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Green synthesis of nanoparticles 
using medicinal plants as an 
eco-friendly and therapeutic 
potential approach for 
neurodegenerative diseases: 
a comprehensive review
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Central nervous system disorders impact over 1.5 billion individuals globally, with 
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s 
diseases being particularly prominent. These conditions, often associated with 
aging, present debilitating symptoms including memory loss and movement 
difficulties. The growing incidence of neurological disorders, alongside a scarcity 
of effective anti-amyloidogenic therapies, highlights an urgent need for innovative 
treatment methodologies. Nanoparticles (NPs), derived from medicinal plants and 
characterized by their favorable pharmacological properties and minimal side effects, 
offer a promising solution. Their inherent attributes allow for successful traversal 
of the blood–brain barrier (BBB), enabling targeted delivery to the brain and the 
modulation of specific molecular pathways involved in neurodegeneration. NPs 
are crucial in managing oxidative stress, apoptosis, and neuroinflammation in ND. 
This study reviews the efficacy of green-synthesized nanoparticles in conjunction 
with various medicinal plants for treating neurodegenerative diseases, advocating 
for further research to refine these formulations for enhanced clinical applicability 
and improved patient outcomes.
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1 Introduction

Neurodegenerative diseases (ND) is characterized by the gradual loss of neurons, structural 
and functional impairments in the brain and spinal cord, as well as cognitive and physical 
decline, ultimately leading to the direct and indirect demise of patients. The World Health 
Organization estimates that 50 million people worldwide are affected by neurodegenerative 
disorders – primarily characterized by motor neuron dysfunction and loss –  
and that number is expected to rise as our population ages (Scatena et al., 2007; Yavarpour-Bali 
et al., 2019; Bhattacharya et al., 2022). Numerous factors contribute to the development of ND, 
including the accumulation of amyloid proteins, intracellular or extracellular protein misfolding 
within the CNS, neuroinflammation, oxidative stress, neurotransmitter depletion such as 
butyrylcholine (BCh) and acetylcholine (ACh), and disruption of the blood–brain barrier 
(BBB) (Rasool et al., 2014; Maiti and Dunbar, 2018). Genetic predisposition plays a significant 
role in ND, alongside factors like excessive brain accumulation of metals such as copper (Cu), 
zinc (Zn), lead (Pb), and iron (Fe), mitochondrial dysfunction, and impaired redox reactions 
(Masoudi Asil et al., 2020; Sriramcharan et al., 2022). Additionally, certain chemicals like 
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monoamine oxidase and cholinesterase contribute to the breakdown 
of dopaminergic and cholinergic synapses (Teibo John et al., 2020).

Conditions like Alzheimer’s diseases (AD), Parkinson’s diseases 
(PD), and Huntington’s diseases (HD) are closely linked to the aging 
process, manifesting symptoms such as memory loss, movement 
impairments, and speech and breathing difficulties. (Gitler et al., 2017; 
Bhattacharya et al., 2022). AD represents the most prevalent form of 
dementia, with the number of AD patients reaching 50 million by 
2017. The disease has multifaceted causes, with abnormal amyloid β 
(Aβ) accumulation being a key factor (Kalimuthu et al., 2020; Huang 
et al., 2021). AD prevalence rises notably after age 65, with a marked 
exponential increase with advancing age. AD risk factors encompass 
familial history, head injuries, genetic factors (apolipoprotein E), 
gender (female), vascular conditions, and environmental influences. 
In familial AD cases, mutations in presenilin 1 and 2 genes are 
observed, accounting for 2-3% of AD instances and affecting 
individuals under 65 (Singh et al., 2010; Castellani et al., 2010). Loss 
of synapses in AD is associated with the accumulation of low-solubility 
Aβ species. Amygdala regions in AD patients have many plaques and 
neurofibrillary. Also, two types of Aβ plaques are seen in the brain 
parenchyma along with tau inclusions. Most of these patients also 
have amyloid angiopathy (Castellani et  al., 2010; Dugger and 
Dickson, 2017).

Oxidative damage triggered by mitochondrial dysfunction 
(induced by Aβ42) and glial activation leads to cytotoxicity and 
calcium overload (Emerit et  al., 2004). The integrity of brain cell 
support and transport systems relies on the tau protein’s proper 
structure and function. In AD, the abnormal twisting of tau strands 
results in dysfunctional tangles within brain cells, disrupting the 
transport system and culminating in cell death (Agarwal et al., 2013). 
PD represents the most prevalent motor ND, affecting at least 1% of 
individuals over 70 years of age. Approximately 80% of PD patients 
develop dementia within two decades. Parkinson’s disease dementia 
(PDD) is characterized by deficits in short-term memory and 
decision-making functions, stemming from the degeneration of 
subcortical nuclei like the medial substantia nigra and the cholinergic 
nucleus basalis of Meynert. Dopamine deficiency in the striatum due 
to the loss of dopamine-producing cells is a hallmark of PD (Savitt 
et al., 2006; Edison et al., 2013; Irwin et al., 2013).

Oxidative stress and neuroinflammation are primary contributors 
to the death of dopaminergic neurons (Khazdair et al., 2020). The 
etiology of PD includes the accumulation of intracellular α-synuclein 
aggregates, reduced activity of mitochondrial complex 1, and telomere 
shortening (Hou et al., 2019). Additionally, PD is characterized by 
factors such as iron accumulation in the zona, elevated nitrogen levels 
in Lewy bodies, activation of the caspase cascade, and increased 
apoptosis (Emerit et al., 2004). Aβ is present in both PD and PDD, with 
significant Aβ levels observed in 40% of PDD cases (Edison et al., 2013).

HD is an autosomal dominant disorder affecting 4-10 individuals 
per 100,000 people. While typically manifesting between ages 30 and 
50, HD can also onset as early as two or as late as over 80 in rare cases 
(Sandhir et  al., 2014). HD leads to degeneration of the striatum, 
hypothalamus, and cerebral cortex, resulting in motor, cognitive, and 
behavioral impairments, weight loss, disruptions in circadian sleep 
rhythms, and autonomic nervous system dysfunction (Popovic and 
Brundin, 2006; Roos, 2010). HD is caused by misfolding of the 
huntingtin protein into its β form and post-translational modifications 
like phosphorylation. This abnormal protein disrupts cellular 

metabolism and mitochondrial function, generating atypical 
metabolites and markers of oxidative stress. Neuronal death in HD is 
associated with movement disorders, with disease progression 
influenced by environmental and genetic factors (Ross et al., 2014).

This study addresses the critical relevance of central nervous system 
disorders affecting over 1.5 billion individuals worldwide, particularly 
highlighting neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s. While current literature acknowledges the urgent need for 
effective treatments, significant gaps remain in the application of 
nanoparticle (NP) technology derived from medicinal plants. 
Specifically, there is a lack of comprehensive research on the optimization 
of NP formulations for targeted delivery across the blood–brain barrier 
and their specific mechanisms in mitigating neurodegeneration. This 
study aims to address these gaps by systematically reviewing existing 
data and proposing refined NP strategies to enhance therapeutic efficacy. 
The main contributions of this research include advancing the 
understanding of green-synthesized nanoparticles in neuroprotection 
and offering a pathway for developing innovative treatment options with 
minimal side effects for affected patients.

2 Amyloids

Amyloids are fibrous, insoluble proteins resistant to protease 
degradation, forming aggregates in the cytoplasm of neurons, glia, 
parenchyma, and blood vessel walls as plaques or amyloid angiopathy. 
Amyloid plaques can manifest in various forms, including diffuse, 
dense-cored, classical, and cotton wool, which vary based on the type 
of amyloid, disease stage, and deposition site (Dugger and Dickson, 
2017; Girigoswami et al., 2019). These amyloid deposits can lead to 
significant tissue damage and cell death (Ghosh et  al., 2021). By 
binding to cell membranes, amyloid accumulations can disrupt 
membrane integrity, leading to increased cellular damage, oxidative 
stress, cytoskeletal alterations, organ dysfunction, and apoptosis 
(Ghosh and De, 2020). This membrane disruption is a key driver of 
amyloid-induced cytotoxicity (Wang et al., 2017).

Human amyloidosis involves over 20 amyloidogenic peptides and 
pathogenic proteins like Aβ, α-synuclein, Tau, and serum amyloid 
protein. Amyloidosis is categorized into systemic and local forms, with 
systemic involvement across multiple organs and local involvement in 
specific tissues (Wang et al., 2017; Ghosh and De, 2020). Amyloid 
deposition is common in individuals with a genetic disorder associated 
with apolipoprotein E (Dugger and Dickson, 2017).

3 Oxidative stress

Oxidative stress inflicts damage on cell proteins and lipid 
membranes, primarily driven by free radicals such as reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) (Ríos et al., 2016; 
Chandran and Abrahamse, 2020). The nervous system is particularly 
susceptible to ROS due to its high oxygen consumption, limited 
antioxidant capacity, abundance of steroid lipids, and metal catalyst 
content (Sharifi-Rad et  al., 2022). ROS plays a pivotal role in 
neurodegeneration in AD, PD, and HD, leading to mitochondrial 
dysfunction, neuroinflammation, and elevated levels of nuclear factor 
κB (NFκB) and insulin-like growth factor (IGF) (Ríos et al., 2016; 
Chandran and Abrahamse, 2020; Sharifi-Rad et al., 2022).
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Edible oyster mushrooms are notable for their rich composition 
of bioactive compounds, such as phenolics, flavonoids, ascorbic acid, 
glycosides, tocopherols, polysaccharides, ergothioneine, and 
carotenoids. These compounds possess robust antioxidant properties 
that effectively combat free radicals, thereby playing a significant role 
in mitigating oxidative stress (Gupta et al., 2017). The administration 
of medicinal mushroom extracts has demonstrated potential in 
treating patients and offering protection against a variety of diseases, 
including neurodegenerative disorders (Chaturvedi et al., 2020).

Mitochondrial superoxide radicals impair movement within the 
brain, resulting in DNA damage and the onset of neurodegenerative 
diseases. Hydrogen peroxide (H2O2) is linked to excessive oxidation 
in nerve cells, with peroxisomes typically responsible for controlling 
superoxide radicals and H2O2 enzymatically. In AD, 
hyperphosphorylated tau proteins lead to catalase (CAT) and 
peroxidase depletion from peroxisomes, exacerbating oxidative stress 
(Chandran and Abrahamse, 2020; Sharifi-Rad et al., 2022).

4 Neuroinflammation

Neuroinflammation is a common feature of ND, characterized by 
elevated levels of cytokines and inflammatory markers in AD, PD, and 
HD. In neuroinflammation, the brain’s innate immune response 
triggers an increase in chemokine concentrations like interleukin-6 
(IL-6), IL-1β, CC-motif ligand-2 and 5 (CCL-2 and 5), and CXC-motif 
ligand-1 (CXCL-1), promoting ROS and RNS production and 
enhancing BBB permeability (Fakhri et al., 2022).

Microglial cells, part of the brain’s mononuclear phagocyte system, 
play a crucial role in neuroinflammation. Inflammatory responses by 
microglia contribute to the demise of dopamine-producing cells. 
Microglia induce cell damage by releasing IL-1, 6, and 12, tumor 
necrosis factor (TNF-α), and nitric oxide (NO), stimulating amyloid 
precursor protein production, and elevating Aβ levels. Conversely, Aβ 
enhances microglial activation (Klegeris and McGeer, 2005; Edison 
et  al., 2013). Cytokines released by microglia bind to neuronal 
receptors, activating apoptotic pathways (Sharifi-Rad et al., 2022).

5 Metal accumulation in the brain

Excessive accumulation of metals in the brain leads to oxidative 
damage, mitochondrial dysfunction, protein misfolding, impaired 
autophagy, neuroinflammation, and neuronal death (Yan et al., 2022).

In AD, calcium release from the endoplasmic reticulum disrupts 
memory, while the Cu, Zn, and Fe buildup enhances Aβ accumulation 
and triggers oxidative stress. Manganese accumulation inhibits 
glycolysis, causing toxicity and cytoskeletal disruption in HD, while 
abnormal copper-protein interactions contribute to HD development 
by affecting the huntingtin structure. Elevated Fe levels in PD lead to 
ferroptosis and the loss of dopaminergic neurons (Yan et al., 2022).

6 Acetylcholinesterase (AChE) and 
butyrylcholinesterase (BChE) enzymes

ACh is the essential natural brain substance that affects memory, 
speech, concentration, and logical reasoning. BCh is also effective on 

memory. BChE and AChE are in the group of serine hydrolases. BChE 
is mainly found in the white matter and areas effective in cognition 
and behavior. The main action of BChE and AChE is the simultaneous 
regulation of ACh. An increase in the level of AChE and BChE leads 
to the breakdown of ACh and BCH and reduces their stimulatory 
effects. In AD, the number of neurons expressing BChE is increased 
and is associated with the formation of amyloid plaques. Inhibition of 
AChE and BChE can reduce the accumulation of Aβ and the 
formation of nerve fibrils and increase the level of ACh (Darvesh, 
2016; Gul et al., 2021).

7 Available treatments for AD, PD, 
and HD

Memantine enhances cholinergic signaling and inhibits glutamate 
overactivation through N-methyl-D-aspartate receptor inhibition in 
AD. Cholinesterase inhibitors like tacrine, donepezil, rivastigmine, 
and galantamine manage AD symptoms (Casey et al., 2010; Tang 
et al., 2023). Levodopa is a common PD treatment that stimulates 
dopamine receptors (Schapira, 2005).

The drugs olanzapine and haloperidol help to manage 
Huntington’s disease by decreasing chorea symptoms, while 
tetrabenazine works by reducing dopamine levels in the brain. These 
medications are crucial in alleviating motor symptoms and improving 
the quality of life for individuals with HD (Bonelli et al., 2004). The 
rising prevalence of neurological disorders, coupled with the limited 
availability of anti-amyloidogenic drugs, underscores the urgent need 
for innovative treatment approaches (Ghosh and De, 2020). In 
addition, given the side effects associated with existing treatments 
(Figure 1), the utilization of medicinal plants for treating AD and 
other diseases has been under consideration (Ovais et al., 2018).

8 Medicinal plants

Medicinal plants harbor bioactive compounds with potent 
pharmacological properties and minimal side effects (Table 1) (Hassan 
et al., 2022; Mishrikoti et al., 2022). Different plant parts, such as 
flowers, seeds, fruits, roots, leaves, and bark, are used in disease 
treatment, with extraction methods varying based on compound 
characteristics. For this purpose, polar and nonpolar solvents and 
methods such as sonication, Soxhlet extraction, and heating under 
reflux are utilized (Chandran and Abrahamse, 2020; Mishrikoti et al., 
2022). Secondary metabolites like sterols, polyphenols, lignans, 
flavonoids, alkaloids, triterpenes, and tannins from medicinal plants 
show efficacy in combating CNS-related diseases by targeting AChE, 
BChE, oxidative stress, and neuroinflammation (Gul et  al., 2021; 
Bakrim et al., 2022).

8.1 Flavonoids

Flavonoids are low molecular weight compounds obtained from 
various parts of plants such as roots, stems, and flowers, with over 
6,000 types identified. They exhibit therapeutic properties for ND by 
reducing cell death caused by inflammation through the modulation 
of MAPK pathways, Akt, and NF-κB. Flavonoids inhibit the 
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production of inflammatory cytokines, chemokines (Solanki et al., 
2016; Martano et al., 2022), ROS and RNS, and inhibition of lipid 
peroxidation. These compounds have been shown to improve 
memory, increase neurogenesis, and suppress cytochrome c oxidase 
activity (Solanki et al., 2016; Prasanna and Upadhyay, 2021; Martano 
et al., 2022). Additionally, flavonoids have protective effects on PD and 
HD, preventing the spread of Aβ peptides and neurotoxic aggregations 
(Ramirez-Nuñez et al., 2018).

Specific flavonoids like baicalein, catechin, epigallocatechin-3-
gallate (EGCG), fisetin, genistein, quercetin, and wogonin modulate 
neuroinflammation and reduce prostanoids levels. Genistein and 
silibinin inhibit AChE and BChE (Prasanna and Upadhyay, 2021).

Quercetin, in particular, has therapeutic properties for AD by 
removing free radicals and reducing inflammation. Quercetin is also 
a competitive inhibitor of AChE and BChE and inhibits them in a 
dose-dependent manner. Quercetin reduces the level of AChE in the 
hippocampus and increases it in the synaptic space by preventing the 
degradation of ACh (Testa et  al., 2014; Khan et  al., 2019; Liao 
et al., 2022).

Naringin is a member of the flavonoid group that is derived from 
various citrus fruits and Artemisia selengensis and it decreases the 
levels of IL-1β, TNF-α, malondialdehyde (MDA) and AChE and 
increases the levels of CAT, superoxide dismutase (SOD) and 
glutathione (GSH). This flavonoid improves mitochondrial and redox 
activity in the cerebral cortex and hippocampus (Sachdeva et al., 2014).

8.2 Phenols

Phenols are characterized by one or more aromatic rings with 
hydroxyl groups (Chandran and Abrahamse, 2020) and are part of a 
group of natural compounds known as polyphenols. These compounds 
possess anti-inflammatory, antioxidant, and anti-amyloid properties 
superior to synthetic compounds as part of a healthy diet (Velander 
et al., 2017). Phenolic compounds inhibit the secretion of IL-1β and 
TNF-α, induction of iNOS, production of NO, NADPH oxidase, and 
ROS while regulating the inhibition of pro-inflammatory transcription 

factors like NF-κB (Sharifi-Rad et al., 2022). Ellagic acid, a polyphenol 
derived from various plants (such as Rosa rugosa, Rubus chamaemorus, 
Rubus ursinus × Rubus idaeus, Rubus allegheniensis, and Rubus 
fruticosus) increases SOD levels, improves memory, inhibits tau 
hyperphosphorylation, and prevents Aβ toxicity (Ahmadi and Javid, 
2023). It also reduces Aβ plaques in the cingulate cortex, hippocampus, 
and entorhinal cortex (Rezai-Zadeh et al., 2008). Curcumin, another 
polyphenol, improves memory, prevents the progression of AD, and 
exhibits anti-Aβ and anti-inflammatory properties, reducing the 
inflammatory response caused by Aβ in microglia. This polyphenol 
inhibits the oxidative stress caused by Aβ by increasing SOD and CAT, 
maintaining the level of GSH and reducing MDA. In addition, 
Curcumin inhibits AChE in the cortex and striatum with a mechanism 
similar to AD drugs (Hamaguchi et al., 2010; Tang and Taghibiglou, 
2017; Chen et al., 2018).

8.3 Alkaloids

Alkaloids are compounds found in plants, mainly flowering 
plants, containing carbon, hydrogen, nitrogen, and, in most cases, 
oxygen. These compounds have anti-amyloid, anti-inflammatory, 
antioxidant, and neuroprotective properties, making them suitable 
and safe for treating neurodegenerative diseases (Hussain et al., 2018; 
Bakrim et al., 2022).

The alkaloid galantamine derived from Amaryllidaceae plants 
suppresses cytotoxicity and Aβ accumulation while stimulating ACh 
receptors. Juliflorine alkaloid derived from Prosopis juliflora leaves 
inhibits AChE and BChE (Hussain et al., 2018; Bakrim et al., 2022).

Berberine derived from the plants Argemone Mexicana, Berberis 
aquifolium, Berberis vulgaris, improves cognitive and motor skills and 
reduces levels of mutant protein huntingtin (Htt), NF-κB, α, IL 6, IL-8 
and oxidative stress caused by ROS and RNS in HD patients (Singh 
et al., 2022).

Alkaloid huperzine-A decreases the levels of mutant protein Htt, 
ROS, MDA, TNF-α and AChE and increases SOD, CAT and 
Glutathione Peroxidase (Gpx) in HD patients (Subaraja et al., 2024).

Memantine: effect on 2 of the 5 

AD neuropathological features 

(This drug enhancing 

cholinergic signaling and 

inhibition of glutamate

hyperactivation) (Tang et al. 

2023)

Tacrine: hepatotoxicity (Casey 

DA et al. 2010)

Donepezil, rivastigmine, and 

galantamine: hepatotoxicity, 

short half-life and cholinergic 

side effects (Castellani et al. 

2010)

Tetrabenazine: risk of 

dysphagia and death from 

pneumonia, insomnia, 

depression and parkinsonism

Haloperidol: no effect on 

movement disorders  (Bonelli 

et al. 2004)

Olanzapine: occurrence of 

dyslipidemia and 

hyperglycemia in high dose

(Venuto et al. 2012)

Levodopa: disease recurrence, 

presence of abnormal 

movements, drug resistance and 

drug-induced psychosis (Savitt 

et al. 2006)

Available medications for    

AD

Available medications for 

HD

Available medications for 

PD

FIGURE 1

Complications and limitations of drugs used for the treatment of AD, PD and HD.
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TABLE 1 Some plants and herbal compounds effective on ND.

Medicinal plants Mechanism of effect

Verbascum phoeniceum
 Inflammation and production of cyclooxygenase-1 (COX-1) and

COX-2 (de Rus Jacquet et al., 2017)

Boswellia serrata
 ACh

AChE levels

Improving motor ability, improving memory (Nemat A.Z. Yassin et al., 2013)

White Tea Inhibition of Aβ fibrillation (Li et al., 2019)

Bacopa monnieri
 Longevity and GPx, SOD, CAT, and GSH

 Irritability and insomnia, lipid peroxidation and protein oxidation

Improving memory (Jyoti and Sharma, 2006; Goswami et al., 2011)

Curcumin
 Body rotation, limb strength, muscle coordination, SOD, CAT,

GSH and dopamine D2 binding

Inhibition of AChE and inhibition of Aβ aggregation

TBARS (Mishra and Palanivelu, 2008; Khuwaja et al., 2011; Tang and Taghibiglou, 2017)

Vitis vinifera
 Formation of amyloid plaques, Tau tangles and oxidative stress

Anti-inflammatory, anti-acetylcholinesterase and

anti-amyloidogenic (Mishrikoti et al., 2022)

Vaccinium corymbosum L

Death of dopaminergic cells (Ríos et al., 2016)

Centella asiatica
 CAT and GSH

Oxidative stress, phospholipase A2 activity and MDA

Inhibition of AChE, prevention of Aβ toxicity and improvement of

age-related mood and cognitive disorders (Veerendra Kumar and Gupta, 2003; Rajamanickam and Manju, 2022)

Commiphora whighitii
 GSH

MDA and AChE

Improve memory (Saxena et al., 2007)

Achyranthes aspera Anti-inflammatory, antioxidant, anti-aging and free radical, AChE

and BChE inhibition (Ayeni et al., 2022)

Clitoria ternatea L.

ACh and AChE inhibition (Hassan et al., 2014)

Coriandrum sativum
 CAT, SOD and GSH

Improving memory, antioxidant and anti-inflammatory (Akram and Nawaz, 2017; Bhattacharya et al., 2022)

Withania somnifera
 SOD- 1, CAT and GSH

Stimulating axon and dendrite growth and preventing motor defects (Pérez-Hernández et al., 2016)

Glycyrrhiza glabra Prevention of neuronal death due to Aβ and effective in treating HD

and AD (Hassan et al., 2021)

Salvia officinalis
 Tau hyperphosphorylation and caspase 3 activation

Memory improvement, anti-inflammatory, antioxidant and AChE

Inhibitor (Jivad and Rabiei, 2014)

(Continued)
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Alkaloid derived from Piper longum, improves motor skills, 
increases dopaminergic neurons, SOD and GSH and decreases MDA 
level in patients with PD (Bi et al., 2015).

Alkaloids derived from the Crossyne flava, plant improve the 
morphology of neurons, inhibit ROS and apoptosis, and increase the 
level of adenosine triphosphate activity (ATP) in patients with PD 
(Omoruyi et al., 2021).

8.4 Terpenes

Terpenes represent the largest and most diverse group of secondary 
metabolites, consisting of simple hydrocarbons with multiple isoprene 
units. They exhibit various beneficial properties such as anti-cancer, anti-
hyperglycemic, anti-inflammatory, antioxidant, immune-modulating, 
and anti-cholinesterase effects. Terpenes are known for their 
neuroprotective properties (Lai Shi Min et al., 2022; Bakrim et al., 2022). 
The terpene derived from Alpinia oxyphylla Miq has a neuroprotective 
effect and aids in synthesizing and releasing neurotransmitters from 
neurons. The terpene derived from G. repens has an inhibitory effect on 
AChE and BChE. Terpenes derived from Nepeta obtusicrena inhibit 
AChE and exhibit therapeutic properties for AD (Bakrim et al., 2022).

9 Problems of using medicinal plants

The poor uptake of certain herbal compounds has posed 
challenges in their treatment applications. For instance, the polyphenol 
curcumin exhibits limited absorption and bioavailability in AD 
treatment (Abhishek et  al., 2023). The BBB is a semipermeable 
boundary consisting of endothelial cells, pericytes, astrocytes, and the 
basement membrane, serving as a protective interface between the 
CNS and peripheral circulation (Sahni et al., 2011; Nguyen et al., 2021; 
Bhattacharya et  al., 2022). This barrier impedes the delivery of 
treatments to brain neurons (Shabbir et al., 2020).

Suitable approaches to enhance bioavailability and traverse the 
BBB should be explored. To this end, employing innovative techniques 
like combining plant compounds with nanoparticles proves viable 
(Abhishek et al., 2023).

10 Nanoparticles

Nanoparticles (NPs) are sizes ranging from 10 to 100  nm, 
categorized into ceramic, metal, semiconductor, carbon-based, lipid-
based, and polymer groups based on their properties and structures. 
NPs possess small size, high reactivity, and a substantial surface-to-
volume ratio (Saratale et al., 2018; Fakhri et al., 2022). They exhibit 
stability in the body, efficient cellular uptake, and the ability to 
neutralize superoxide anion and H2O2, and are applications in wound 
dressing (Xing et al., 2014; Ko et al., 2022). Among the most utilized 
NPs in AD diagnosis and treatment are gadolinium NPs, Selenium 
NPs (SeNPs), AuNPs, polymeric NPs, and protein- and 
polysaccharide-based NPs (Gupta et al., 2019).

The attributes of NPs, such as extensive surface area, high cellular 
uptake capability, and prolonged circulation in the bloodstream, 
facilitate their passage through the BBB, enabling effective drug 
delivery to the brain. NPs target specific molecular mechanisms based 
on the type of disease, addressing cells or intracellular and extracellular 
molecules like Aβ plaques (Zhang et al., 2013; Shabbir et al., 2020; 
Martano et al., 2022). NPs are crucial in managing oxidative stress, 
apoptosis, and neuroinflammation in ND (Fakhri et al., 2022; Woon 
et al., 2022) (Figure 2).

NPs impact amyloid fibrillation and the degradation of mature 
protein fibrils through six mechanisms: 1. Enhancing 
bioavailability, leading to the dispersion of insoluble molecules in 
water and enhancing the stability of unstable chemical molecules; 
2. They are inhibiting protein aggregation during synthesis, 3. 
Facilitating high cellular uptake, 4. Leveraging the multivalence 
of NPs to enhance binding to protein aggregates, 5, mitigating 
toxicity induced by protein fibrils, 6 and ensuring precise targeting 
within the brain (Pradhan et  al., 2018). Cationic NPs are 
internalized by cells through uptake-mediated endocytosis, highly 
hydrophilic NPs through receptor-mediated endocytosis, small 
hydrophilic NPs through the paracellular pathway, and small 
lipophilic NPs through passive diffusion via intercellular pathways 
(Shabbir et  al., 2020). NPs can be  absorbed through nerve 
terminals in the airway epithelium and transported to CNS axons. 
Additionally, they can reach the CNS via the olfactory bulb nerves 
(Sahni et al., 2011).

TABLE 1 (Continued)

Medicinal plants Mechanism of effect

Hibiscus asper Improving memory and antioxidants (Ayeni et al., 2022)

Mucuna pruriens Neuroprotective and contains natural L-dopa (Mishrikoti et al., 2022)

Polygala tenuifolia Prevention of dementia and insomnia, inhibition of Aβ secretion and

strengthening of the central cholinergic system (Jivad and Rabiei, 2014)

Allium sativum Prevention of dementia, protection of dopamine levels and antioxidants (Bhattacharya et al., 2022)

Tinospora cordifolia

Learning, memory and acetylcholine synthesis (Hassan et al., 2014)

Celastrus paniculatus
 Noradrenaline and dopamine

Improving learning and memory and having an antioxidant effect on the CNS (Jivad and Rabiei, 2014)

Ginkgo biloba Inhibition of Aβ aggregation and neuroprotection

MDA (Malik et al., 2013)

Galanthus nivalis Memory improvement, neuroprotection and AChE inhibition (Bhattacharya et al., 2022)

https://doi.org/10.3389/fnins.2024.1453499
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Izadi et al. 10.3389/fnins.2024.1453499

Frontiers in Neuroscience 07 frontiersin.org

Various methods exist for synthesizing NPs. Physical methods 
encompass mechanical milling, laser ablation, sputtering, plasma 
arching, and chemical etching. In contrast, chemical methods include 
the sol–gel method, electrolytic deposition, chemical vapor deposition, 
microemulsion route pyrolysis, and green synthesis methods 
involving microorganisms, enzymes, and plant extracts (Garg 
et al., 2021).

11 Green synthesis

Synthesizing NPs via chemical methods can be  toxic, while 
physical methods require high energy consumption. Both physical 
and chemical methods raise environmental concerns, making the 
green synthesis method appealing due to its safety, environmental 
friendliness, and low toxicity advantages (Rai et al., 2013; Saratale 
et al., 2018; Mikhailova, 2021). Biogenic nanoparticles can be readily 
functionalized with targeting ligands or therapeutic agents, facilitating 
precise targeting and delivery to cancer cells (Chaturvedi et al., 2023).

Key factors like temperature, time, reactant concentration, 
environmental conditions, pore size, and pH significantly influence 
the morphological properties of NPs. For instance, physical and 
chemical methods typically operate at high temperatures (> 350°C for 
physical methods and < 350°C for chemical methods), whereas the 
green synthesis method occurs at lower temperatures (≤ 100°C) 

(Bahramikia and Izadi, 2023). In green synthesis, photoautotrophic 
eukaryotes like microbes, algae, and plants can be utilized. Employing 
microorganisms for green synthesis is viable due to its safety and cost-
effectiveness. Microorganisms exhibit selective metal ion absorption 
and can function under various ionic, temperature, and pH conditions. 
Different microorganisms, including fungi, bacteria, and yeasts, can 
be us for green synthesis (Saratale et al., 2018).

Algae, serving as blue photoautotrophs, are primary producers in 
green synthesis environments. They have been instrumental in 
synthesizing AuNPs, AgNPs, CuNPs, ZnNPs, ZnONPs, and CuONPs. 
For instance, Sargassum wightii algae has been utilized for extracellular 
AuNP synthesis (Saratale et al., 2018).

Using plant extracts for green synthesis of metal and metal oxide 
NPs is one of the simplest methods for green synthesis. Plant extracts 
containing ketones, aldehydes, flavonoids, amides, terpenoids, phenols, 
carboxylic acids and ascorbic acids are used for green synthesis 
(Bhattacharya et al., 2022). NPs synthesized through green methods 
find applications in treating various diseases like cancer, diabetes, and 
bacterial infections, showcasing antioxidant and anti-inflammatory 
properties (Bahramikia and Izadi, 2023) Ag NPs and Au NPs showed 
promising results against a human colon cancer cell line. These NPs 
reduced the proliferation of a cancer cell line by generating a large 
amount of intracellular ROS (Chaturvedi et  al., 2020). Oyster 
mushroom mediated bimetallic Au-Pt nanoparticles exhibited 
apoptotic activity on the human colon cancer cell line in a 
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FIGURE 2

Anti-apoptotic, antioxidant, anti-inflammatory, anti-cholinesterase effects and other mechanisms of NPs in ND (Ovais et al., 2018; Fakhri et al., 2022; 
Woon et al., 2022; Behera et al., 2023).
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dose-dependent manner (Chaturvedi et al., 2021a). In addition, oyster 
mushroom mediated Au–Pt–Ag trimetallic nanoparticles successfully 
killed triple-negative breast cancer cells with superior IC50 values 
(Chaturvedi et al., 2020).

11.1 Metal NPs and metal oxide synthesized 
with medicinal plants and their compounds

Numerous metal NPs have been developed for drug delivery, with 
AuNPs and AgNPs being the most prevalent in biomedicine (Jabbar 
et al., 2018). Metal NPs and metal oxides exhibit anti-inflammatory 
properties (Xing et al., 2014; Ko et al., 2022). Notably, AuNPs, AgNPs, 
CuNPs, SeNPs, ZnONPs, magnesium oxide NPs (MgONPs), Cerium 
oxide NPs (CeONPs), and FeONPs possess anti-inflammatory 
attributes and demonstrate effectiveness in AD treatment (Fakhri et al., 

2022). AuNPs inhibit tau hyperphosphorylation, alter the secondary 
structure of Aβ, enhance memory, reduce H2O2, and elevate CAT, SOD, 
and GSH levels (Lee et al., 2014; dos Santos Tramontin et al., 2020). 
Silver, gold, and many other nanoparticles effectively prevent 
progressive neurodegeneration in PD (Chaturvedi et al., 2021a). Various 
studies have demonstrated the potential benefits of NPs synthesized 
with natural extracts in treating neurodegenerative diseases (Table 2).

11.2 Polymeric NPs synthesized with 
medicinal plants and their compounds

Polymeric drug carriers with nanometer sizes are being explored for 
their advantageous properties, including high drug-carrying capacity, 
stability, solubility, targeted tissue absorption, controlled drug release, and 
suitability for hydrophilic and hydrophobic compounds (Naseri et al., 

TABLE 2 Metal NPs treatments synthesized by green method for ND.

Medicinal plants and metal NPs Mechanism of effect

Terminalia arjuna bark + AuNPs Inhibit the DPPH free radical and AChE, and BChE, preventing protein misfolding and fibrillation, formation of Aβ 

plaque (Suganthy et al., 2018)

Aquilegia pubiflora + AgNPs. Inhibitory effects on AChE, BChE, COX-1, and COX-2 enzymes

Total reduction power (TRP), total antioxidant capacity (TAC), ABTS, DPPH, and free radicals scavenging assays 

(FRSA) (Jan et al., 2021b)

Prosopis cineraria (L.) + ZnONPs Inhibitory effects on DPPH and AChE and improved memory

 SOD, CAT, and GPx (Yadav et al., 2018)

Rosa petal + AgNPs Inhibit Aβ aggregation, protecting astrocytes from toxicity (Rauf et al., 2022)

N. khasiana leaf + AgNPs Inhibit ROS production, and improve oxidative stress

 Memory, activate mitochondria (Zhang et al., 2020)

Lampranthus coccineus and Malephora 

lutea + AgNPs

Antioxidant

AChE and MDA

 GSH (Youssif et al., 2019)

Convolvulus Pluricaulis + FeONPs

Learning, memory and CAT

 AChE and MDA (Poka et al., 2017)

Millettia pinnata flowers + AgNPs

AChE and BChE (Rajakumar et al., 2017)

Paeonia moutan root + AuNPs

IL-1β, IL-6, TNF-α, ROS, NO, COX-2, iNOS, and prostaglandin E2 (PGE2)

 Dopamine levels, tyrosine hydroxylase enzyme activity, motor coordination, and step length distance (Xue et al., 2019)

Curcumin + Fe3O4 carbon dotsNPs

Inhibit ROS production and formation and aggregation of Aβ42 fibrils

Aβ-induced toxicity (Kuang et al., 2020)

Sabal blackburniana fruit and leaf + ZnONPs Inhibition of AChE (El-Hawwary et al., 2021)

Bacopa monnieri + platinum NPs (PtNPs)

GPx, SOD, CAT, and GSH, dopamine, dihydroxyphenylacetic acid and homovanillic acid

 MDA and ROS (Nellore et al., 2013)

Aquilegia pubiflora leaf + ZnO-NPs

Inhibited AChE and BChE

TRP, TAC, FRSA, and DPPH secretory phospholipase A2 (sPLA2), 15-LOX, COX-1, and COX-2 (Jan et al. 2021a)
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2022). These polymeric NPs can traverse the BBB and hold promise for 
treating neurodegenerative diseases such as AD (Gupta et al., 2019). 
Various studies have investigated the application of polymeric NPs for 
treating neurological diseases, including AD (Table 3).

11.3 Other NPs synthesized with medicinal 
plants and their compounds

Other NPs synthesized using medicinal plants and their 
compounds have shown promising effects in various studies (Table 4).

12 Conclusion

Bioactive molecules such as sterols, polyphenols, lignans, flavonoids, 
alkaloids, triterpenes, and tannins, which are abundant secondary 
metabolites in the diet, have been utilized to treat CNS-related diseases. 
These secondary metabolites have demonstrated inhibitory effects on 
Aβ, toxicity induced by AChE, BChE, oxidative stress, and 
neuroinflammation (Gul et al., 2021; Bakrim et al., 2022). The unique 
characteristics of NPs, including their large surface area, high cellular 
uptake capacity, and prolonged presence in the bloodstream, enable 
them to traverse the BBB and efficiently deliver drugs to the brain. NPs 

can target specific molecular mechanisms based on the type of disease, 
addressing cellular, intracellular, or extracellular targets such as Aβ 
plaques (Zhang et al., 2013; Shabbir et al., 2020; Martano et al., 2022). 
Using plant extracts for green synthesis of metal and metal oxide NPs is 
one of the simplest methods for green synthesis. Plant extracts containing 
ketones, aldehydes, flavonoids, amides, terpenoids, phenols, carboxylic 
acids and ascorbic acids are used for green synthesis (Bhattacharya et al., 
2022). These green-synthesized NPs have been employed in treating 
various diseases, including cancer, diabetes, and bacterial infections, and 
have demonstrated antioxidant and anti-inflammatory properties 
(Bahramikia and Izadi, 2023). Additionally, metal NPs and metal oxides 
exhibit anti-inflammatory properties (Xing et al., 2014; Ko et al., 2022). 
Polymeric NPs, known for their ability to cross the BBB, hold the 
potential for treating neurodegenerative diseases such as AD (Gupta 
et  al., 2019). Furthermore, NPs synthesized via the green synthesis 
method offer diverse mechanisms for treating neurodegenerative 
diseases (Figure 3).

Author contributions

RI: Investigation, Writing – original draft. SB: Writing – review & 
editing, Project administration, Supervision. VA: Visualization, 
Writing – review & editing.

TABLE 3 Polymeric NPs treatments synthesized by green method for ND.

Medicinal plants and polymeric NPs Mechanism of effect

EGCG from green tea + NPs derived from dopamine 

functionalized polysuccinimide

Clearance of soluble mutant huntingtin

Inhibited Aβ fibrils and blocked polyglutamine of cells

Insoluble mutant Htt and Aβ-induced toxicity (Debnath et al., 2016)

Curcumin + chitosan-bovine serum albumin NPs
Promoted Aβ42 phagocytosis

 Macrophage polarization

IL-6, TNF-α, and TLR4, and phosphorylation of ERK, JNK, p38, and NF-κB (Yang et al., 2018)

Curcumin + ApoE3-mediated poly (butyl) cyanoacrylate NPs
 Protective Aβ-induced toxicity and antioxidant and anti-apoptotic

ROS and caspase 3 induced by Aβ (Mulik et al., 2010)

Curcumin + polylactic coglycolic acid NPs (PLGA NPs)

Size of amyloid aggregates

Antioxidant activity, neutralizing DPPH free radicals up to 60% bind to amyloid aggregates and reduce 

their size (Mathew et al., 2012)

Curcumin + PLGA NPs Facilitated sequestration and removal of Aβ, prevented the reduction of the number of synapses, and 

inhibited the activation of NF- κB (Barbara et al., 2017)

TABLE 4 Other NPs NPs treatments synthesized by green method for ND.

Medicinal plants and other NPs Mechanism of effect

Areca Catechu L leaf + hydroxyapatite NPs

AChE and BChE (Pradeep et al., 2022)

Curcumin-encapsulated solid lipid NPs

GSH, SOD, NADH dehydrogenase, cytochrome c oxidase, mitochondrial F1F0 synthase activity, average speed, and 

motor activity

 ROS, MDA, and walking angle (Sandhir et al., 2014)
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