining the three models into an
ensemble model resulted in an overall performance improvement
of 2%.

For a comprehensive analysis, we have detailed the strengths
and limitations of each article included in the review to establish a
guiding framework. This summary is presented in Table 5.

We have pinpointed several key recommendations for
enhancing reproducibility and achieving a high RQS score: (i) use
open-source datasets, such as publicly available image repositories,
and to offer a thorough description or access to the model
employed. This practice helps to avoid a “black box” scenario,
where only the inputs and outputs are provided, and ensures greater
transparency and clarity in the research methodology (ii) combine
radiomics with machine learning models, it is well-established that
integrating both techniques yields superior results compared to
using machine learning models alone (iii) employ feature selection
techniques to prevent feature redundancy and retain only the most
relevant features (iv) addressing the data imbalance in the dataset
with data augmentation techniques, such as the Synthetic Minority
Oversampling Technique (SMOTE), could be a viable solution
(Cuocolo et al., 2020) (v) to confirm the model’s generalizability and
performance in other settings is necessary an external validation
on independent datasets (vi) use of multi-modal MRI data, which
includes structural, diffusion, and functional MRI sequences.

These diverse imaging modalities provide a comprehensive
view of both macrostructural and microstructural changes in
MS, improving the model’s ability to identify meaningful
patterns and differentiate between subtypes. One could refer to
dimensionality reduction techniques such as principal component
analysis (PCA) or t-distributed Stochastic Neighbor Embedding
(t-SNE) to compress high-dimensional MRI data into a lower-
dimensional space that can be more easily interpreted by machine
learning models. This approach reduces noise and computational
complexity while preserving critical features, allowing for efficient
clustering of MS subtypes.

Jain et al. (2021) and Lefkovits and Lefkovits (2022) who
achieved the highest Accuracy and Dice score, respectively, opted
for an ensemble model. This approach combines the predictive
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TABLE 5 Strengths and limitations of the included articles.

Reference Strengths Limitations

Ortiz-Ramón et al., 2019 Large dataset 1,800 3D MRI
Radiomics-based approach
Wide range of features
Feature selection techniques

Potential overlap in MRI signal intensities
Lack of clear influence of feature selection
Minimal comparison with state-of-the-art

Kumar et al., 2023 Radiomic texture analysis combined with machine learning
A diverse dataset of MRI
Feature extraction

Dataset imbalance
Retrospective study

Jain et al., 2021 Ensemble learning classifiers
Radiomics-based approach
Feature selection techniques
Open data access

No cross-validation

Zhong et al., 2017 Combines structural and functional MRI data
Data-driven feature extraction
Multivariate approaches

Data at a single point in time
Small sample size

Combès et al., 2021 Integration with clinical workflow
longitudinal MRI data
Radiomic features and deep learning models
External validation and clinical testing

Dependence on MRI quality and protocol
standardization
Need all FLAIR, T2-w, and T1-w images
as input

Eshaghi et al., 2021 Unsupervised machine learning methods
Multi-modal MRI data
Dimensionality reduction techniques such as principal component analysis (PCA) to compress
high-dimensional MRI data
Longitudinal data and temporal analysis
Cross-validation

The model’s performance could be
population-specific
Without a clear ground truth

Lu et al., 2019 Cross-validation
Radiomic texture analysis combined with machine learning

Feature redundancy
Need validated across external datasets

Ortiz-Ramón et al., 2020 Multi-parametric MRI sequences
External validation using independent datasets from different institutions

Class imbalance

Cuocolo et al., 2020 Radiomic texture analysis combined with machine learning
Recursive feature elimination (RFE)
Extensive number of texture features
Hyperparameter tuning via cross-validation
SMOTE (Synthetic Minority Oversampling Technique) to balance the dataset

Small sample size
Manual segmentation
Data from a single institution
Only T2-weighted MRI data

Wang et al., 2023 Radiomic texture analysis combined with machine learning
Feature selection techniques

Sample size and class imbalance
Need validated across external datasets

Fenneteau et al., 2021 Minimum parameters U-Net
Transfer learning function

No texture analysis

Sarica and Seker, 2022 Attention U-Net and residual U-Net
Utilization of 2D slices from 3D MR images
Open data access

Need validated across external datasets
Should employ cross-validation

Ashtari et al., 2022 U-Net model, incorporating pre-activation layers (batch normalization and activation
functions (such as ReLU) are applied before the convolutional layers)

Sensitivity to data preprocessing

Zhou et al., 2022 Radiomic texture analysis combined with machine learning
Enhanced T1-weighted MRI
Involvement of multiple institutions

Need validated across external datasets
Limited methodology details

Elahi et al., 2020 Multi-center data for improved generalizability
Texture classification and texture features
Cross-validation

Dependence on preprocessing steps
Need for larger datasets
Computational complexity

Dastmalchian et al., 2021 Radiomic texture analysis combined with machine learning
Feature selection techniques

Small sample size
Single slice used not 3D

Demirel et al., 2021 Automatic segmentation
Radiomic texture analysis combined with machine learning

Lack of specific methodology details
Potential for overfitting
Dataset with a limited number of cases

Lefkovits and Lefkovits,
2022

Exploration of U-Net variants (e.g., attention U-Net and residual U-Net)
Cross-validation

Dependence on histogram correction
Need validated across external datasets

Pardini et al., 2015 Correlation with clinical disability
Multimodal imaging approach

Lack of specific algorithm details
Insufficient cross-validation or external
validation

Friconnet, 2021 Correlating texture features with semantic descriptors (e.g., repetitiveness and roughness)
300 brain MRI scans with various imaging modalities (T1-, T2-, and diffusion-weighted MRI)
Good inter-rater reliability

Limited results transferability
Just 32 texture features used
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strengths of multiple machine learning models to enhance accuracy
and robustness.

Although it was not the primary focus of this review article, we
have included insights and ideas from relevant studies conducted
on CT images, as well as those involving animal models. These
investigations may provide innovative approaches that could be
applied to the machine learning algorithms employed for analyzing
MRI data from human participants. By examining these parallels,
we can identify potential advancements that could enhance the
efficacy of the MRI-based diagnostic methods.

To provide a broader perspective, we have incorporated
observations from related studies that employed machine learning
algorithms on CT images, as referenced in sources (Lee and
Fujita, 2020; Salehinejad et al., 2021; Chen et al., 2022). These
studies offer valuable insights that complement our findings and
help contextualize the application of ML techniques in different
imaging modalities. In CT image analysis, general features such as
shape, pixel intensity, location, and statistical texture are commonly
examined. Texture features are often based on the co-occurrence
matrix (Haralick et al., 1973) and gray-level difference statistics
(Weszka et al., 1976), providing detailed insights into the patterns
and relationships within the image data.

Among the machine learning models employed, notable
mentions include CNN-2, VGG-16, ResNet-50 (Chen et al., 2022),
SE-ResNeXt-50 (Salehinejad et al., 2021), and AlexNet (Lee and
Fujita, 2020). Like the machine learning algorithms applied in
MRI, those used for CT can focus on either segmenting regions
[e.g., Lee and Fujita (2020), where the input for segmentation is a
3D CT image, resulting in a label map that annotates anatomical
structures with predefined labels] or on binary classification [as
demonstrated by Salehinejad et al. (2021)]. Additionally, some
models are designed for multiclass classification, such as those
proposed by Lee and Fujita (2020).

In related studies conducted on animal models (Spiteri et al.,
2019; Biercher et al., 2021; Zheng et al., 2022), it was observed
that the methodologies closely mirror those employed in human
subjects, particularly regarding image pre-processing and the
application of texture analysis. A comprehensive set of parameters
is typically extracted, which are then systematically analyzed and
organized using statistical methods, even though these parameters
may not always lend themselves to straightforward interpretation.
Techniques such as SVM and RF (Spiteri et al., 2019) are utilized
for classification tasks, such as differentiating between control and
diseased groups in animal studies (e.g., two cohorts of dogs).
Additionally, convolutional neural networks (CNNs) have been
applied to detect the presence or absence of lesions in canine MRI
scans (Biercher et al., 2021). While there may be unique elements
in the workflows or models specific to animal research, these
distinctions were not explicitly identified in the reviewed studies.

Within the domain of decision support tools in MS diagnosis, it
is essential to converge on a consensus regarding both the selection
of the model employed and the establishment of standardized
performance metrics for its robust evaluation. Thus, to encourage
the development of robust solutions and move the community
away from small-scale image classification tasks and toward
realistic, complex tasks taken from real-world challenges which
provides a dataset with preprocessed and annotated images [e.g.,
Shifts Challenge (2022a) and Commowick et al. (2021a)]. Such
challenges represent a benchmark and a starting point for the

development of segmentation solutions and automatic detection of
MS lesions.

Several key challenges have arisen over the past 16 years,
starting at the Medical Image Computing and Computer Assisted
Intervention (MICCAI) conference in 2008 (Styner et al., 2008).
The database of this challenge included 20 training sets (10 from
scanner 1 and 10 from scanner 2 all with manual segmentations)
and 25 testing sets (15 from scanner 1 and 10 from scanner 2
without expert segmentations). A second test set was included to
prevent overfitting. The rationale for using two separate test sets
was that distributing test data alongside the training data allows
teams to fine-tune their algorithms for the known test cases. The
full testing database was segmented by a single expert rater at
CHB and independently by two expert raters at UNC, resulting
in two comprehensive sets of expert segmentations that served as
references for comparison. For all cases, the database contained
the same number of high-resolution images: a T1 weighted scan,
a T2 weighted image, a FLAIR image, a diffusion tensor imaging
(DTI) derived fractional anisotropy (FA) and mean diffusivity
(MD) image. To evaluate the quality of automatic segmentation the
following four error metrics were used: Relative absolute volume
difference (the total absolute volume difference of the segmentation
to the reference divided by the total volume of the reference, in
percent), Average symmetric surface distance, in millimeters (to
analyze the border voxels of segmentation and reference border),
True Positive Rate and False Positive Rate. Approximately one-
third of teams submitted results, with many of them achieving
scores within a similar range of variability typically seen among
different human raters.

Another major challenge took place at the IEEE ISBI
international conference in 2015 (Carass et al., 2017). The
organizers provided 82 datasets from a single 3.0 Tesla MRI
scanner, each containing an average of 4.4 time-points. All images
had their lesions manually delineated in the MNI space by
two raters. To mitigate potential biases from relying solely on
individual raters, the organizers opted to create a Consensus
Delineation for the images using the Simultaneous Truth and
Performance Level Estimation (STAPLE) algorithm (Warfield et al.,
2004). This method allows for a more balanced and reliable
delineation by combining the segmentations from both raters
to generate a consensus label. In brief, STAPLE estimates the
true segmentation from an optimal combination of the input
segmentations, the weights for which are determined by the
estimated performance level of the individual segmentations.
To compare the results from the participants with the two
manual raters and Consensus Delineation, the organizers used
the following metrics: Dice overlap, positive predictive value,
true positive rate, lesion true positive rate, lesion false positive
rate, absolute volume difference, average symmetric surface
distance, volume correlation, and longitudinal volume correlation.
Ten teams participated in the challenge, where seven teams
used supervised algorithms and three employed unsupervised
algorithms. The best algorithm depends on the criteria used
for evaluation. As for Longitudinal Correlation the IIT Madras
team stands out, using two CNNs, each trained on data from
one rater, and their outputs were combined for the final
segmentation. However, for Dice overlap, Team PVG One achieved
the best result using a Hierarchical MRF and Random Forest
Segmentation.
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A valuable open-source dataset was provided by the MICCAI
2016 challenge (Commowick et al., 2021b), which included 53
image datasets, annotated by 7 manual delineations from expert
raters. Hyperintense lesions on FLAIR were manually delineated
on each patient with control on T2 sequence and gathered in
a consensus segmentation for evaluation. The purpose of this
dataset was to become a reference in MS lesions segmentation
evaluation. The challenge revealed a significant limitation: it
was not feasible to evaluate computational performance (e.g.,
memory usage or processing time). This highlights the need
for centralized computing platforms that support challenges
by offering data storage, processing pipeline integration, and
evaluation workflows on shared datasets. Such platforms would
allow for a fair comparison among fully automated methods.
Additionally, segmentation challenges face issues with ground truth
accuracy due to limited manual delineations. In addition to the
individual automatic algorithms, the challenge organizers created a
composite model named “team fusion.” This approach combined
segmentations from all 13 teams participating in the challenge,
using label fusion through the LOP STAPLE algorithm to reach a
consensus segmentation. This method aimed to integrate insights
from various approaches, producing a segmentation that leveraged
the strengths of multiple algorithms for improved accuracy. The
goal of this fourteenth method was to evaluate the capability of
such a label fusion method to overcome the individual difficulties
of each method and thus obtain results closer to the ground
truth. This composite algorithm improved the average results
of individual automatic algorithms for all metrics, suggesting
its ability to incorporate the best solutions into a consensus
segmentation.

A worthful publicly available dataset was developed by
Lesjak et al. (2018) consisting of MRI data from 30 patients
diagnosed with MS. This dataset includes a unique protocol
designed to generate reference segmentations of white-
matter lesions based on a multi-rater consensus approach,
enhancing the reliability and consistency of lesion annotations.
In addition to providing open-source access to the dataset,
the authors provided a comprehensive documentation,
which enhanced the dataset’s utility for other researchers and
facilitates reproducibility in studies involving MS lesion analysis.
Initially, each rater independently segmented the lesions on
all 30 datasets. For this purpose, raters used the BrainSeg3D’s
semi-automated tool. In the following, they had several joint
sessions to create the validated consensus segmentation of the
lesions.

Another recent example is the Shifts Challenge from 2022
(Shifts Challenge (2022a)) which serves as pivotal benchmarks
and initial steps in the advancement of segmentation solutions
and automated detection methodologies for MS lesions. This
challenge also establishes the performance matrix used to evaluate
participants’ performance, namely the lowest area under the
error retention curve (R-AUC) in this case. There were 46
solutions submitted, and the best solution obtained an R-AUC
0.0128 ± 0.0169 by the team led by Adrián Galdrán (Shifts
Challenge (2022b)).

An additional relevant challenge is the BraTS 2023 Intracranial
Meningioma Segmentation Challenge, which marks a significant
advance in tumor segmentation while highlighting the potential
and limitations of current methods (LaBella et al., 2024). The

BraTS Meningioma Challenge received image data from six U.S.
academic medical centers: Yale University, Missouri University,
Thomas Jefferson University, Duke University, University of
California, San Francisco, and University of Pennsylvania. This
dataset comprised T1, T2, FLAIR, and T1Gd brain MRI sequences
from patients diagnosed with intracranial meningiomas. Nine
teams developed deep-learning segmentation models using the
largest multi-institutional, expert-annotated meningioma MRI
dataset. Metrics used for evaluation included Dice Similarity
Coefficient (Nghi, 2023) and the 95% Hausdorff Distance (95HD)
(Rucklidge(ed.), 1996) and were evaluated on a lesion-wise level.
The Hausdorff Distance metric was chosen since it measures the
degree of mismatch between two sets by finding the point of A
that is farthest from any point of B and vice versa. The NVAUTO
team lead by Andriy Myronenko achieved the highest scores with
DSC of 0.904 ± 0.180 and a 95HD of 31.4 ± 71.8. They developed
an algorithm named as AutoSeg3D, an open-source framework
based on PyTorch, which is particularly adaptable to various
automated segmentation challenges in medical imaging (LaBella
et al., 2024). Auto3DSeg supports auto-scaling to available GPUs,
enables fivefold training with SegResNet, DiNTS, and SwinUNETR
models, and facilitates inference and ensembling using each of the
multiple trained models (LaBella et al., 2024).

To summarize:

1. Our search using the specified keywords initially yielded
1,157 articles from WOS and Scopus databases. Through
successive filtering based on the predefined criteria, we
narrowed down the selection to 20 articles, which constituted
the focus of this review. Notably, the selected articles
span the interval from 2015 to 2023. Using the RQS, we
meticulously assessed articles to discern those with the
most methodological rigor and complexity in the realm of
radiomics. Following computation of RQS scores, merely
five articles surpassed the 50% threshold. Noteworthy, all
five articles were prospective studies. Moreover, a distinct
evaluation of retrospective articles identified three entries
with RQS scores exceeding 40%.

2. Model variability: There is no consensus on the models
used for segmenting and classifying MS lesions. Common
segmentation models include U-net, while classifiers like
SVM, RF, and K-Nearest Neighbors are popular. More unique
approaches, such as Subtype and Staging Inference and Meta-
classifiers, were also noted.

3. Performance metrics: Standard metrics (Accuracy, Dice score,
and Sensitivity) were used for segmentation evaluations. Jain
et al. (2021) improved accuracy through data augmentation
and external datasets, while Combès et al. (2021) achieved
high sensitivity (0.9) by incorporating longitudinal MRI data
and radiomic features. Lefkovits and Lefkovits (2022) attained
the best Dice score by standardizing image intensities and
using ensemble models.

4. Key recommendations: Suggestions to enhance
reproducibility include using open-source datasets,
combining radiomics with machine learning, addressing
data imbalance through augmentation, and ensuring external
validation. The use of multi-modal MRI data is recommended
for a more comprehensive analysis of MS lesions.
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1. Challenges and benchmarks: The importance of standardized
models and evaluation metrics in MS diagnosis is emphasized.
Recent challenges like the Shifts Challenge 2022 and BraTS
2023 provide crucial benchmarks for advancing segmentation
and detection methods.

5 Conclusion

Consensus on the model used for segmenting or classifying
MS lesions is currently lacking, with prevalent models such as
U-net, SVM, RF, and K-Nearest Neighbors. Additionally, other
segmentation and classification methods as Subtype and Staging
Inference or a Meta-classifier are also explored. Evaluation of
performance also lacks consensus, with metrics like Accuracy,
Dice score, and Sensitivity commonly used in assessing lesion
segmentation efficacy in medical imaging.

In conclusion, our article provides an insight into the
contemporary landscape of decision support tools that leverage
texture analysis and artificial intelligence for the analysis and
monitoring of emerging MS lesions in MRI images.
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