
TYPE Original Research

PUBLISHED 06 September 2024

DOI 10.3389/fnins.2024.1450640

OPEN ACCESS

EDITED BY

Thomas Nowotny,

University of Sussex, United Kingdom

REVIEWED BY

Yilin Sun,

Beijing Institute of Technology, China

Jiyong Woo,

Kyungpook National University, Republic of

Korea

*CORRESPONDENCE

Pablo Urbizagastegui

p.d.urbizagastegui@westernsydney.edu.au

RECEIVED 17 June 2024

ACCEPTED 12 August 2024

PUBLISHED 06 September 2024

CITATION

Urbizagastegui P, van Schaik A and Wang R

(2024) Memory-e�cient neurons and

synapses for

spike-timing-dependent-plasticity in

large-scale spiking networks.

Front. Neurosci. 18:1450640.

doi: 10.3389/fnins.2024.1450640

COPYRIGHT

© 2024 Urbizagastegui, van Schaik and Wang.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Memory-e�cient neurons and
synapses for spike-timing-
dependent-plasticity in
large-scale spiking networks

Pablo Urbizagastegui*, André van Schaik and Runchun Wang

International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behavior, and

Development, Western Sydney University, Kingswood, NSW, Australia

This paper addresses the challenges posed by frequent memory access during

simulations of large-scale spiking neural networks involving synaptic plasticity.

We focus on the memory accesses performed during a common synaptic

plasticity rule since this can be a significant factor limiting the e�ciency

of the simulations. We propose neuron models that are represented by

only three state variables, which are engineered to enforce the appropriate

neuronal dynamics. Additionally, memory retrieval is executed solely by fetching

postsynaptic variables, promoting a contiguous memory storage and leveraging

the capabilities of burst mode operations to reduce the overhead associated with

each access. Di�erent plasticity rules could be implemented despite the adopted

simplifications, each leading to a distinct synaptic weight distribution (i.e.,

unimodal and bimodal). Moreover, our method requires fewer average memory

accesses compared to a naive approach. We argue that the strategy described

can speed up memory transactions and reduce latencies while maintaining a

small memory footprint.

KEYWORDS

synaptic plasticity, large scale, neuromorphic computing, digital simulation, memory

architecture

1 Introduction

Evolution endowed neural systems with a level of complexity that is infeasible to

emulate in silicowithout trade-offs. For instance, human brains contain 86 billion neurons,

with a substantial metabolic cost of about 20% of the total body energy budget (Herculano-

Houzel, 2012). In addition to that, many synaptic connections between neurons, which

are a crucial part of neuroscience research, are not static; they are rather plastic entities

that change according to activity, thereby altering the dynamics of the associated networks

(Feldman, 2012). Aside from the sheer scale and dynamic nature of neural architecture,

neurons operate continuously, processing and transmitting information in real time.

Considering these complexities, alongside myriad other sources of intricacy within neural

systems, it is unsurprising that simulating even a small, simplified subset of these networks

on modern computers can become impractical, primarily due to the substantial memory

requirements involved.

One of the central complexities we addressed in this work revolves around

synaptic plasticity. Within this context, Spike-Timing-Dependent-Plasticity (STDP) holds

a prominent position. STDP represents a simple yet powerful plasticity rule that reproduces

numerous experimental findings in neurobiology (Bi and Poo, 1998; Markram et al., 2011).

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1450640
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1450640&domain=pdf&date_stamp=2024-09-06
mailto:p.d.urbizagastegui@westernsydney.edu.au
https://doi.org/10.3389/fnins.2024.1450640
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1450640/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

Nevertheless, its computational demands can present challenges

when translated into the digital realm.

To illustrate this, consider a network comprising N neurons.

In this scenario, an N × N crossbar structure is often employed

to store connectivity variables, such as synaptic weights. When a

neuron emits a spike, both outgoing and incoming connections

may necessitate updates, contingent upon the spiking activities of

post- and presynaptic neurons, respectively. Handling plasticity

operations related to outgoing connections is straightforward since

conventional memory arrays support parallel row-wise access (Seo

et al., 2011; Knight and Nowotny, 2018). In contrast, the column-

wise access (or “reverse” access, as opposed to “forward” access)

linked with incoming synapses is inefficient, frequently relying

on additional operations to pinpoint the connected presynaptic

neurons (Alevi et al., 2022) or allocating separate data structures

dedicated to these connections (Knight and Nowotny, 2018). These

processes, however, contribute to increased computation time and

expanded memory footprint (Pedroni et al., 2019).

Alternative crossbar architectures can be used to address these

inefficiencies in column-wise access, thereby promoting scalability

and on-chip learning (Seo et al., 2011; Frenkel et al., 2018).

Nonetheless, using a synapse crossbar has a drawback: nonexistent

connections within the network still occupy physical space. This

compromises silicon area and is particularly problematic for sparse,

recurrent networks (Pedroni et al., 2019). Instead of implementing

synapse crossbars or introducing dependencies on additional

state variables, alternative approaches focus on delaying weight

updates. For example, in neuromorphic boards such as SpiNNaker,

presynaptic spikes trigger acausal weight updates as usual, but

causal updates due to postsynaptic spikes occur only when another

presynaptic spike is delivered at the corresponding synapse (Diehl

and Cook, 2014, but see Bogdan et al. (2020), for a more current

implementation).With Loihi, Davies et al. (2018) defined a learning

epoch time, after which plasticity takes place. Pedroni et al. (2019)

pursued a similar approach and demonstrated that pointer-based

data structures, such as compressed sparse row, serve as efficient

alternatives for memory storage. More importantly, as previously

shown, the inefficiencies associated with reverse access required

by postsynaptic spikes can be circumvented by slightly delaying

weight updates. In other words, both causal and acausal updates

can be executed with forward access driven by presynaptic custom

events, provided that spike time information is adequately stored.

This strategy facilitates contiguous memory allocation, which leads

to improved memory access and faster simulation of Spiking

Neural Networks (SNNs; Bautembach et al., 2021). In essence,

more efficient methods of accessing memory in digital systems have

enabled a wealth of scalable and fast simulation platforms (Thakur

et al., 2018; Frenkel et al., 2023).

Research in computational neuroscience deals with highly

complex systems, so simulation strategies are not limited to

improving memory access efficiency. Simplifications are often

adopted to create tractable models that can be integrated into

large network models (Teeter et al., 2018; Chen et al., 2022;

Pagkalos et al., 2023). Importantly, simpler models can be exploited

to optimize a design. For instance, a shared update logic (e.g.,

exponential decay) allows a time-multiplexing scheme, which leads

to better resource utilization and scalability (Wang and van Schaik,

2018; Modaresi et al., 2023).

In this work, we delve into an innovative alternative to

STDP for digital hardware that enhances efficiency and scalability

and reduces memory footprint. We achieved this by enforcing

contiguous memory allocation and a reduced model complexity.

Specifically, we have devised a custom event mechanism that

facilitates weight updates (causal and acausal) with forward access

only. Since we were interested in the sparsity of more realistic

neuronal connectivity, we tackled a pointer-based structure for

weight storage. Furthermore, our investigation demonstrates the

feasibility of reducing the number of state variables used per neuron

for computing plastic changes, thus further increasing scalability.

Finally, we considered the implications of this reduction on the

network statistics.

2 Materials and methods

2.1 State variables

The simulations described here were carried out using Brian2

(Stimberg et al., 2019) with its graphics processing unit backend

(Alevi et al., 2022). The equations governing the membrane

potential (Vm) and postsynaptic potential (PSP) are

Vm[t + 1] = αmVm[t]+ αmdt
PSP [t]

τm
(1)

and

PSP [t + 1] = αsynPSP [t], (2)

respectively, where τm = 20 ms and τsyn = 5 ms. We adopted

αm = τm/(τm + dt), αsyn = τsyn/(τsyn + dt), and dt = 1 ms.

Equations 1, 2 represent simple dynamics of LIF neuron models

and current-based synapses. A spike is generated if the Vm >

Vthr = 20 mV, in which case Vm is set to Vreset = 0 mV and

the cell becomes refractory for 2 ms. A crucial distinction herein is

that the “ownership” of state variables was engineered to minimize

memory footprint. Specifically, instead of allocating one PSP for

each synaptic connection, our model assigns one for each neuron.

A presynaptic spike from an excitatory (inhibitory) neuron i

connected to a neuron j increments (decrements) the PSP value

according to the synaptic weight wji. Regarding synaptic plasticity,

changes in the strength of excitatory-excitatory connections wji

are regulated by the interaction between spikes and their timing

information. This information is stored in traces. Similarly to

other state variables, each neuron holds one trace x(t), which is

increased by 1x whenever this neuron emits an action potential.

The evolution of x over time can be defined as

x[t + 1] = αxx[t], (3)

where αx = τx/(τx + dt).

2.2 Plasticity implementation

In conventional STDP, wji can be updated as

wji =

{

wji − ηxj (4)

wji + ηxi, (5)

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

with a learning rate η and state variable x as defined in Equation 3.

Equation 4 is computed upon the occurrence of a presynaptic spike,

while Equation 5 is evaluated whenever there is a postsynaptic

spike. In other words, spikes must be detected and stored in

memory. The state variables associated with those spiking neurons

must then be fetched from memory so that acausal or causal

updates can occur.

During our study, we signaled a spike by momentarily

setting the most significant bit of a neuronal x trace to 1.

This was accomplished in Brian2 by simply setting the trace

to a negative value, but the positive sign had to be restored

by the end of the simulation time step. Since we wanted to

avoid the overhead of reverse memory access triggered by a

postsynaptic spike, we explored a methodology that allows for

weight updates exclusively through forward access. Essentially,

whenever a presynaptic neuron was active (see definition below),

all the postsynaptic traces were retrieved from memory. A

negative presynaptic trace paired with a positive postsynaptic

trace triggered acausal updates, whereas the opposite caused a

causal update. No updates were performed when both neurons

fired simultaneously.

In our simulations, we have defined a neuron as active

when its x variable exceeds a certain threshold xthr . When a

neuron spikes, the outgoing weights are tentatively updated,

that is, weights change only under the right conditions. This

process is repeated in subsequent time steps as long as the

presynaptic trace remains above the designated threshold. If a

postsynaptic spike eventually occurs, a causal update can take

place. Notably, there is no necessity for reverse access to locate the

presynaptic neurons; all active neurons are already triggering the

necessary updates based on the temporal information carried by

the traces.

Our scheme can be summarized as follows: As long as a neuron

is active, outgoing weights are updated according to

wji =

{

wji − ηxj if xi < 0 ∧ xj > 0

wji + ηxi, if xi > 0 ∧ xj < 0
(6)

where ∧ is a simple AND logic operator. Note that we can cast the

above equations as a conventional STDP rule if the first condition

is “neuron i spiked” and the second is “neuron j spiked.”

Figure 1 presents a visual illustration. No weight updates

are performed when a single neuron is active, but memory

fetches of postsynaptic variables are carried out to detect

upcoming events (Figures 1A, B). When another neuron

becomes active (Figure 1C), a causal update is detected

and fulfilled. Note that no reverse memory accesses were

necessary. No updates are required in Figure 1D, but memory

fetches continue.

To emulate our simulation pipeline with Brian2, we created

a custom event to capture when a neuron was active. This

enabled synaptic objects access to state variables and perform

the required operations. The general scheme is summarized in

Figure 2, where each block on the left column represents the

order, from top to bottom, in which Brian2’s execution slots were

scheduled in a single time step. The calculations assigned to each

block are shown in the middle column. Additionally, in the right

TABLE 1 Parameters and descriptions of plasticity model.

Name Value Description

η 0.1 Plasticity learning rate.

1x 1 Increment applied to x at every spike.

wmax 100 mV Maximum weight value.

τx 20 mV Time constant of x.

column, we indicated how this pipeline could be incorporated

into an advanced time-multiplexing approach, which splits slots

into time-driven and event-driven modules (Wang and van Schaik,

2018).

2.3 Simulations performed

To test our approach, we initially simulated simple scenarios

in which an input layer of neurons projected onto postsynaptic

neurons in a feedforward manner. In these experiments,

presynaptic spikes were either generated deterministically or

stochastically. The primary objective was to replicate expected

outcomes, such as dependence of synaptic modifications on spike

timing (Bi and Poo, 1998) and a bimodal distribution of weights

(Song et al., 2000). Unless otherwise specified, the parameters

related to plasticity were set to the values shown in Table 1.

Conventional models of how a synapse strength is modified

through STDP typically incorporate traces for both potentiation

and depression. By doing this, it is possible to tune parameters so

that synaptic weakening is larger than strengthening, which leads

to desirable properties (Song et al., 2000). Our models, however,

possess a single trace per neuron, so we relied on other strategies. As

heterogeneity is associated with improved stability and robustness

(Perez-Nieves et al., 2021), we sampled each τx from a uniform

distribution in some of our simulations.

We also investigated and compared the number of memory

accesses required for different strategies. While various factors

influence memory access in an actual digital system, like latency,

locality principle, burst mode, and bandwidth, we simplified the

scenario by assuming that accessing a single memory position

had a generic cost of 1. This interpretation helps understand

the cost of performing STDP in a digital system, especially since

reading a single state variable may add many clock cycles of

overhead (Pedroni et al., 2019). Clearly, the chosen data structure

impacts the access pattern. Therefore, we considered a pointer-

based storage structure due to its small memory footprint in sparse,

recurrent networks.

The storage cost of the proposed models can be separated

into two parts—neurons and synapses. The cost for neurons is

calculated as NvarNbitsNt , where Nvar represents the number of

state variables (Nvar = 3), Nbits is the bit resolution (Nbits =

64), and Nt is the total number of neurons. On the other hand,

the cost for synapses can be calculated as NpreρNpostNbits +

NpreρNpost log2 Npost + Npre log2(NpreρNpost), where ρ is the

connection probability. The first term represents the bit resolution

of synaptic weights for each connection in the weight table, while

the second term depicts the address of the postsynaptic neuron

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

FIGURE 1

Illustration of the proposed plasticity scheme. Neurons are represented by circles and connections by arrows. Inactive neurons are displayed in black

without filling. A rectangle represents a DRAM memory cell. (A) A neuron becomes active, indicated by a blue outline. The gray filling means that

x < 0. All fan-out variables are fetched from the DRAM in burst mode. (B) In the next time step, x becomes positive and fetching from memory

continues. (C) Another neuron becomes active, indicated by a orange outline. The connection from blue to orange neurons is potentiated, and new

memory fetches are triggered. (D) In the subsequent time step, no weight updates take place because both neurons are inactive, but memory

fetches continue.

FIGURE 2

Hardware emulation using Brian2. Each block on the left represents the computation groups available in Brian2. They were scheduled in this

sequence (from top to bottom) to approximate hardware behavior. The equations in the middle show the operations performed in each block,

whereas the curly braces on the right indicate the corresponding hardware module emulated.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

FIGURE 3

Schematic of the balanced random network model. The triangle

represents the excitatory neurons, and the circle represents the

inhibitory neurons. The number of neurons in each population is

written under the corresponding symbol. Arrows indicate

connections between populations, each with a specific probability.

within that table. The last term pertains to the pointer table, which

maintains the outgoing connections for each presynaptic neuron.

The computations performed during time-driven and event-

driven modules are different, and so is the access cost of each.

During the time-drivenmodule, neuronal state variables are loaded,

resulting in a cost of 3Nt . For the event-driven module, forward

access incurs a cost of Na
pre(2 + ρNpost), where N

a
pre is the number

of active presynaptic neurons associated with plastic weights (i.e.,

those whose axonsmake synaptic connections with other excitatory

neurons). Considering that reverse access is achieved by using

forward access to traverse weight tables to find the connected

neuron pairs, the cost can be expressed as Na
post(Npre+NpreρNpost).

Note that accesses depend on the number of active neurons at

every time step, so the size and rate of the neuronal population

directly impact these metrics. Moreover, although using fewer state

variables per neuron can already decrease storage requirements

and memory access overhead, our study concentrated on the

memory access complexities related to STDP during the event-

driven module.

In our investigation, we compared the access costs associated

with our forward-only access strategy and a conventional approach

that also includes reverse access triggered by postsynaptic spikes.

For the sake of simplification, the computational overhead of

fetching the start and end addresses of the weight table was not

incorporated into the analysis, as it should be small compared to

the weight table itself.

Since we aim to improve the scalability of SNNs endowed

with plasticity in digital hardware, we also tested our approach

on a large-scale simulation of a balanced network (Morrison

et al., 2007), illustrated in Figure 3. The network comprised

90,000 excitatory neurons and 22,500 inhibitory neurons, with a

connection probability of 0.1 (represented by the symbol ρ). The

number of connections per neuron was about 104, and the total

number of synapses in the network was in the order of 109. Neurons

were driven by spike trains generated from 9,000 independent

Poisson processes at 2.32 Hz.

The plasticity rule in Equation 6 was slightly modified to

wji =

{

wji − ηαwjixj if xi < 0 ∧ xj > 0

wji + ηw
1−µ
0 w

µ
ji xi if xi > 0 ∧ xj < 0

(7)

and applied to excitatory-excitatory connections. The additional

parameters for the simulation are shown in Table 2. Note that a

TABLE 2 Parameters and description of balanced network with STDP.

Name Value Description

Neurons

V0
m ∼ N (5.7, 7.2) mV Initial membrane potential.

τr 1 ms Absolute refractory period.

Cm 250 pF Membrane capacitance.

gl 25 nS Leak conductance.

Synapses

τsyn 0.66 ms Time constant of synaptic input.

α 0.1449 Depression strength.

µ 0.4 Power law exponent.

w0 0.04 mV Reference weight.

wexc 1 mV Initial excitatory weights.

winh ∼ N (5wexc , wexc/2) mV Inhibitory weights.

de ∼ N (1.5, 0.75) ms Propagation delay of excitatory

connections.

The symbolN means a random normal distribution within a given range.

neuron was not allowed to connect to itself and that there were no

instantaneous spike propagations.

Morrison et al. (2007) implemented their synaptic currents as

an α function, which is more complex than the model we adopted.

To obtain PSPs similar to their work, we utilizedwexc = 25 pA/gl =

1 mV. Moreover, PSPs peaked around 0.14 mV, with a rise time of

1.7 ms and a half-width of 8.5 ms.

3 Results

3.1 Simple STDP benchmarks

We began by examining a simple scenario where a single

synapse underwent multiple potentiations and depressions.

Figure 4A illustrates the strength of a synaptic weight over time

when multiple STDP protocols (indicated by Roman numerals)

were applied. The original and proposed implementations yielded

similar values, although minor errors were accumulated over time.

As shown in Figure 4B, the mean squared error (MSE) between

them was minimal but increased in the same interval. The

difference between our approach and the original formulation

lies in the precision of traces. In the original formulation, even

if the trace value is minimal, it still causes a slight increase or

decrease in the synaptic weight. In contrast, we set a threshold

of xthr = 0.02 in our approach, which means that traces below

this value were considered insignificant and the presynaptic neuron

was considered inactive. Hence, no weight updates were performed.

Figure 4C shows that our approach introduced an error around 791

ms where xi < xthr . As a result, the postsynaptic spike did not

trigger any changes in the synaptic weight. Accordingly, a threshold

of xthr = 0, would introduce no errors (not shown).

To further evaluate the STDP proposed, we replicated some

established properties of this plasticity rule. Figure 5A shows

the dependence of synaptic modification on spike timing. For

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

FIGURE 4

Evolution of state variables in time with the STDP implementation

proposed. (A) Weight changes of the proposed and original STDP

implementations during multiple protocols, namely random (I),

weak potentiation (II), weak depression (III), strong potentiation (IV),

strong depression (V), and random again (VI). On each protocol, a

pair of pre- and postsynaptic neurons were forced to spike in a

desired order to elicit the observed updates. (B) Mean squared error

(MSE) between the original and proposed traces shown in A. The

traces in A are very close to one another, so the MSE is used to

highlight the small di�erences between them. (C) Traces from pre-

(xi) and postsynaptic (xj) neurons, where orange overlay shows

regions where the presynaptic neuron was active.

the experiment, we connected each pair of neurons with an

initial weight value of 50 mV, and a fixed spike timing between

them was repeated 100 times. The results were similar to the

original formulation. Nevertheless, as shown above, minor errors

accumulated (see Figure 5B).

In our STDP implementation, the distribution of plastic

synaptic weights in a network with 1000 presynaptic neurons firing

at 15 Hz and one postsynaptic neuron converged to a bimodal

distribution. This is illustrated in Figure 5C. Most of the weights

were either close to zero mV or close to the maximum value of

wmax = 100 mV. It is worth noting that the selected values of τx

played a significant role in shaping the distribution profile. The

range of τx values used in the above results varied between 5 and

15 ms and were randomly sampled from a uniform distribution.

The initial weights were drawn from a gamma distribution with

k = 1 and θ = 17.5. However, the initial weight values did not

significantly impact the outcome as long as the postsynaptic neuron

was firing.

3.2 E�ciency measurements

In the previous simulations, we observed that reducing the

value of xthr led to fewer deviations from the original STDP

FIGURE 5

Distribution of weights after undergoing plasticity under the

proposed STDP implementation. (A) Weight values as a function of

the di�erence between pre- and postsynaptic spikes —1t = tpost
−tpre. Both original and proposed implementations are shown. (B)

Mean squared error (MSE) between the original and proposed traces

shown in (A). (C) Bimodal distribution of weights under the

proposed STDP implementation.

formulation. However, it also increased the number of memory

accesses performed at every time step. To further understand the

impacts of different threshold values, we calculated the number of

memory accesses required for the bimodal distribution benchmark,

which highlights some desirable properties of STDP. Additionally,

we set the value of wmax to 0.4 to limit the final firing rate of

the postsynaptic neuron. Since τx can affect the distribution of

weights, we adjusted its interval to be between 16 and 26 to ensure

a bimodal distribution.

The results are displayed in Figure 6. Our approach, with

various xthr , was compared to a conventional formulation (i.e.,

forward and reverse access) labeled as “control.” At the start of

the simulation, the number of spikes emitted by the postsynaptic

neuron reached values close to 40 but gradually decreased over

time (Figure 6A). This is a relevant observation because when

the postsynaptic neuron is not spiking, the number of memory

accesses is determined by all active presynaptic neurons driving

forward accesses.

Since we connected all 1,000 presynaptic neurons firing at 15

Hz to a single postsynaptic neuron, the control case shown in

Figure 6B displayed around 15 memory accesses at most time steps.

However, postsynaptic spikes caused peaks that reached values

slightly above 1,000 due to reverse access. In contrast, our approach

was not affected by postsynaptic spikes, but it yielded numbers

of memory accesses higher than the control case. When we set

xthr = 0, neurons could not become inactive (i.e., x = xthr) due

to the high precision of double-precision floating-point numbers.

Therefore, the number of memory accesses in this case increased

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

FIGURE 6

Analysis of the number of memory access (mems) over time. (A)

Histogram of spike counts of the postsynaptic neuron over time. (B)

Number of memory accesses at each time step for di�erent

implementation strategies. The time interval considered ranged

from 0 to 100 ms on the left panel, and from 99.5 to 100 s on the

right panel. (C) Boxplots of memory fetches for each time step.

Individual data points are also shown on top of the boxes. The time

interval considered ranged from 0 to 250 ms (left panel), and from

99.5 to 99.75 s (right panel).

persistently until the maximum, which was 1,000. As we increased

xthr (e.g., to 0.02 or 0.1), more neurons became inactive, causing the

number to converge to a smaller value at the end of the simulation

(see right panel of Figure 6B).

In Figure 6C, we show the boxplots of memory fetches for

each time step over 250 ms at the start and end of the simulation.

From the data, it appears that the effects of reverse access are not

significant in the control case. However, it is worth noting that the

previous simulations only involved low spiking rates and a single

postsynaptic neuron.

Figure 7 demonstrates a scenario with a higher number of

postsynaptic neurons and slightly higher firing rates, around 25

Hz. The data points were taken from a time interval of 250

ms after both traces converged to a stable value. Upon closer

inspection, it becomes apparent that our approach was not affected

by the increase in postsynaptic neurons (indicated at the top of

each panel). On the other hand, for the control case, not only

did the maximum value increase significantly as the number of

postsynaptic neurons increased, but also the average. In fact, with

100 postsynaptic neurons, the average value of the control case was

higher than the proposed approach.

3.3 Large-scale networks

As excitatory weights in a network increase due to STDP

updates, the stability of the system can be compromised. This

FIGURE 7

Statistics of memory accesses. Each boxplot was calculated based

on ten simulation runs. Triangles denote the average memory

access in each case. The number at the top of each panel

represents the number of postsynaptic neurons. In all panes, our

approach, with xthr = 0.02, was compared with the conventional

(i.e., control) formulation.

can be particularly problematic in large networks, where each

neuron makes thousands of connections. In Figure 8A, we have

shown the final weight distribution (i.e., after 200 s) of a large-

scale network endowed with the plasticity rule of Equation 7. To

facilitate comparisons with the original model (Morrison et al.,

2007), wemultiplied our weights by gl to get values in pA. Although

the initial value of those weights was 25 pA, they evolved to form

an unimodal distribution. The final shape was similar to a normal

distribution with a mean of 25 and a standard deviation of 2. Note

that the maximum synaptic strength in these experiments was set

to wmax = 1, 000 mV, which indicates that the weights settled to a

stable value without saturation.

The statistics of the network were akin to an asynchronous

and irregular regime, with a mean firing rate of 5.70 Hz and CV

of 0.90. The spike variability was high, as indicated by a Fano

factor of 5.11. The histogram in Figure 8B shows that only a few

neurons exhibited high firing rates, even though the weights were

small. The difference in count values suggests that regular activity

of the network at the beginning of the simulation produced an

intense blanket of inhibition, effectively silencing some neurons. As

irregularity increased, other neurons became more susceptible to

excitatory drive, yet the average number of active neurons revealed

a decreasing trend (Figure 8C).

According to the magnitude of the network analyzed, the

storage cost associated with neurons and synapses is around

2.7 MB and 12.78 GB, respectively. Figure 8C illustrates the

pattern of active neurons over time, which shows an initial

peak followed by a steady decrease. This number fluctuated

around a mean of ∼32,000 per time step, probably as a result

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

FIGURE 8

Large-scale balanced network with plasticity. (A) Histogram of

synaptic weights. The dark line represents a Gaussian distribution

with a mean of 25 and a standard deviation of 2. (B) Distribution of

firing rates across neurons in the initial and final 2 s. (C) Number of

active neurons over time for plasticity updates.

FIGURE 9

Instability in balanced network with plasticity. Histogram of synaptic

weights after a simulation time of 13 s. The plot was zoomed in to

visualize higher-weight but less frequent synaptic connections.

of the high activity levels of some neurons (see Figure 8B).

Nevertheless, this number is lower than the worst-case scenario

of 90,000.

FIGURE 10

Balanced network with alternative plasticity rule. (A) Bimodal

distribution of weights. (B) Number of active neurons over time with

plasticity rule in Equation 6. (C) Distribution of weights projecting to

neuron 0. (D) Distribution of weights projecting to neuron 10,000.

As pointed out by the authors who first proposed Equation 7,

if the parameter α was slightly smaller than αp = w∗

w0

µ−1
, where

w∗ is the fixed point of the synaptic weight distribution, depression

would not be able to counteract strong potentiations induced by

fast oscillations effectively. To test this scenario in our model, we

decreased α by 2%, going from α = αp = 0.1449 to α =

0.1420. Figure 9 shows the resulting weight distribution after 13

s of simulation. Most weights were still concentrated around the

mean of 25 pA, but a small proportion of synapses were further

strengthened, with weights extending up to 82 pA. Despite the

emergence of some denser regions suggesting clustering, these

highly potentiated synapses were predominantly dispersed and

lacked a discernible pattern. Simulating for 20 s resulted in even

stronger weights, with a small fraction sparsely distributed between

60 pA and the maximum weight of 25 nA.

We wanted to verify whether our model could replicate a

bimodal distribution, so we replaced the previous plasticity rule

with Equation 6. Figure 10A shows the resulting bimodal profile.

Although intermediary values were not negligible, we observed

prominent peaks close to the minimum and maximum values. To

generate this distribution, we set the maximum weight to wmax =

0.5 mV and sampled the initial wexc from a random uniform

distribution. To sample the inhibitory weights as in Table 2, we

selected the reference excitatory weight as wexc = 0.25 mV. We

could have adopted a higher cap without compromising this weight

distribution, but we wanted to avoid high firing rates.

The average activity rate recorded was 2.31 Hz, with the

maximum rate not exceeding 29 Hz. Moreover, neurons exhibited

irregular discharges, as indicated by a CV of 1.30. The pattern

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

of active neurons over time, shown in Figure 10B, displayed a

decreasing trend over time. Eventually, it plateaued at a lower level

than the unimodal distribution experiment due to the smaller rate.

Instead of using a fixed value of 20 ms, randomly sampling

τx from a uniform distribution between 10 and 25 ms introduced

more heterogeneity in the distribution of incoming synaptic

weights. Namely, besides bimodal distributions, we observed

profiles skewed to the left for some neurons and to the right

for others. Figures 10C, D display this difference for synaptic

connections projecting into neurons 0 and 10,000, respectively.

Despite this variability, the distribution of all the plastic weights in

the network remained bimodal, as in Figure 10A.

4 Discussion

When emulating a multitude of neurons and synapses,

scalability is a common theme (Thakur et al., 2018). As the scales

reach massive levels, several optimizations are necessary to make

the simulation platform as efficient as possible. In this paper, we

proposed a scheme to facilitate large-scale implementations of

SNNs endowed with STDP on digital neuromorphic platforms. We

replicated desirable properties resulting from the plasticity rules

studied while also considering deviations from expected outcomes,

which can be controlled through a parameter. For tasks that depend

on STDP and require high accuracy, we could set xthr = 0 to obtain

a conventional STDP formulation.

The main issues tackled were communication bandwidth and

scalability, which are significant underlying challenges, particularly

when real-time is concerned (Wang et al., 2018). Our approach

emphasizes the synergy between computational primitives to foster

better usage of resources in a digital design (Cassidy et al., 2013;

Frenkel et al., 2023). Moreover, our general approach is compatible

with an advanced time-multiplexing strategy (Figure 2), which

eliminates the need for buffering a high number of events generated

in a large SNN (Wang and van Schaik, 2018).

A simple implementation of STDP involves modifying pre- and

postsynaptic plasticity traces or times per synapse every time a spike

occurs. While this ensures proper spike propagation and weight

update, it increases memory footprint, especially as the number of

synapses increases. Additionally, this overlooks the redundancy of

the data stored: if a neuron spikes at time t, synapses associated with

that neuron are bound to replicate the same temporal information

(time or trace) across synapses (Cassidy et al., 2013; Davies et al.,

2018). There are instances when this is done intentionally, such as

when each synapse has a different decay rate (see Song et al., 2000),

but this is not always made explicitly clear in digital designs.

In our case, we improved scalability by implementing a

single plasticity trace per neuron. This approach is similar to

well-known methods that reduce computations relating to the

multitude of synaptic conductances in large networks (Lytton,

1996; Brette et al., 2007). Intriguingly, STDP has been described

as a consequence of the dynamics of one specific biochemical

messenger: intracellular calcium concentration (Shouval et al.,

2010; Graupner and Brunel, 2012). Although we did not explore

this alternative plasticity mechanism, it would be an interesting

expansion of our models. Different phenomenological models

can be developed by tuning time windows or adding extra

state variables (Pfister and Gerstner, 2006; Clopath et al., 2010).

Therefore, we anticipate that implementing other plasticity rules

should be straightforward.

In this work, we extended the functionalities of this single trace

to get more benefits from this implementation. Since a negative

value of our trace represents the occurrence of a spike, we do not

rely on FIFOs or bitmaps to buffer pre- and postsynaptic spike

times. As a result, events can be processed at the appropriate time

slot while reducing the area required. An efficient digital design

would involve storing a matrix containing all the active neurons.

On-chip memory can store this information, as only a single bit is

needed per neuron. Once the outgoing connections for each neuron

are fetched, their weights can be updated accordingly with only

forward memory accesses.

On-chip memory cells are limited in size, so it is expected that

some data may need to be stored in an off-chip DRAM. This is the

case for the large-scale network presented here, where we estimated

that the memory necessary to store the synaptic weight table was

12.78 GB. In this circumstance, efficient memory controllers are

required to deal with communication bandwidth and bolster high

throughput (Cassidy et al., 2013; Wang et al., 2018), particularly

for the memory-intensive task of simulating many neural elements

in real time. Our weight update scheme can facilitate this process

because no reverse accesses are required, and the outgoing synapse

weights of a neuron can be stored close together. This results in

increased throughput, as burst reads in DRAMs can efficiently

retrieve sequential data blocks from memory in fewer access

operations. By doing this, we avoid increasing silicon area to

accommodate more (or more complex) memory cells (Seo et al.,

2011; Knight and Nowotny, 2018; Bautembach et al., 2021).

As shown in Figure 7, the average number of memory fetches

in the control case (i.e., with reverse access to the weight table)

increased with the number of postsynaptic neurons. With only

100 postsynaptic neurons, it became higher than our proposed

scheme. This result may seem counter-intuitive because we fetch

state variables as long as the plasticity trace is higher than a

threshold, contrasting with memory fetches occurring only when

a spike is emitted. The problem, however, is that reverse access

elicited by postsynaptic spikes is costly, and there are multiple

reasons why it would be worse if more realistic scenarios were

incorporated. First, large and recurrently connected networks

imply a much greater number of postsynaptic spikes. Second, as

demonstrated in Figures 8C, 10B, there is a period of higher activity

that persists before plasticity can (potentially) establish a regime

with sparser activations. Finally, experimental evidence suggests a

skewed distribution of firing rates (Buzsáki and Mizuseki, 2014),

which culminates in a small number of highly active neurons, as

seen in Figure 8B. Therefore, we argue that our strategy is suited

for simulations involving these factors.

It is worth noting that other previously reported networks

were larger and more complex than the one we tackled (Schmidt

et al., 2018; Wang et al., 2018; Yang et al., 2018). Still, our

experiment showed how the communication bottleneck constrains

the system, considering it has about one billion connections. We

reported a few megabytes associated with time-driven module

operations. Memory access of synaptic connections during event-

driven module is the main limiting factor in performance, as the

computations performed are relatively simple. Taking the unimodal

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

distribution protocol as a reference, the average number of active

neurons at every time step was around 4 × 104. This value is

higher than that shown in Figure 8C because all neurons (i.e.,

inhibitory and excitatory) were considered. With an average of

10,000 outgoing connections per neuron, we obtain an estimated

400 G memory accesses per second. Although not discussed here,

the bit resolution adopted is clearly a limiting factor. Using double-

precision enabled us to use reasonable values for all network

variables (e.g., weights and time constants). However, this could

easily compromise the real-time capabilities of the digital design.

In fact, many neuromorphic systems are limited to much smaller

resolutions (Diehl and Cook, 2014; Davies et al., 2018; Frenkel et al.,

2018; Wang and van Schaik, 2018). Doing so could still result in

high data rates (e.g., 400 GB/s if weights have 8 bits), but recent

memory technologies such as High Bandwidth Memory provide a

promising prospect; their maximum theoretical bandwidth is∼460

GB/s and has been reported to achieve 406.6 GB/s with burst length

of 15 (Pedroni et al., 2020).

Our solutions share similarities with the work of Pedroni et al.

(2019). Namely, we also organized weights in a fan-out manner

and introduced an alternative event—distinct from a spike—to

signal when postsynaptic state variables should be accessed and

potentially updated. However, in contrast with their approach, we

did not utilize the onset and expiration of timers to elicit updates;

Instead, a neuron produced updates as long as it was active, that is,

when its plasticity trace x fulfilled x > xthr . This results in more

frequent memory fetches, but there are certain considerations to

be made. For instance, when simulating SNNs, it is common to

emulate neurons with a 2 ms refractory period. Additionally, trace

values are generally only truncated after a few time constants have

elapsed to preserve temporal information (e.g., for τ = 20 ms, x

decays to about 5% of its initial value only after 60 ms). Performing

STDP in a timer-based framework would require ⌊60/2⌋ = 30

timers, each with 2 bits. In terms of storage cost, that would nearly

equate to the size of a double-precision floating-point number.

On the other hand, our method requires no extra traces in such

scenarios, and the bit-precision of traces could be reduced while

avoiding significant impacts on the temporal profile of the decay.

Regarding memory access, performing updates at the onset and

expiration of timers would yield the same number of memory

accesses as we observed.

Our study is unique in that we focused not only on plasticity

but also on large network models and their statistics. In forming a

bimodal distribution in conventional models, the profile emerges

because depression is initially favored, enforced by the height or

duration of the plasticity window. This usually means that at least

two variables are required: one for potentiation and the other

for depression. However, we achieved the same outcome with a

single trace by randomly sampling each time constant. We did not

attempt to identify the spontaneous formation of neuronal groups

(Izhikevich et al., 2004), but we expect them to emerge given the

delay and weight distribution employed. In our examination of

an unimodal distribution, we obtained the expected profile despite

having synaptic currents that could make neurons more sensitive

to synchronous activity. Because of that, the final mean weight and

its standard deviation were different but with similar proportions.

However, the statistics are expected to differ, as indicated by the

lower rate and fano factor. Finally, we also showed that the network

was operating close to a bifurcation point and that a slight decrease

in the depression factor for a given weight equilibrium led to

unstable synaptic growth.

Previous studies have demonstrated large-scale networks with

more detailed conductance models (Yang et al., 2018), contributing

to our understanding of how different levels of complexity interact.

In our approach, however, we chose to favor scale instead

of this level of synaptic realism. Indeed, Yang et al. (2018)

managed to emulate around 60 million synapses, whereas around

1 trillion synapses were reported by Wang et al. (2018). Of

course, simplifications such as the ones we described here are not

always desired, but they provide a framework for when massive

connectivity levels are the primary focus. Accordingly, we did not

consider using crossbars for synaptic connectivity data, as it is not

the most effective way of storing recurrent and sparse weight tables

(Pedroni et al., 2019).We also did not double weight tables to tackle

backward access, which would hurt scalability.

5 Conclusion

In conclusion, we explored a framework to enhance the

scalability of large-scale SNNs, focusing primarily on neural models

and memory access optimization. Further research will involve

integrating this methodology with low-precision data types and

examining their combined impact on both the efficiency and

the accuracy of simulations. This integrated approach offers a

comprehensive perspective on optimizing SNNs regarding resource

management and computational effectiveness.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

PU: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft. AS: Conceptualization, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Supervision, Writing – review & editing. RW:

Conceptualization, Funding acquisition, Investigation,

Methodology, Project administration, Resources, Supervision,

Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

This research was undertaken with the assistance of resources

from the National Computational Infrastructure (NCI Australia),

an NCRIS enabled capability supported by the Australian

Government.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Urbizagastegui et al. 10.3389/fnins.2024.1450640

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alevi, D., Stimberg, M., Sprekeler, H., Obermayer, K., and Augustin, M. (2022).
Brian2CUDA: flexible and efficient simulation of spiking neural network models on
GPUs. Front. Neuroinformat. 16:883700. doi: 10.3389/fninf.2022.883700

Bautembach, D., Oikonomidis, I., and Argyros, A. (2021). “Even faster SNN
simulation with lazy+ event-driven plasticity and shared atomics,” in 2021 IEEE High
Performance Extreme Computing Conference (HPEC) (Waltham, MA: IEEE), 1–8.

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J.
Neurosci. 18, 10464–10472.

Bogdan, P. A., Garcia, G. P., Hopkins, M., Jones, E., Knight, J. C., and Perrett,
A. (2020). “Learning in neural networks,” in SpiNNaker: a Spiking Neural Network
Architecture (New York, NY: Now Publishers Inc.), 209–265.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and strategies. J.
Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed
distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278.
doi: 10.1038/nrn3687

Cassidy, A. S., Georgiou, J., and Andreou, A. G. (2013). Design of silicon brains
in the nano-CMOS era: spiking neurons, learning synapses and neural architecture
optimization. Neural Netw. 45, 4–26. doi: 10.1016/j.neunet.2013.05.011

Chen, G., Scherr, F., and Maass, W. (2022). A data-based large-scale model for
primary visual cortex enables brain-like robust and versatile visual processing. Sci. Adv.
8:eabq7592. doi: 10.1126/sciadv.abq7592

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects
coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13, 344–352.
doi: 10.1038/nn.2479

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2014). “Efficient implementation of STDP rules on
spinnaker neuromorphic hardware,” in 2014 International Joint Conference on Neural
Networks (IJCNN) (Beijing), 4288–4295.

Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron 75,
556–571. doi: 10.1016/j.neuron.2012.08.001

Frenkel, C., Bol, D., and Indiveri, G. (2023). Bottom-up and top-down
approaches for the design of neuromorphic processing systems: tradeoffs and
synergies between natural and artificial intelligence. Proc. IEEE 111, 623–652.
doi: 10.1109/JPROC.2023.3273520

Frenkel, C., Lefebvre, M., Legat, J. D., and Bol, D. (2018). A 0.086-mm2

12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28-nm CMOS. IEEE Trans. Biomed. Circ. Syst. 13, 145–158.
doi: 10.1109/TBCAS.2018.2880425

Graupner, M., and Brunel, N. (2012). Calcium-based plasticity model explains
sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc. Natl.
Acad. Sci. U. S. A. 109, 3991–3996. doi: 10.1073/pnas.1109359109

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain
as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. U. S. A.
109(Suppl.1), 10661–10668. doi: 10.1073/pnas.1201895109

Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-timing dynamics
of neuronal groups. Cerebr. Cortex 14, 933–944. doi: 10.1093/cercor/bhh053

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current hpc and
neuromorphic solutions in terms of speed and energy when simulating a highly-
connected cortical model. Front. Neurosci. 2018:941. doi: 10.3389/fnins.2018.00941

Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network
simulations. Neural Comput. 8, 501–509.

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A history of spike-timing-
dependent plasticity. Front. Synapt. Neurosci. 3:4. doi: 10.3389/fnsyn.2011.00004

Modaresi, F., Guthaus, M., and Eshraghian, J. K. (2023). “Openspike: an openram
SNN accelerator,” in 2023 IEEE International Symposium on Circuits and Systems
(ISCAS) (Monterey, CA: IEEE), 1–5.

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Pagkalos, M., Chavlis, S., and Poirazi, P. (2023). Introducing the dendrify
framework for incorporating dendrites to spiking neural networks. Nat. Commun.
14:131. doi: 10.1038/s41467-022-35747-8

Pedroni, B. U., Deiss, S. R., Mysore, N., and Cauwenberghs, G. (2020). “Design
principles of large-scale neuromorphic systems centered on high bandwidth memory,”
in 2020 International Conference on Rebooting Computing (ICRC) (Atlanta, GA: IEEE),
90–94.

Pedroni, B. U., Joshi, S., Deiss, S. R., Sheik, S., Detorakis, G., Paul, S., et al. (2019).
Memory-efficient synaptic connectivity for spike-timing-dependent plasticity. Front.
Neurosci. 13:357. doi: 10.3389/fnins.2019.00357

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., and Goodman, D. F.
(2021). Neural heterogeneity promotes robust learning. Nat. Commun. 12:5791.
doi: 10.1038/s41467-021-26022-3

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a
model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682.
doi: 10.1523/JNEUROSCI.1425-06.2006

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada,
S. J. (2018). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14:e1006359.
doi: 10.1371/journal.pcbi.1006359

Seo, J. S., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., et al. (2011).
“A 45 nm cmos neuromorphic chip with a scalable architecture for learning in networks
of spiking neurons,” in 2011 IEEE Custom Integrated Circuits Conference (CICC) (San
Jose, CA: IEEE), 1–4.

Shouval, H. Z., Wang, S. S. H., and Wittenberg, G. M. (2010). Spike timing
dependent plasticity: a consequence of more fundamental learning rules. Front.
Comput. Neurosci. 4:19. doi: 10.3389/fncom.2010.00019

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8:e47314. doi: 10.7554/eLife.47314

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., et al. (2018).
Generalized leaky integrate-and-fire models classify multiple neuron types. Nat.
Commun. 9:709. doi: 10.1038/s41467-017-02717-4

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., et al.
(2018). Large-scale neuromorphic spiking array processors: a quest to mimic the brain.
Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Wang, R., and van Schaik, A. (2018). Breaking liebig’s law: an
advanced multipurpose neuromorphic engine. Front. Neurosci. 12:593.
doi: 10.3389/fnins.2018.00593

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An fpga-based
massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.
doi: 10.3389/fnins.2018.00213

Yang, S., Wang, J., Deng, B., Liu, C., Li, H., Fietkiewicz, C., et al. (2018). Real-
time neuromorphic system for large-scale conductance-based spiking neural
networks. IEEE Trans. Cybernet. 49, 2490–2503. doi: 10.1109/TCYB.2018.2
823730

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1450640
https://doi.org/10.3389/fninf.2022.883700
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1038/nrn3687
https://doi.org/10.1016/j.neunet.2013.05.011
https://doi.org/10.1126/sciadv.abq7592
https://doi.org/10.1038/nn.2479
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neuron.2012.08.001
https://doi.org/10.1109/JPROC.2023.3273520
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1073/pnas.1109359109
https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.1093/cercor/bhh053
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1038/s41467-022-35747-8
https://doi.org/10.3389/fnins.2019.00357
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.3389/fncom.2010.00019
https://doi.org/10.1038/78829
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00593
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.1109/TCYB.2018.2823730
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Memory-efficient neurons and synapses for spike-timing-dependent-plasticity in large-scale spiking networks
	1 Introduction
	2 Materials and methods
	2.1 State variables
	2.2 Plasticity implementation
	2.3 Simulations performed

	3 Results
	3.1 Simple STDP benchmarks
	3.2 Efficiency measurements
	3.3 Large-scale networks

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


