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The interplay between long-term potentiation (LTP) and epilepsy represents

a crucial facet in understanding synaptic plasticity and memory within

neuroscience. LTP, a phenomenon characterized by a sustained increase in

synaptic strength, is pivotal in learning and memory processes, particularly in

the hippocampus. This review delves into the intricate relationship between LTP

and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin

to those seen in LTP contribute to the hyperexcitable state of epilepsy. This

state is conceptualized as a dysregulation between LTP and LTD (Long-term

depression), leading to pathologically enhanced synaptic efficacy. Additionally,

the role of neuroinflammation in both LTP and epilepsy is examined, highlighting

how inflammatory mediators can influence synaptic plasticity. The dual role

of neuroinflammatory pathways, enhancing or inhibiting LTP, is a focal area

of ongoing research. The significance of various signaling pathways, including

the MAPK, mTOR, and WNT/β-catenin pathways, in the modulation of synaptic

plasticity and their relevance in both LTP and epilepsy. These pathways

are instrumental in memory formation, consolidation, and epileptogenesis,

illustrating a complex interaction between cellular mechanisms in the nervous

system. Lastly, the role of calcium signaling in the relationship between

LTP and epilepsy is scrutinized. Aberrant calcium signaling in epilepsy leads

to an enhanced, yet pathologically altered, LTP. This dysregulation disrupts

normal neural pathways, potentially leading to cognitive dysfunction, particularly

in memory encoding and retrieval. The review emphasizes the need for

targeted interventions in epilepsy that address cognitive functions alongside

seizure control.
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1 Introduction

Long-term potentiation (LTP) stands as a fundamental concept
in neuroscience, pivotal for understanding the mechanisms of
synaptic plasticity and memory. Discovered in the early 1970s,
LTP is characterized by a sustained increase in synaptic strength
following a brief, high-frequency stimulation of afferent fibers (Bliss
and Lomo, 1973). This phenomenon, primarily observed in the
hippocampus, a brain region integral to learning and memory,
has been extensively studied to unravel the cellular and molecular
mechanisms underlying memory formation. LTP manifests in two
phases: an initial, transient phase (early LTP) that involves post-
translational modifications of proteins, and a late phase (late
LTP) that requires new protein synthesis and is associated with
structural changes at the synapse. Traditionally, LTP is considered
a postsynaptic mechanism; however, evidence suggests it may also
function as a presynaptic mechanism in specific regions, such as
CA3 of the hippocampus (Yang and Calakos, 2013; El Oussini et al.,
2023). The induction of LTP typically involves NMDA receptor
activation, leading to calcium influx and subsequent activation of
various kinases, which collectively contribute to the strengthening
of synaptic connections. The study of LTP has revolutionized our
understanding of how experiences can lead to lasting changes
in brain function, providing a cellular correlate for learning and
memory (Muller et al., 2002).

The relationship between LTP and epilepsy presents a
fascinating yet complex facet of neuroscience research. Epilepsy, a
disorder characterized by recurrent seizures, is thought to involve
alterations in synaptic plasticity mechanisms similar to those seen
in LTP. The hyperexcitable state in epilepsy can be conceptualized
as an imbalance in the normal processes of synaptic strengthening
(LTP) and weakening (long-term depression, LTD), leading to
a pathological enhancement of synaptic efficacy (Kopec et al.,
2007; Potter et al., 2010). This dysregulation may result in the
formation of hyperconnected networks that are more susceptible to
synchronized, seizure-like activity. Studies have shown that seizures
themselves can induce LTP-like changes in the brain, suggesting a
bidirectional relationship where not only does LTP contribute to
the development of epilepsy, but epileptic activity can also enhance
LTP mechanisms (Grosser et al., 2020).

The kindling model, initially described by Goddard et al.
(1969), further illustrates the connection between epilepsy and LTP.
Developed as an experimental approach to study LTP through
the repetitive application of subconvulsive electrical stimuli to
brain regions, kindling leads to progressive and spontaneous
seizure development (Goddard et al., 1969; Faas et al., 1996). This
model mirrors the synaptic strengthening seen in LTP and was
foundational in establishing the link between these phenomena.
The repetitive stimulation in kindling parallels the synaptic
enhancement observed in LTP, suggesting shared molecular and
cellular mechanisms (Roohi et al., 2021). The kindling model has
thus been pivotal in demonstrating how persistent LTP-like changes
can lead to the development of a hyperexcitable neuronal network,
shedding light on the dual roles of synaptic plasticity in both
cognitive processes and the pathogenesis of neurological disorders
(Danzer et al., 2010).

The focus of this review is to explore the intricate interplay
between epilepsy and LTP, with an emphasis on the intracellular

signaling pathways involved. By understanding these mechanisms,
we aim to identify potential targets that could modulate synaptic
plasticity, thereby preventing or reducing the frequency and
severity of seizures.

2 Neuroinflammatory pathway

Neuroinflammation, once primarily associated with
neurodegenerative diseases, is now recognized as a significant
factor in various neurological conditions, including epilepsy.
Recent research has begun to elucidate the complex role of
neuroinflammatory pathways in both LTP and epilepsy, revealing a
multifaceted relationship that influences neuronal excitability and
synaptic plasticity (Wang et al., 2010; Iwai et al., 2014).

Neuroinflammation involves the activation of glial cells,
including microglia and astrocytes. These cells release
inflammatory mediators such as cytokines and chemokines.
Acute neuroinflammation can be protective, facilitating adaptive
responses that support neural plasticity. However, chronic
inflammation typically impairs neuronal functions and survival.
Beyond their role in inflammation, astrocytes actively participate
in the synaptic environment that supports LTP. They interact with
neurons to regulate synaptic plasticity, not only by modulating
neurotransmitter clearance and ionic balance but also through
their own intracellular signaling pathways such as p38 MAPK.
This astrocytic signaling influences both excitatory and inhibitory
neurotransmission, crucial for the maintenance and modulation of
LTP (Navarrete et al., 2019). By expressing receptors and signaling
molecules involved in pathways such as p38 MAPK, astrocytes
respond to synaptic activity and environmental changes, thereby
directly influencing the dynamics of LTP (Arruda et al., 1998;
Kim et al., 2020). It has been shown that these neuroinflammatory
mediators can impact synaptic plasticity, enhancing or inhibiting
LTP. Proinflammatory cytokines such as IL-1, TNF, COX-2, and
HGMB significantly contribute to the physiopathology of epilepsy
(Sun et al., 2024). These cytokines can be produced both centrally
and peripherally and have been extensively studied as potential
therapeutic targets in epilepsy treatment (Jin et al., 2019; Li et al.,
2019; Wang et al., 2021). They modulate neuronal excitability
and synaptic function, which can exacerbate seizure activity and
contribute to the chronic nature of the disease.

Experimental findings in a study using C57BL/6 adult male
mice treated acutely with different doses of lipopolysaccharide
(LPS), an endotoxin, and ibuprofen (IBU), a nonselective
cyclooxygenase inhibitor, illustrate the dose-dependent effects of
inflammatory modulators on neural plasticity. Both LPS and IBU,
at higher doses, significantly decreased the amplitude of LTP,
Brain-Derived Neurotrophic Factor (BDNF) expression levels, and
phosphorylation of the AMPA receptor subunit GluR1, indicating
an impairment in synaptic plasticity regardless of whether the
inflammatory response was upregulated or downregulated (Golia
et al., 2019).

Moreover, neuroinflammation can alter synaptic plasticity
through the regulation of NMDA and AMPA receptors (Postnikova
et al., 2017; Sun et al., 2024). The release of proinflammatory
cytokines and chemokines may influence glutamatergic pathways
(Auvin et al., 2010), affecting the LTP. This suggests a complex
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FIGURE 1

Signaling cascades that facilitate the increased expression of N-Methyl-D-Aspartate (NMDA) receptors in response to stress stimuli and inflammatory
cytokines. These pathways involve the convergence of the c-Jun N-terminal Kinase (JNK) 1-3 and Mitogen-Activated Protein Kinase Kinase Kinase
(MAP3K) pathways, leading to the phosphorylation and nuclear translocation of p38 MAPKs (α, β, γ, δ) and the activation of transcription factors. The
subsequent upregulation of NMDA receptors enhances synaptic responsiveness to glutamate, resulting in elevated intracellular Ca2+ levels. This
calcium influx activates Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII), initiating a signaling cascade that culminates in the increased
expression of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) receptors, thereby promoting LTP.

interplay between inflammatory processes and synaptic changes in
the context of epilepsy. This relationship between LTP alterations
during epileptic seizures and neuroinflammation has yielded
conflicting results. Neuroinflammatory pathways are implicated
in various mood and behavioral disorders, more prevalent in
individuals with epilepsy than in the general population (Wang
et al., 2010). Studies have shown an increase in the hippocampal
mRNA expression of cytokines like IL-1β, IL-6, and TNF-a during
seizures, impacting learning and memory in mice (Han et al., 2016).
Interestingly, LTP was enhanced by anakinra, an anti-interleukin-1
receptor antagonist used in treating rheumatoid arthritis. This
suggests that specific cytokine pathways might have distinct
roles in modulating synaptic plasticity and cognitive functions
in epilepsy. Specifically, IL-1β, a well-known proinflammatory
cytokine, has been documented to inhibit the induction phase
of LTP in the hippocampus. This inhibition is mediated through
its action on calcium dynamics within neurons. IL-1β modulates
the influx of calcium through NMDA receptors, crucial for the
induction of LTP. It also activates stress-activated protein kinases
that interfere with synaptic strengthening, thus disrupting the early
phase of LTP, which relies on post-translational modifications of
existing synaptic proteins (Viviani et al., 2003; Tong et al., 2008).

Conversely, TNF-α has been shown to play a dual role in the
modulation of LTP. It can enhance LTP by increasing the surface

expression of AMPA receptors at synapses, which is essential for
the maintenance phase of LTP, characterized by sustained synaptic
strengthening. This effect of TNF-α promotes the consolidation
of synaptic efficacy. However, at high concentrations, TNF-α
contributes to excitotoxicity and impairs LTP by overactivating
glutamate receptors, thus highlighting its complex role in synaptic
plasticity (Beattie et al., 2002; Stellwagen and Malenka, 2006;
Figure 1).

In the broader context of neuroinflammation’s impact on
synaptic plasticity, it is also important to consider the specific
roles of NMDA receptor subunits in the induction of LTP. The
GluN2A subunit, typically localized synaptically, is instrumental
in LTP induction, whereas the GluN2B subunit, often found at
extrasynaptic sites, is associated with LTP depression (Parsons and
Raymond, 2014). Neuroinflammatory processes, particularly those
involving cytokines like IL-1β and the activation of pathways such
as PI3K/Akt, can influence the production and localization of these
subunits. For instance, increased IL-1β levels might lead to a rise in
GluN2B at extrasynaptic sites, potentially diminishing LTP (Li et al.,
2016; Delgado et al., 2018; Cianciulli et al., 2020). This connection
between neuroinflammatory signaling, receptor subunit dynamics,
and synaptic plasticity underlines the intricate interplay between
cellular mechanisms in epilepsy.
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FIGURE 2

This diagram represents a schematic overview of the MAPK pathway, comprising three principal activation branches: RTK, ERK, JNK activation
nodes. The binding of specific ligands to the RTK receptor initiates the phosphorylation of the RAS complex, subsequently activating the TPL2 factor.
This TPL2 factor then converges with the ERK pathway, sequentially activating MEK 1,2, ERK1,2, which translocates intranuclearly and stimulates
various transcriptional processes. External stress stimuli induce the activation of MTK1, DLK, TAO1/2 complexes leading to phosphorylation of JNK
1-3. JNK 1-3 operates at a nuclear level, modulating transcription factors. Furthermore, JNK receptor activation exerts downregulation effects on
various factors, including MAP3k and MKK3,6. This cascade culminates in the phosphorylation of p38 α,β,γ,δ, facilitating its nuclear translocation and
the regulation of multiple transcription factors. Regulatory negative feedback mechanisms interconnect the RTK, ERK, and JNK pathways, finely
tuning the cellular response to MAPK pathways by either downregulating or upregulating specific cellular processes. MAPK, Mitogen-activated
protein kinases; RTK, receptor tyrosine kinases; ERK, extracellular signal-regulated kinase; JNK, Janus kinases; TPL2, Tumor progression locus 2;
MEK1,2, Mitogen-Activated Protein Kinase Kinase 1 and 2; ERK1,2, Extracellular Signal-Regulated Kinase 1 and 2; MTK1, MAP3K Protein Kinase 1; DLK,
Dual Leucine Zipper Kinase; TAO1/2, Thousand And One Kinase 1 and 2; JNK1-3, c-Jun N-terminal Kinases 1, 2, and 3; MAP3K, Mitogen-Activated
Protein Kinase Kinase Kinase; MKK3,6, Mitogen-Activated Protein Kinase Kinase 3 and 6; p38, p38 Mitogen-Activated Protein Kinase α,β,γ,δ.

However, the role of neuroinflammation in LTP is not
straightforward, moderate levels of inflammatory mediators might
facilitate LTP, while excessive inflammation typically impairs
synaptic plasticity. This dual role is a key area of ongoing research
(Park et al., 2021).

The IL-1 receptor antagonists (IL-1Ra) represent a promising
therapeutic target and an area ripe for future research. These
antagonists can inhibit the action of IL-1β, which, in turn, may
restore normal synaptic plasticity and reduce the hyperexcitability
associated with seizures (Vezzani et al., 2011). By blocking IL-
1β signaling, IL-1Ra has the potential to significantly impact the
treatment of this condition.

3 MAPK pathway

The MAPK (mitogen-activated protein kinase) pathway plays
a significant role in the development and progression of epilepsy.
This pathway consists of three major branches: the extracellular
signal-regulated kinase (ERK) pathway, the p38 pathway, and the
C-Jun N-terminal kinases (JNK) pathway. These pathways are
important for cell signal transduction and respond to various
stimuli such as nutrition, growth factors, and neuronal activation
(Bolshakov et al., 2000; Khoshkhoo et al., 2023) (Figure 2).

In the context of epilepsy, the ERK pathway of MAPK
has been shown to stimulate the expression of N-methyl-D-
aspartate (NMDA) receptors, which leads to increased synaptic
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excitability and potentially seizures (Li et al., 2018a). Furthermore,
the ERK/MAPK pathway is involved in the induction of mossy
fiber sprouting, which is closely associated with epileptogenesis
(Nateri et al., 2007). Interestingly, the MAPK pathway responds to
different seizure-inducing treatments, suggesting its integral role in
epileptogenesis (Pernice et al., 2016).

Another aspect of the MAPK pathway in epilepsy is the
misregulation of RNA-binding proteins (RBPs). These proteins
play a key role in post-transcriptional gene expression, and the
MAPK pathway can influence their activity, which in turn affects
the expression of proteins involved in epilepsy (Pernice et al.,
2016; Gamarra et al., 2021). Additionally, specific RBPs such as
Pumilio-2 have been identified as being involved in epileptogenesis
(Follwaczny et al., 2017).

As a result, these altered mechanisms could be implicated in
cognitive impairment associated with epilepsy. The p38 MAPK
signaling pathway, in particular, modulates apoptosis and impairs
cognitive function in rat models of epilepsy (Huang et al., 2017;
Asih et al., 2020). This pathway is also associated with refractory
epilepsy, where certain inhibitors can reduce seizure frequency and
repair damaged hippocampal neurons.

Overall, the link between MAPK activation, LTP, and epilepsy
becomes particularly relevant when considering how seizures
themselves can induce synaptic changes akin to those seen
in LTP. Seizure activity often leads to excessive glutamate
release and NMDA receptor overactivation, which can trigger
the MAPK pathway. This seizure-induced activation of the
MAPK pathway may mimic or enhance the molecular processes
involved in LTP, potentially leading to the strengthening of
synaptic connections in a maladaptive way that promotes
further seizures. Conversely, the MAPK pathway’s role in LTP
suggests that modulating this pathway could help in normalizing
synaptic plasticity and potentially reduce the hyperexcitability
associated with epilepsy.

Overall, the MAPK signaling pathway is a pivotal element in
both LTP and epilepsy, establishing a critical link between these
two neurological processes (Huang et al., 2017). The activation of
the MAPK signaling cascade is fundamental to LTP, it begins with
synaptic activation, often initiated by experiential stimuli (Orban
et al., 1999). The entry of calcium through NMDA receptors is
a crucial step, leading to the activation of the MAPK pathway.
This pathway then phosphorylates various intracellular proteins (Li
et al., 2019), a process essential for the transcription of genes that
are vital for synaptic plasticity and memory consolidation (Yang
et al., 2022). Such plasticity enables the strengthening of synapses,
thereby facilitating the formation of long-lasting memories (Bohbot
and Corkin, 2007).

The MAPK cascade, including the ERK pathway, is involved
in hippocampal LTP, demonstrating a direct link between MAPK
activation and synaptic plasticity. This connection is important as
it underscores the role of the MAPK pathway not just in epilepsy
but also in the regulation of synaptic strength and plasticity, which
are fundamental to LTP.

In summary, the MAPK pathway plays a critical role in
epileptogenesis through its regulation of synaptic excitability and
plasticity. Its interaction with RBPs and influence on LTP highlight
the pathway’s importance in both the development of epilepsy and
the mechanisms underlying synaptic strengthening and learning
processes. Understanding the dual role of the MAPK pathway in

both promoting physiological synaptic plasticity and contributing
to pathological changes in epilepsy underscores its potential as a
therapeutic target. Inhibitors of the MAPK pathway may not only
dampen the hyperexcitable network characteristics of epilepsy but
also help in modulating synaptic plasticity toward a more stable and
less excitable state.

4 mTOR signaling pathway

The mammalian target of rapamycin (mTOR) pathway is a
critical signaling cascade primarily associated with cell growth and
proliferation. It influences a range of cellular processes including
protein synthesis, transcription, angiogenesis, and autophagy
(Wullschleger et al., 2006; Guertin and Sabatini, 2007; Bové et al.,
2011). In the nervous system, the mTOR pathway assumes a pivotal
role, extending beyond more cell proliferation. It is instrumental in
the proliferation of neural stem cells, the assembly and maintenance
of neural circuits, and the regulation of complex behaviors (Tang
et al., 2014; Figure 1).

In the realm of cognitive neuroscience, the mTOR pathway
influences the late LTP, which is crucial for the long-term
consolidation of memory. Hyperactivation of the mTOR pathway,
as seen in conditions like tuberous sclerosis, leads to abnormal
LTP in the hippocampal area CA1. This abnormality manifests as
deficits in learning and memory storage, specifically impacting the
phase where information is stored rather than the ability to relate
information (Joinson et al., 2003; Lee et al., 2012). This indicates
that mTOR’s role in LTP is not just in the formation of memory but
also in its stabilization and long-term retention.

The mTOR pathway also plays a significant role in epilepsy
and epileptogenesis. Abnormal activation of the mTOR pathway
contributes to a heightened excitability. In conditions like tuberous
sclerosis and epileptic encephalopathy, dysregulation of the mTOR
pathway leads to increased cell proliferation and heightened
neuronal excitability, mediated by the upregulation of receptors for
excitatory neurotransmitters such as glutamate (De Fusco et al.,
2020). This increased excitability is a key factor in the development
of epilepsy. Moreover, the mTOR pathway can be altered by genetic
mutations, brain lesions, or environmental factors, which can act
as epigenetic influencers (Blümcke et al., 2011; Epi4K Consortium
et al., 2013).

Experimental research has shown that mTOR inhibitors could
have therapeutic potential in epilepsy treatment. These inhibitors
are being studied for their antiseizure, antiseizure properties
(Cho, 2011). The potential for mTOR inhibition in preventing
epileptogenesis, particularly in the context of tuberous sclerosis and
other common acquired epilepsies, is a significant area of research.
Moreover, mTOR inhibitors have shown promise in modulating
epileptogenesis, seizures, and even depressive behavior in genetic
rat models of absence epilepsy (Russo et al., 2013).

On the other hand, there have been experimental studies
exploring the relationship between the mTOR pathway and LTP.
One study focused on how ERK regulates the PI3K–mTOR pathway
in LTP. It demonstrated that LTP-inducing stimulation increases
dendritic translational capacity, involving the convergent effects of
PI3K and ERK at the level of PDK1 (Tsokas et al., 2007). Therefore,
it supports the idea that the mTOR pathway plays a critical role in
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the molecular processes underpinning LTP, particularly in terms
of protein synthesis and dendritic translational capacity, essential
to cognitive processes in the brain (Tsokas et al., 2007; Lee et al.,
2012).

The interplay between the mTOR pathway in LTP and
epilepsy presents several intriguing questions. Key areas needing
further exploration include the mechanisms of mTOR pathway
dysregulation in epilepsy, the long-term impact of mTOR inhibitors
on cognitive functions, the role of the mTOR pathway in different
types of epilepsy, the genetic factors linking mTOR pathway
alterations to LTP and epilepsy, the influence of mTOR on
other forms of synaptic plasticity like LTD, and comparative
analyses of mTOR pathway effects in healthy versus epileptic brain
tissues. Addressing these gaps could unveil new therapeutic targets
and deepen our understanding of the mTOR pathway’s role in
brain functions.

Finally, the mTOR pathway represents a shared mechanism
between LTP and epilepsy, primarily through its regulation of
neuronal excitability and synaptic plasticity. In the context of
LTP, the mTOR pathway is essential for synaptic consolidation
and memory formation. Conversely, in epilepsy, dysregulation
of this pathway leads to increased neuronal excitability and
seizure activity. This dichotomy illustrates the pathway’s dual
role in synaptic function: facilitating memory formation and
consolidation in a healthy nervous system and contributing
to seizure susceptibility and neuronal hyperexcitability in
pathological conditions.

mTOR inhibitors, currently used in the treatment of TSC
(tuberous sclerosis complex) and other mTOR-related pathologies,
have shown promise in reducing seizure frequency and severity
by normalizing synaptic protein synthesis and reducing aberrant
neuronal growth. These effects also suggest potential benefits in
normalizing LTP processes, potentially restoring normal memory
and learning mechanisms that are often impaired in patients with
epilepsy (Curatolo and Moavero, 2012; Rehbein et al., 2021; Luo
et al., 2022).

5 Wnt/B-catenin pathway

The WNT/β-catenin signaling pathway is fundamental to
various physiological processes within the nervous system,
including neuronal development, synaptic plasticity, and
neurogenesis (Hodges and Lugo, 2018). This pathway involves
the binding of WNT proteins to Frizzled receptors, leading to
the stabilization of β-catenin in the cytoplasm. Accumulated
β-catenin then translocates to the nucleus, where it interacts with
TCF/LEF transcription factors to regulate gene expression. This
regulation is essential for various aspects of neuronal development,
such as differentiation, axonal guidance, and the formation and
remodeling of synapses (Freese et al., 2010). The pathway’s role
in shaping neural circuitry and influencing synaptic architecture
underscores its importance in the overall functionality and health
of the nervous system (Figure 3).

In the context of LTP, the WNT/β-catenin pathway plays a
crucial role in memory formation and consolidation (Cardamone
et al., 2014). The pathway’s influence on synaptic plasticity is
particularly significant in the strengthening and formation of
synaptic connections, which are key processes in the establishment

and maintenance of long-term memory. Activation of WNT
signaling can enhance synaptic transmission and facilitate the
remodeling of synapses, crucial for the consolidation phase of
memory (Bailey et al., 2015). This suggests that the WNT/β-catenin
pathway is not only involved in the structural aspects of synaptic
connections but also in the functional enhancement of synaptic
efficacy, which is a hallmark of LTP.

The WNT/β-catenin pathway has been implicated in the
development and progression of epilepsy (Chen et al., 2006).
Epileptogenesis involves abnormal neuronal activity and network
synchronization. Aberrant activation of the WNT/β-catenin
pathway may contribute to this process. Studies have shown that
this pathway is upregulated in animal models of epilepsy and
in human epileptic brain tissues (Qu et al., 2017; Jean et al.,
2022). This upregulation is associated with increased neurogenesis,
axonal growth, and synaptic plasticity, potentially leading to
the formation of aberrant neural circuits that underlie epileptic
seizures. Furthermore, mutations in genes encoding proteins of
this pathway can disrupt its balance, leading to altered neuronal
function and increased seizure susceptibility (Deisseroth et al.,
2004; Ming and Song, 2005).

There are several genes involved in the WNT/β-catenin
pathway that have been implicated in epilepsy. Some of these genes
are:

1. CTNNB1: This gene encodes β-catenin, a protein that plays
a critical role in the WNT/β-catenin pathway. Mutations in
CTNNB1 have been associated with focal cortical dysplasia, a
common cause of intractable epilepsy (Jessberger et al., 2005;
Pecoraro et al., 2017).

2. APC: The adenomatous polyposis coli (APC) gene is a
negative regulator of the WNT/β-catenin pathway. Mutations
in APC have been linked to familial adenomatous polyposis,
a hereditary cancer syndrome that is also associated with an
increased risk of epilepsy (Blake et al., 2000).

3. TSC1 and TSC2: TSC is a genetic disorder that can cause
epilepsy, among other symptoms. Mutations in the TSC1 and
TSC2 genes lead to overactivation of the mammalian target of
rapamycin (mTOR) pathway, which can in turn dysregulate
the WNT/β-catenin pathway (Mak et al., 2005).

4. GSK-3β: Glycogen synthase kinase-3β (GSK-3β) is a negative
regulator of the WNT/β-catenin pathway. Inhibition of GSK-
3β activity has been shown to have anticonvulsant effects in
animal models of epilepsy (Urbanska et al., 2019).

5. LEF1 and TCF7L2: These genes encode transcription factors
that interact with β-catenin to regulate gene expression in the
WNT/β-catenin pathway. Polymorphisms in these genes have
been associated with an increased risk of epilepsy (Atkinson
et al., 2015; Pirone et al., 2017).

It is important to note that the exact roles of these genes
in the pathogenesis of epilepsy are not fully understood and
may vary depending on the specific type of epilepsy and the
underlying genetic and environmental factors involved (Guo et al.,
2017).

The WNT/β-catenin pathway represents a shared mechanism
between LTP and epilepsy through its regulation of synaptic
plasticity and neuronal development. In LTP, the pathway facilitates
synaptic strengthening and memory consolidation, essential for
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FIGURE 3

This figure illustrates the (a) activated and (b) deactivated states within the canonical Wnt signaling pathway. The Wnt protein engages with the
extracellular N-terminal region of the Fz receptor family, which consists of a 7-transmembrane domain receptor. Mediation of the Wnt signaling
pathway necessitates the involvement of the LRP. In the absence of Wnt coupling to Fz, β-catenin undergoes phosphorylation, marking it for
ubiquitin-mediated degradation. This phosphorylation event is specifically mediated by GSK3 within a complex that includes Axin, APC, and CK1α.
The binding of Wnt to the receptor results in the downregulation of the Axin, APC, GSK3, and CK1α complex. This inhibition of β-catenin
phosphorylation allows its translocation into the cellular nucleus, where it associates with TCF/LEF factors, thereby augmenting the transcriptional
activity of various genes. Fz, Frizzled; LRP, low-density lipoprotein receptor-related protein; GSK3, glycogen synthase kinase 3; APC, adenomatous
polyposis coli; CK1α, Casein Kinase 1 alpha; TCF/LEF, T-cell factor/lymphoid enhancer factor.

long-term memory formation. In epilepsy, however, dysregulated
WNT/β-catenin signaling contributes to abnormal neurogenesis
and synaptic remodeling, leading to increased neuronal excitability
and seizure susceptibility. This shared mechanism highlights the
pathway’s dual role in synaptic function: promoting memory
formation in a healthy nervous system and contributing to the
pathogenesis of epilepsy in a dysregulated state. Several studies
have investigated the role of specific WNT/β-catenin pathway
components in memory formation and consolidation. For instance,
knocking out β-catenin in the hippocampus impairs contextual
fear memory in mice, yet it does not lead to changes in seizure
development (Zhu et al., 2020; Mercier et al., 2022). Similarly,
inhibition of GSK-3β, a negative regulator of the WNT/β-catenin
pathway, has been shown to enhance spatial memory in rats (Ge
et al., 2020; Mercier et al., 2022).

Other studies have investigated the role of specific WNT/β-
catenin target genes in memory formation and consolidation.
For example, knockout of the WNT/β-catenin target gene
cyclin D1 impairs LTP and spatial memory in mice (Ge

et al., 2020; Mercier et al., 2022). Similarly, knockout of the
WNT/β-catenin target gene c-myc impairs contextual fear memory
in mice.

Furthermore, dysregulation of the WNT/β-catenin pathway
has been implicated in the pathophysiology of several
neurodegenerative diseases that are associated with memory
deficits, including Alzheimer’s disease and Huntington’s disease
(Morimoto et al., 1990; Zhu et al., 2020). In Alzheimer’s disease,
dysregulation of the WNT/β-catenin pathway has been shown
to contribute to the formation of amyloid-β plaques, which are
a hallmark of the disease. In Huntington’s disease, dysregulation
of the WNT/β-catenin pathway has been implicated in the
pathogenesis of the disease (Morimoto et al., 1990).

Modulating the Wnt/β-catenin pathway could normalize the
changes in synaptic plasticity and neurogenesis associated with
epilepsy. For instance, inhibitors of GSK-3β, a negative regulator
of the Wnt pathway, have shown potential in reducing seizure
susceptibility and modulating synaptic plasticity (Engel et al., 2018;
Jaworski, 2020).
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6 Ca2+ dysregulation

In the epileptic brain, the crux of the matter lies in the
aberrant calcium signaling which leads to pathologically enhanced
LTP. This enhancement is not merely a quantitative increase in
synaptic strength, but qualitatively different from normal LTP, often
involving distinct molecular pathways and synaptic changes (Taheri
et al., 2023; Romagnolo et al., 2024).

Calcium channels, particularly those affected by genetic
mutations, are critical in the pathogenesis of epilepsy. Mutations
leading to gain-of-function or loss-of-function in these channels
can drastically alter calcium dynamics within neurons. Gain-
of-function mutations increase calcium influx, causing elevated
intracellular calcium levels, which in turn can excessively activate
calcium-dependent pathways involved in LTP. This leads to an
aberrant enhancement of synaptic strength, contributing to the
hyperexcitable neuronal networks characteristic of epilepsy. On the
other hand, loss-of-function mutations decrease calcium influx,
altering neuronal excitability and potentially disrupting the normal
processes of synaptic plasticity (Hashimotodani et al., 2017; Li et al.,
2018b; Figure 1).

For instance, the altered expression or function of specific
calcium channels in epilepsy can lead to a sustained and
localized increase in intracellular calcium concentration. This can
aberrantly activate kinases like CaMKII, overdriving the synaptic
potentiation processes that underlie LTP (El Oussini et al., 2023;
Taheri et al., 2023).

The implications for memory are profound and complex. In
epilepsy, the dysregulated LTP disrupts the selective strengthening
of neural pathways. This disruption can lead to “noisy” neural
networks where non-essential or even erroneous connections are
potentiated, overshadowing or distorting the proper encoding of
memories. Moreover, the hyperexcitable networks formed as a
result of pathological LTP can interfere with the normal rhythms
and patterns of neural activity essential for memory consolidation
(Casasola et al., 2004).

In the realm of epilepsy, LTP, and calcium dysregulation,
several research gaps persist such as the specific impacts of these
disturbances on different types of memory, and the role of genetic
variations in calcium channel mutations. Additionally, there’s a
need to explore the long-term effects of calcium dysregulation
on neural plasticity and memory, develop therapeutic strategies
targeting these disturbances to improve cognitive functions in
epilepsy and investigate how calcium signaling interacts with other
molecular pathways in these contexts. Addressing these gaps could
enhance our comprehension and treatment of epilepsy and its
cognitive implications.

Therefore, while the fundamental mechanisms of LTP are
preserved in epilepsy, their alteration through dysregulated
calcium signaling leads to a paradoxical situation. The same
mechanism that underpins learning and memory becomes a
contributor to cognitive dysfunction, particularly in memory
encoding and retrieval. This nuanced understanding is crucial
for devising targeted interventions in epilepsy that address not
only seizure control but also the preservation and restoration of
cognitive functions.

7 Conclusion

In conclusion, the exploration of the mechanisms underlying
memory and epilepsy, particularly focusing on the hippocampus,
highlights a significant overlap in the molecular processes
involved in both phenomena. This overlap is evident in the
shared molecular mechanisms between kindled seizures and
LTP, both induced by similar neural activities. This interrelation
underscores the importance of understanding these parallel
mechanisms for better therapeutic approaches in epilepsy, aiming
not only at seizure control but also at mitigating cognitive
dysfunctions, especially in memory encoding and retrieval.
The similarities in the pathways governing memory formation
and epileptic activity point toward a complex but interlinked
neurobiological foundation, critical for developing more effective
treatments and understanding the cognitive challenges faced by
individuals with epilepsy.
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