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Turn off that night light! 
Light-at-night as a stressor for 
adolescents
Grace E. Guindon , Cloey A. Murphy , Maria E. Milano  and 
Joseph A. Seggio *

Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States

Light-at-night is known to produce a wide variety of behavioral outcomes 
including promoting anxiety, depression, hyperactivity, abnormal sociability, 
and learning and memory deficits. Unfortunately, we all live in a 24-h society 
where people are exposed to light-at-night or light pollution through night-
shift work  - the need for all-hours emergency services – as well as building 
and street-lights, making light-at-night exposure practically unavoidable. 
Additionally, the increase in screentime (tvs and smart devices) during the night 
also contributes to poorer sleep and behavioral impairments. Compounding 
these factors is the fact that adolescents tend to be  “night owls” and prefer 
an evening chronotype compared to younger children and adults, so these 
teenagers will have a higher likelihood of being exposed to light-at-night. 
Making matters worse is the prevalence of high-school start times of 8  am or 
earlier – a combination of too early school start times, light exposure during 
the night, and preference for evening chronotypes is a recipe for reduced and 
poorer sleep, which can contribute to increased susceptibility for behavioral 
issues for this population. As such, this mini-review will show, using both human 
and rodent model studies, how light-at-night affects behavioral outcomes and 
stress responses, connecting photic signaling and the circadian timing system 
to the hypothalamic–pituitary adrenal axis. Additionally, this review will also 
demonstrate that adolescents are more likely to exhibit abnormal behavior 
in response to light-at-night due to changes in development and hormone 
regulation during this time period, as well as discuss potential interventions that 
can help mitigate these negative effects.
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1 Introduction

One unfortunate here-to-stay part of modern life is exposure to light-at-night either 
through shift- work or exposure to artificial building lights and streetlights – light pollution 
– which can cause disruptions to the endogenous biological clock. The increased use of light-
emitting devices during the night, something prevalent among adolescents, also contributes 
to light-at-night exposure. Current research in humans of both biological sexes has consistently 
shown that exposure to light-at-night leads to abnormal behavior, including anxiety (Paksarian 
et al., 2020), depression (Helbich et al., 2020), social issues (Deibel et al., 2020), and exacerbates 
the symptoms of existing psychiatric disorders (Esaki et al., 2022). Studies using nocturnal 
rodents have corroborated the anti-social, anxiogenic, and depression-inducing effects of 
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light-at-night, similar to what was found in diurnal humans (Zhou 
et al., 2018; Michaud et al., 2022; Medeiros Contini and Seggio, 2023). 
Furthermore, the altered timing of light exposure disrupts melatonin 
secretion (a hormone that regulates sleep and its levels depressed by 
light-at-night) leading to increased cortisol during the night (Rahman 
et  al., 2019). These changes in mood due to light-at-night can 
be attributed to poorer sleep and increased stress responses. Therefore, 
minimizing light-at-night exposure is essential for preserving mental 
health and reducing the risk of the development of psychiatric 
disorders, particularly among adolescents, which exhibit increased 
evening preference and sensitivity to light-at-night.

1.1 The circadian timing system and 
connections to the HPA axis

Light exposure allows for the entrainment of circadian rhythm to 
the 24-h day. Morning light shifts the circadian timekeeping system 
earlier (phase-advance) and evening light shifts it later (phase-delay). 
The time at which the circadian system promotes sleep or wake can 
be influenced by internal factors (endogenous circadian period and 
circadian photosensitivity) as well as external factors (light exposure). 
The circadian timing system relies on the photopigment melanopsin 
(Opn4), rather than the visual photoreceptor rhodopsin, to relay light 
signals to the suprachiasmatic nucleus (SCN) through intrinsically 
photosensitive retinal ganglion cells (ipRGCs) in the 
retinohypothalamic tract. Within the SCN core, vasoactive intestinal 
peptide (VIP)-containing neurons receive direct retinal inputs, 
whereas the vasopressin (AVP)-containing neurons within the SCN 
shell receive GABAergic and VIP input from the core. Coupling the 
oscillatory network between core and shell generates self-sustaining 
pacemaker rhythms, with SCN outputs of VIP and GABA being sent 
to other hypothalamic nuclei, while GABA and AVP are sent as 
outputs to other parts of the brain (Figure 1A; Barko et al., 2019). 
Lastly, photic signals to the SCN core can directly affect circadian 
clock genes expression (e.g., period), leading to the determination of 
the phase of the mammal (Figure 1B).

Connections exist among the hypothalamic–pituitary–adrenal 
(HPA) axis and the circadian rhythm, both of which can be modulated 
by light exposure. For normal responses to stressors, corticotropin-
releasing hormone (CRH) from paraventricular nucleus of the 
hypothalamus (PVN) stimulates the pituitary gland to secrete 
adrenocorticotropic hormone (ACTH), which in turn prompts the 
adrenal glands to release cortisol (or the rodent equivalent 
corticosterone/cort; Figure 1A). Cort then binds to glucocorticoid 
receptors (GRs), which are expressed throughout the body, to regulate 
glucose metabolism and brain function during times of stress. Chronic 
stress, regardless of the source, is associated with increased CRH 
(Chappell et al., 1986). In both diurnal and nocturnal animals under 
normal lighting conditions, cort levels surge at the start of the active 
period to promote waking, then drop during the remainder of the day, 
starting to rise again immediately before the start of the active cycle. 
Recent studies illustrate that VIP-containing SCN-core neurons 
directly innervate the PVN and that VIP from the SCN is necessary 
to convey light cues to the PVN to regulate the HPA axis. Ablation of 
molecular clock in the PVN leads to desynchronization of CRH 
release (Jones et al., 2021). Silencing VIP during the early day increases 
corticosterone release later in the subjective day (Paul et al., 2020). 

A second pathway exists involving Neuromendin S (NMS) from the 
SCN to dopaminergic neurons in the PVN which can also regulate 
CRH levels. SCN NMS is upregulated under short-day photoperiods 
(<5 h), which activates dopaminergic PVN neurons and inhibits CRH 
production (Porcu et al., 2022). As such, the role of the SCN is to 
inhibit HPA axis activation after the cort surge at the start of the active 
period through the synchronization of PVN “core clock gene” 
rhythms, inhibiting CRH-producing neurons.

Under standard light:dark cycles, inhibitory and stimulatory 
signals from the SCN regulate the pineal gland so that melatonin is 
produced during the night. Melatonin is produced via SCN 
innervation of the PVN, initiating norepinephrine release, which then 
activates the pineal gland to synthesize melatonin. GABAergic signals 
from the SCN inhibit melatonin release from the pineal gland during 
the day via the PVN (Kalsbeek et al., 2000). At night, glutamatergic 
signaling from the SCN leads to melatonin synthesis and release 
(Perreau-Lenz et  al., 2004). Therefore, the SCN uses GABAergic 
daytime inhibitory signals and nighttime glutamatergic stimulatory 
signals on the PVN-pineal pathway – GABA responsible for the 
(daytime) inhibitory signal and glutamate for the (nighttime) 
stimulation and release of melatonin (Figure 1C). Melatonin also has 
a role in inhibiting the CRH-induced release of ACTH and cortisol 
(Tsukamoto et al., 2013), so when melatonin levels are low during 
morning light, the HPA axis can exert its effects. In turn, CRH from 
the PVN inhibits melatonin release from the pineal gland (Kellner 
et al., 1997) and stimulation of the PVN and CRH by GABAergic 
neurons in the SCN core promotes wakefulness (Ono et al., 2021).

Regardless of age, light-at-night increases both CRH and cort 
levels and the number of cells that produce them (Milosević et al., 
2005; Dulcis et al., 2013). Even short-term exposure to light-at-night 
(0.5–3 h) can lead to increased anxiety due to increased GRs and cort 
(Loh et al., 2008; Wang et al., 2023). Recent research also illustrates 
that the mood-altering effects of light-at-night are mediated through 
Opn4 inputs to the amygdala, the perihabenula nucleus of the 
thalamus, and prefrontal cortex (PFC; Fernandez et al., 2018; Li et al., 
2024a; Lazzerini Ospri et al., 2024). Additionally, individuals with 
mood disorders exhibit reduced nighttime melatonin secretion (Li 
et al., 2024b). In summary, research suggests a mechanism whereby: 
(1) the circadian timing system regulates the release of CRH from the 
PVN (and subsequently ACTH and cort) through photic signaling 
pathways, (2) evening light suppresses melatonin, which can stimulate 
nighttime HPA activation to promote wakefulness during the inactive 
phase, and (3) that exposure to light-at-night can lead to abnormal 
emotionality due to changes in the HPA axis, melatonin secretion, and 
the function of brain areas associated with mood regulation.

1.2 Adolescents have increased sensitivity 
to light-at-night

Adolescents are particularly prone to mood disruptions and 
increased stress due to light-at-night for several reasons related to 
their developmental stage and behavioral patterns. Evening light (both 
standard room-level light and dim-light through screentime) has 
greater delaying and suppression effects on melatonin in adolescents, 
indicating greater sensitivity to light-at-night compared to adults 
(Higuchi et al., 2014; Crowley et al., 2015; Figueiro and Overington, 
2016). Melatonin suppression is correlated with increased prevalence 
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and exacerbated symptoms of psychiatric disorders, which tend to 
present during adolescence, including bipolar disorder and depression 
(Chauhan et al., 2023). In animal models, exposure to light-at-night 
prior to adolescence can result in anxiety-like and depressive-like 
behaviors during adulthood, even when the evening light was 
removed (Borniger et al., 2014; Cissé et al., 2016; Chen et al., 2021). 
Adolescent exposure to light-at-night also leads to poorer memory, 
increased anxiety, and activation of the amygdala (Bonilla et al., 2024). 
In addition to altered melatonin secretion and sensitivity to light-at-
night, teenagers also exhibit altered phase and levels of cortisol, 
particularly during the morning surge to promote wakefulness 
(Carpenter et al., 2015). Adolescent girls with conduct disorder exhibit 
reduced morning cortisol levels compared to girls without conduct 
disorder, indicating a reduced or phase-delayed HPA axis (Helleman 
et al., 2023). Stressors also produce reduced morning cortisol secretion 
and dampened HPA axis function in response to aberrant light 
exposure in both teenagers (Chiang et al., 2016) and juvenile mice 
(Miller et  al., 2022). These results underscore the heightened 
vulnerability of adolescents to the adverse impacts of light-at-night on 
the regulation of the HPA axis, making them particularly susceptible 
to its effects in altering emotionality.

There is a propensity towards evening chronotypes in adolescence 
partially due to hormonally-driven changes in circadian rhythmicity, 
which is aggravated by a further delay in wakefulness due to their 
increased sensitivity to exposure to light-at-night (Hagenauer and Lee, 
2013). In particular, sex hormone increases during puberty is 
associated with increased evening preference in teenagers of both 
sexes, which is correlated with impaired mood (Dolsen et al., 2019). 
This change is driven by the timing of melatonin release (even if good 
light-hygiene is practiced), which occurs later in the evening in 
teenagers compared to pre-adolescence and adulthood, leading to 
delays in the timing of sleep–wake cycles, making adolescents feel 
more alert and less sleepy at night (Carskadon et al., 2004). Teenagers 
with rhythms delayed toward eveningness exhibit shorter melatonin 
secretion periods and increased risk of developing mood disorders 
(Jääkallio et  al., 2024). These studies all illustrate that adolescents 
exhibit an endogenous shifting towards eveningness compared to both 
younger children and adults, making them more likely to be exposed 
to light-at-night as well as being more sensitive to its negative effects.

Compounding the tendency for evening chronotypes, teenagers 
tend to stay awake later and sleep-in on the weekends, when free 
from mandatory school schedules, leading to further circadian 

FIGURE 1

Connections among the circadian pacemaker, pineal gland, and HPA axis. (A) Under standard light:dark cycles, the SCN receives photic signals through 
the RHT via specialized Opn4-containing retinal ganglion cells, which conveys glutamatergic signals to the SCN core (blue). The SCN core contains 
VIP-containing neurons, which express circadian clock genes in response to light input. The SCN shell contains AVP-containing cells, receives no 
retinal photic input, but receives GABA and VIP signaling from the core (red). GABAergic signals from the SCN shell inhibit the PVN, and AVP is used as 
outputs to synchronize peripheral oscillators (purple). Direct glutamate and VIP projections from the SCN core to the hypothalamic PVN also exist. 
Hypophysiotropic neurons within the PVN release CRH (black) activating the anterior pituitary to release ACTH (green) to modulate the adrenal gland 
to release cortisol/corticosterone. AVP outputs exert control over the HPA axis by regulating CRH, depending upon whether the animal is nocturnal 
(inhibition) or diurnal (stimulation), leading to release of cort at the beginning of the active phase (dashed purple). (B) Light via glutamatergic signaling 
leads to calcium entry and activation of CREB leading to the transcription of the period genes within the SCN core during the night. (C) The SCN sends 
excitatory glutamatergic signals to the PVN during the night which activates melatonin synthesis and release within the pineal gland. During the day, 
the SCN sends inhibitory GABA inhibit melatonin release. CRH from the PVN also inhibits melatonin via modulation of VIP. RHT, Retinohypothalamic 
tract; Glu, Glutamate; Opn4, Melanopsin; SCN, Suprachiasmatic Nucleus; VIP, Vasoactive Intestinal Peptide; AVP, Vasopressin; PVN, Paraventricular 
Nucleus of the Hypothalamus; CRH, Corticotropin Releasing Hormone; ACTH, Adrenocorticotrophic Hormone; CREB, cAMP response element 
binding protein.
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desynchronization in a way circadian scientists call “social jet-lag.” 
One study reported that teenagers had a school night bedtime 
approximately 22:30, but during the weekends it was delayed to after 
midnight with longer sleep; this alteration to the time and duration 
of sleep was associated with increased anxiety and depression 
(Zhang et al., 2017). The use of electronic devices during the night 
influences adolescent sleep timing and quality by inducing circadian 
phase-delays and exacerbating social jet-lag (Lemola et al., 2015; 
Hena and Garmy, 2020). Teenagers with mood disorders are 
especially prone to the adverse effects of light-at-night, as a recent 
study reported increased likelihood of shorter sleep duration and 
social jet-lag in clinically-depressed adolescents compared to 
individuals without depression (Tonon et al., 2022). The cumulative 
effect of these disruptions – altered melatonin levels, increased 
cortisol, and impaired emotional regulation – leads to chronic 
stress, further exacerbating sleep issues and leading to poor 
mental health.

1.3 Novel understanding of how 
light-at-night negatively affects mood in 
adolescence

Sleep and circadian disruption through exposure to light-at-night 
are associated with alterations in brain chemistry and structure, which 
can lead to abnormal behaviors. Variability in sleeping patterns, 
including social jet-lag, is associated with reduced white matter 
integrity within the superior longitudinal fasciculus and posterior 
thalamatic radiation, areas that modulate emotionality (Telzer et al., 
2015; Uy et  al., 2023). White matter integrity changes have been 
observed in people with mood disorders, including depression (Uy 
et  al., 2023). One possible reason for the reduced white matter 
integrity found in individuals with social jet-lag, mood disorders, and 
sleep issues through alterations in Brain-derived Neurotrophic Factor 
(BDNF). BDNF is known to have neuroprotective effects to white 
matter integrity (Husson et al., 2005; Weinstock-Guttman et al., 2007) 
and evidence illustrates that anti-psychotic drugs and antidepressants 
can ameliorate white matter lesions and increase myelination through 
the activation of BDNF pathways (Xiao et al., 2010; Sun et al., 2022). 
Meanwhile, light-at-night has been shown to reduce BDNF levels 
within the PFC (Capri et al., 2019), while increasing BDNF within the 
amygdala (Li et al., 2024a). As adolescence is a crucial period for brain 
development, particularly in areas involved in emotional regulation, 
light-at-night can impair the development and functioning of these 
regions, making adolescents more vulnerable to developing 
mood disorders.

Stressors can create increased inflammatory responses within the 
amygdala and PFC, which is associated with white matter lesions and 
mood disorders in adolescents (Thomas et al., 2021; Doney et al., 
2022; Poletti et  al., 2022). In rodents, light-at-night is known to 
produce increases to inflammatory cytokines in the amygdala and 
PFC, which is positively correlated with the intensity of behavioral 
issues (Walker et al., 2020; Kumari et al., 2021; Jerigova et al., 2023). 
Increased BDNF is associated with reduced inflammation in 
individuals with depression (Zhang et al., 2016), while reduced BDNF 
and increased inflammation are associated with exacerbated 
symptoms of mood disorders in adolescents (Karthikeyan et al., 2022). 
Therefore, reducing the amount of inflammation may be a method to 

alleviate some of the negative behavioral outcomes associated with 
mood disorders.

While numerous studies have linked the negative loop of the 
molecular clock (i.e., the BMAL/CLOCK regulation of period – 
Figure 1B) to mood disorders, recent work is linking the effects of 
light-at-night on the positive loop (regulation of BMAL1 via rev-erbα 
and rorα – Figure 2A) on mood and stress responses. Light-at-night 
decreases and alters rhythmicity of rev-erbα expression not only 
within the SCN, but also within areas that control emotionality, 
including other hypothalamic nuclei, the PFC, and the amygdala 
(Cissé et al., 2016; Otsuka et al., 2020). Part of the reason for this 
impaired emotionality seen in individuals exposed to light-at-night is 
due to the desynchronization of expression patterns of core clock 
mRNA and protein levels between the SCN and other brain areas, 
including the amygdala (Ikeno and Yan, 2016; Bonilla et al., 2024). 
Additionally, both rev-erbα knockout mice and knock-down of rev-
erbα are associated with increased anxiety-like, and depression-like 
behaviors, through modulation of dopaminergic and serotonergic 
signaling, neurotransmitter pathways associated with emotional 
health (Chung et al., 2014; Zhao and Gammie, 2018; Otsuka et al., 
2022; Chen et al., 2023). REV-ERB agonists also have anxiolytic effects 
(Banerjee et al., 2014). Connections exist between rev-erbα expression 
and the HPA axis, wherein GR agonists and stressors suppress rev-
erbα expression (Murayama et  al., 2019). Lastly, rev-erbα and 
inflammation are also connected as reductions in rev-erbα lead to 
increased inflammatory responses, while rev-erbα itself can reduce 
inflammation (Sato et  al., 2014; Figure  2B). Although these 
aforementioned studies provide good evidence for the potential 
therapeutic effects of targeting rev-erbα, very few studies have 
investigated the role of the positive loop of the molecular clock on the 
development of mood disorders and stress responses in adolescents, 
emphasizing the urgency of addressing this gap of knowledge 
specifically within this age group.

2 Discussion and conclusion

The first step to mitigating these issues is to reduce light exposure 
during the night. One study indicated that evening chronotype in 
adolescents is less severe in rural locations where there is less exposure 
to artificial light-at-night (Vollmer et al., 2012). Reducing light-at-
night is not as simple as it sounds, as adolescents face various 
psychosocial challenges, including academic pressures, social 
interactions, and athletic competitions which promote a trend toward 
eveningness. The best way to improve sleep and cognitive performance 
in teenagers during the day is to stop using screens after 9 pm (Perrault 
et al., 2019). Additionally, schools can add the biological and health 
consequences of light-at-night exposure to the curriculum, as 
preliminary evidence supports that students would be interested in 
pursuing methods that reduce light pollution (Yüzbaşıoğlu 
et al., 2020).

Early school start times force adolescents to wake up earlier than 
their biological clocks dictate, leading to sleep deprivation, social 
jet-lag, and stress. School start times of 8:30 am or later lead to 
improved academic performance, less sleepiness, and improved mood 
in high school students (Yip et al., 2022; Yeo et al., 2023). Longer 
school commute time is associated with increased HPA axis activation, 
particularly in adolescents with evening chronotypes 
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(Karan et  al., 2021). Additionally, later school start times can 
contribute to improved road safety, especially for adolescents 
(Bin-Hasan et al., 2020). Advocating for policy changes by involving 
key stakeholders, including parents, teachers, school administrators, 
and students, in the decision-making process and sharing success 
stories from other school districts that have implemented later high 
school start times and experienced positive outcomes could lead to 
this change (Watson et al., 2017). Delaying school start times also have 
positive economic impacts for both communities and students’ future 
salaries (Hafner et al., 2017). Though it may pose logistical challenges 
including interfering with extracurricular activities, transportation, 
and misaligning with parental schedules, solutions could be discussed 
to help convince stakeholders of the importance of making this change 
for adolescent well-being and success.

If school times were to start later, adolescents will have to resist 
the urge to stay-up later, thinking that they can compensate the 

later school day with a later bedtime, necessitating a discussion 
about the importance of good sleep hygiene with teenagers. Poor 
sleep hygiene is associated with mood disorders in adolescents 
(Short et al., 2020). One method in promoting sleep hygiene among 
adolescents is for caregivers to set an example by practicing healthy 
sleep habits themselves (Brand et al., 2009). Exposure to daytime 
light can help promote better sleep at night and lead to a phase-
advance that can prevent social jet-lag, and impairments in mood 
(Misiunaite et  al., 2020). Low-intensity exercise during the 
morning can also lead to phase-advances and improvements in 
mood, while sedentary lifestyles can exacerbate evening 
chronotypes in adolescents (Lang et  al., 2022). Exercise is 
associated with increases in BDNF and rev-erbα, enhanced sleep, 
and reduced inflammation, leading to improved mood (Brand 
et al., 2010; Dopp et al., 2012; Wunram et al., 2021; da Rocha et al., 
2022; Figure 2C).

FIGURE 2

Connections among neuronal health, rev-erbα, and light-at-night. (A) In the positive loop of the molecular clock under standard light:dark cycles, 
BMAL1 and CLOCK heterodimers bind to the E-boxes of the rev-erbα and rorα to promote their transcription. RORα induces bmal1 transcription, 
REV-ERBα represses bmal1 expression through activating or inhibiting RREs, respectively. Once translated, BMAL1 can form heterodimers with CLOCK 
to promote the transcription of CCGs, including period. (B) Light-at-night, HPA axis activation, and other stressors inhibit BDNF and rev-erbα, leading 
to poorer sleep, inflammation, and mood issues, each of which in turn can further exacerbate all three issues. (C) Exposure to morning light, high 
school start times of 8:30  am or later, and morning exercise leads to improved emotionality in adolescents through better sleep and reduced social 
jet-lag, reduced stress, and better academic performance. Both morning light and exercise increases and stabilizes BDNF and rev-erbα, leading to 
improved neuronal health in areas associated with mood regulation, including PFC. Exercise, BDNF and rev-erbα rhythmicity, are all positively 
correlated cognitive performance. Later school start times improves academic achievement, road safety, and economic outcomes for both students 
and their communities. Basic Helix-Loop-Helix ARNT Like 1 (BMAL1 also known as ARNTL); CLOCK, circadian locomotor output cycles kaput; REV-
ERBα (also known as nuclear receptor subfamily 1 group D member 1 or NR1D1); RAR-related orphan receptor alpha (RORα); CCG, Core Clock Genes; 
BDNF, brain derived neurotrophic factor; PFC, Prefrontal cortex.
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In conclusion, the relationship among adolescent mood, stress, 
and light-at-night, highlights the critical importance of ensuring 
proper sleep, health, and well-being for this age group. While the 
precise anatomic links among the HPA axis, the biological clock, and 
photic pathways are known, these studies have been conducted 
predominately using adult animal models, highlighting the need for 
additional preclinical studies which investigate the effects of aberrant 
light exposure on adolescent development. Reducing light pollution, 
particularly exposure to artificial light-at-night, plays a vital role in 
promoting healthy sleep patterns as adolescents are more sensitive to 
it. By implementing these strategies, adolescents can minimize their 
exposure to light-at-night and promote healthier sleep patterns and 
reductions in stress.
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