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Pilot turning behavior cognitive
load analysis in simulated flight
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Yue Zhou and Jia-jun Yuan*

Flight Technology College, Civil Aviation Flight University of China, Guanghan, China

Background: To identify the cognitive load of different turning tasks in simulated

flight, a flight experiment was designed based on real "preliminary screening"

training modules for pilots.

Methods: Heart Rate Variability (HRV) and flight data were collected during

the experiments using a flight simulator and a heart rate sensor bracelet. The

turning behaviors in flight were classified into climbing turns, descending turns,

and level flight turns. A recognition model for the cognitive load associated

with these turning behaviors was developed using machine learning and deep

learning algorithms.

Results: pnni_20, range_nni, rmssd, sdsd, nni_20, sd1, triangular_index

indicators are negatively correlated with different turning load. The LSTM-

Attention model excelled in recognizing turning tasks with varying cognitive

load, achieving an F1 score of 0.9491.

Conclusion: Specific HRV characteristics can be used to analyze cognitive load

in different turn-ing tasks, and the LSTM-Attention model can provide references

for future studies on the selection characteristics of pilot cognitive load, and

offer guidance for pilot training, thus having significant implications for pilot

training and flight safety.
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1 Introduction

A pilot’s cognitive load refers to the cognitive resources allocated to attending,
perceiving, making decisions, and acting essentially, the total workload and energy
required to process information per unit of time. Cognitive Load Theory (CLT) explains
how cognitive resources are allocated during information processing. CLT emphasizes
that working memory has a limited capacity, and as task complexity and the amount
of information increase, cognitive resource consumption also increases, leading to a
cognitive load. With the increasing complexity of human-computer interaction systems
in aircraft piloting, pilots face a growing cognitive load during operations (Jinsong,
2019). Studies indicate excessive cognitive load can cause pilots to miss critical situational
information (Wang et al., 2023). An illustrative case is Air Asia Flight 8501’s crash,
where pilots misjudged the aircraft’s attitude, position, and motion during a turning
maneuver, resulting in catastrophic failure. Given pilots’ limited information processing
capacity, simultaneously receiving data from multiple sources can lead to ‘information
overload.’ This overload can exacerbate cognitive load, adversely affect performance,
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and pose significant flight safety risks. Current research on pilot
cognitive load focuses predominantly on takeoff and landing,
with turning maneuvers receiving minimal attention (Meng and
LiMing, 2019). During turns, pilots must simultaneously manage
the control stick and rudders and monitor safety parameters like
attitude, altitude, and more. In these scenarios, the cognitive
load intensifies, often leading to notable physiological responses,
including significant Heart Rate (HR) changes (Jingzhou, 2018).

Traditionally, pilot cognitive load assessment has relied on
subjective scales. For example, pilot workload can be quantified
across various task levels during flight approach via the NASA-
TLX subjective scales (Zhang et al., 2015). Additionally, the
effectiveness of both the NASA-TLX scale and the Modified
Cooper-Harper scale in gauging the mental load of pilots within
a flight training context has been demonstrated (Mansikka
et al., 2019). However, this approach has notable limitations. It
requires pilots to perform assessments at specific intervals, fails to
provide continuous monitoring data, and individual perceptions
and varying environmental conditions largely influence results.
These factors complicate accurate reflection of pilots’ actual
working conditions. Moreover, the dynamic and complex flight
environment demands pilots make rapid decisions, underscoring
the need for realtime monitoring of pilots’ physiological and
psychological states. In this paper, heart rate monitoring via a
wearable device allows for noninvasive, continuous physiological
data collection during flight without interfering with the pilot’s
normal operations.

Pilot cognitive load can be effectively measured using HRV,
an objective physiological indicator reflecting the autonomic
nervous system balance between sympathetic and parasympathetic
activities. Moreover, serves as an objective physiological indicator
widely used to evaluate an individual’s stress levels and cognitive
load. This measure reflects the balance between sympathetic and
parasympathetic activity within the autonomic nervous system
(ANS). HRV embodies the interaction between the nervous system
and cardiac activity, influenced by dynamic changes in the ANS
and physical and environmental factors such as temperature,
respiration, hormones, and blood pressure. During complex or
stressful flight missions, pilots must process large amounts of
information, make rapid decisions, and maintain intense focus.
This elevated cognitive load activates the sympathetic nervous
system, leading to a decrease in HRV. This decline indicates
the pilot’s current physiological stress and the depletion of
their cognitive resources. As mission complexity increases, the
drop in HRV becomes more pronounced, suggesting that the
pilot is under a higher cognitive load. Conversely, in more
straightforward or familiar mission scenarios, the pilot’s cognitive
load is lower, leading to increased parasympathetic activity and
a corresponding rise in HRV. This indicates that the pilot has
more cognitive resources for other tasks, reducing the overall
stress. HRV effectively captures pilots’ sympathetic stress responses
across various flight conditions, whether in actual or simulated
environments. By monitoring HRV changes, a comprehensive
understanding of the pilot’s stress and cognitive load can be
achieved, making HRV a vital reference index for evaluating pilot
performance and well-being. HRV captures sympathetic stress
responses of pilots across various flight conditions in actual and
simulated environments. For instance, HRV was analyzed in 34
pilots to gauge workload across different flight phases—takeoff,

steady turn, landing—, noting distinct patterns. However, changes
in the low-frequency to high-frequency ratio were insignificant
(Xiaohua et al., 2023; Alaimo et al., 2022). HRV combined with
machine learning algorithms (SVM, KNN, LDA) was used to
assess cognitive load in fighter jet pilots across flight stages
(Mohanavelu et al., 2022). HR and HRV were monitored in
fighter pilots to investigate cognitive load and performance
differences under varying task conditions (Mansikka et al., 2016).
Physiological signals were also utilized to identify cognitive
demands on pilots, observing that increased training task difficulty
escalated cognitive load and corresponding physiological changes
(Mouratille et al., 2018). An index using ECG data and principal
component analysis was developed to identify high cognitive load
during simulated flights (Jinghua et al., 2023). Research on pilot
cognitive load has traditionally overlooked phases like leveling
and turning, critical for recognizing pilot load levels during flight
maneuvers. To address this gap, a simulated flight environment was
established that mimicked tasks such as turning at various angles.
This setup enabled the collection of real-time data from flight
trainees, including flight data and HRV, using flight simulators
equipped with HR-monitoring bracelets. Statistical methods such
as the Kolmogorov-Smirnov normality test, Analysis of Variance
(ANOVA), and the Kruskal-Wallis (K-W) test were employed to
pinpoint significant characteristics in the data. The cognitive load
of pilots during various turning tasks was analyzed and accurately
identified using a combination of machine learning and deep-
learning algorithms. This innovative approach not only aids in
better understanding pilot cognitive load but also contributes
significantly to pilot health management, load assessment, and
overall flight safety management.

2 Experimental design

2.1 Experimental staff and equipment

In an effort to understand the impact of flight simulation
on pilot performance, twenty-eight healthy male pilots from
the prestigious Civil Aviation Administration of China Flight
Academy enthusiastically participated in this comprehensive study.
The pilots, with a mean age of 22.5 years (SD = 3.5 years),
were right-handed and possessed normal vision and hearing. To
ensure the accuracy of the experiment, participants followed strict
guidelines during the initial 24-hour period, including abstaining
from medications, caffeinated or alcoholic beverages, and ensuring
adequate sleep. Additionally, to ensure familiarity with flight
simulation skills and equipment operation, participants underwent
a rigorous familiarization process with the flight simulation
platform prior to the experiment. The experiment commenced at
both 10:00 AM and 2:00 PM for all participants. The experiment
complied with the Declaration of Helsinki established by the
World Medical Association and was approved by the Medical
Ethics Committee of Civil Aviation Flight University of China. All
participants read and signed the informed consent form before the
start of the experiment.

The experiment used a desktop flight trainer from Microsoft
Flight Simulator 2020. This platform, equipped with triple screens,
a simulated joystick, a throttle stick, and a braking device, offered
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FIGURE 1

Experimental instruments: (A) Flight simulation platform; (B) Polar Verity Sense sports armband heart rate monitor.

a highly realistic flight simulation experience. To continuously
monitor the pilot’s HRV in real time, a Polar Verity Sense
sports armband HR monitor was chosen for its ease of wear,
noninvasiveness, and high accuracy. The simulation equipment
and the test environment are depicted in Figure 1.

2.2 Experimental task design

The experiment can be divided into two parts: the pre-test and
the formal test.

Pre-test: In this phase, subjects are briefed about the
experimental objectives, procedures, and mission requirements.
They will also familiarize themselves with the flight simulator’s
basic operations. During the pre-test, the operator will synchronize
the heart rate acquisition equipment to ensure that each subject’s
monitor functions correctly. At the end of the pre-test, all subjects
will rest for five minutes to stabilize their physiological indicators.

Formal Experiment: The simulation is conducted using a
Cessna 172 model at the Guanghan Airport, utilizing Runway 13.
The weather conditions are simulated with appropriate side winds
at a wind speed of approximately 5 knots, and meteorological
conditions are CAVOK (clear skies). The flight plan is as outlined
below:

1. After takeoff, the heading is 127◦, the altitude climbs to 1,800ft,
and the flight plan is a 75kt climb.

2. After the first turn, the heading is adjusted to 040◦, the altitude
is maintained at 3,000ft, and the flight is leveled off at 75 kt.

3. After the second turn, the heading is adjusted to 330◦, the
altitude is maintained at 4,000 ft, and the speed is adjusted:
first down to 65 kt, then up to 95 kt.

4. After the third turn, the heading is adjusted to 150◦, the
altitude is maintained at 3,000 ft, and the flight is level at 90 kt.

5. After the fourth turn, the heading is adjusted to 180◦, the
altitude is maintained at 2,500 ft, and the flight is level at 90 kt.

6. After the fifth turn, the heading is adjusted to 127◦, the altitude
is dropped to 2500 ft, and the flight is level at 90 kt.

7. After the sixth turn, the heading is adjusted to 37◦, the altitude
is dropped to 2500 ft, and the flight is level at 90 kt.

8. After the seventh turn, the heading is adjusted to 307◦, the
altitude is dropped to 2400 ft, and the flight descends at 90 kt.

FIGURE 2

Diagram of the simulated flight path and turn.

9. After the eighth turn, the heading is adjusted to 217◦, altitude
is maintained at 2400 ft, and the flight descends at 75 kt.

10. After the ninth turn, the heading is adjusted to 127◦, the
altitude is dropped to 2200ft, and the flight descends at 75 kt.

11. Finally, the flight entered a stable final approach phase,
descending to 65kt, and the runway head speed further
descending to 62 kt in preparation for landing. The simulated
flight path is shown in Figure 2.

2.3 Turning maneuvers with different
load

Turn behavior is determined by analyzing changes in heading
and altitude data. A 20◦ or more heading change between
consecutive data points is used as the threshold for identifying a
turn. The change is identified as a turn when this threshold is met
or exceeded. The turn type is further classified based on concurrent
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TABLE 1 Parameters of the turning phase.

Number Type Pre-turn
heading/(◦)

Post-turn
heading/(◦)

Heading
Delta/(◦)

Pre-turn
height/(ft)

Post-turn
height/(ft)

Speed/(kt)

1 Climbing turn 127 40 87 1800 3000 75

2 Climbing turn 40 330 70 3000 4000 75

3 Leveling turn 330 150 180 4000 4000 90

4 Descending turn 150 180 30 4000 3000 90

5 Leveling turn 180 127 53 2500 2500 90

6 Leveling turn 127 37 90 2500 2500 90

7 Leveling turn 37 307 90 2500 2500 90

8 Descending turn 307 217 90 2500 2400 75

9 Descending turn 217 127 90 2400 2200 75

altitude data. For example, if the altitude increases during the turn,
it is labeled as a climbing turn; if the altitude decreases, it is a
decending turn; and if the altitude remains relatively constant, it
is identified as a level flight turn.

This study primarily investigates three types of aircraft turning
maneuvers: level turns, climbing turns, and descending turns.
Each type presents unique challenges and cognitive load for pilots,
influenced by the complexity and demands of the maneuvers:

Level Turns: These are the simplest form of the maneuvers
mentioned. During a level turn, the pilot only needs to manage the
aircraft’s steering (yaw and bank) to change direction while keeping
the altitude and throttle settings constant. This requires minimal
adjustment beyond steering, making it less cognitively demanding
compared to the other types of turns.

Descending Turns: These turns are more complex than level
turns. The pilot must adjust not only the steering but also the
throttle and altitude. The goal is often to decrease altitude while
turning, which involves more control inputs. The throttle may be
reduced to manage the descent, and the altitude must be carefully
monitored to ensure the aircraft reaches a lower altitude without
significant changes in speed.

Climbing Turns: These are the most challenging maneuvers
discussed. In a climbing turn, the pilot needs to increase altitude
while turning, requiring careful management of the aircraft’s
throttle and stick. The throttle must be adjusted to provide enough
power for the climb, and the stick must be stabilized to reach and
maintain the desired altitude, all while managing the aircraft’s speed
to prevent stalling or over-speeding. The trajectory parameters for
each turn type are detailed in Table 1. The maneuvers’ complexity
is evaluated based on the number of actions required, the intricacy
of the actions, and the time constraints involved.

Through operational complexity and expert scoring, the
cognitive load required for these turns ranks as follows: climbing
turns> descending turns> level turns.

2.4 Experimental procedure

The experiment used a within-subjects, one-way design, where
the independent variable was the three turn phases of the flight
procedure, and the dependent variable was the heart rate variability
(HRV) characteristics. The study included a pre-experiment phase

and a formal experiment. During the pre-experiment phase,
subjects were equipped with Polar heart rate monitors and
familiarized with the flight procedure. In the formal experiment,
subjects completed the flight procedure once, with the flight
duration varying based on their flight conditions.

3 Data processing

3.1 Data pre-processing

yi+k = yi +
k(yi+n − yi)

(n− 1)
(1)

3.2 Characteristic extraction

For the pre-processed PP-interval data, we utilize the HRV
analysis library under the Python environment to extract the HRV
characteristics. The time window selected is 30 seconds, and the
overlap rate of adjacent time windows is 40%. After processing, a
total of 30 HRV characteristics, including mean_nni, sdnn, sdsd,
pnni_20, rmssd, median_nni, range_nni, cvsd, cvnni, etc., were
extracted, as shown in Table 2.

3.3 Turning load assessment

To enhance the performance and explanatory capabilities of
the model, this study utilized numerical analyses and significance
screening of key physiological indicators with SPSS 27 software.
Initially, the K-S normality test showed that the HRV characteristics
of max_hr, lfnu, hfnu, mean_hr, min_hr, pnni_20, cvi, and nni_20
were normally distributed. In contrast, other HRV characteristics
demonstrated nonnormal distributions. Subsequent analyses of the
distribution of each HRV characteristic under different turning
load were performed using both ANOVA and the K-W test, with
a significance threshold set at p < 0.05. The results, detailed in
Tables 3, 4, revealed significant differences in characteristics such
as the triangular index, cvsd, rmssd, and sdsd across various flight
stages. However, most other HRV characteristics did not exhibit
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TABLE 2 HRV characteristics.

Characteristics Definition Characteristics Definition

mean_nni Mean value of heartbeat intervals std_hr Standard deviation of heart rate

sdnn Standard deviation of NN intervals lf Low frequency power

sdsd Standard deviation between adjacent NN intervals hf High frequency power

pnni_20 NN interval greater than 20 milliseconds per cent lf_hf_ratio Ratio of low frequency power to high
frequency power

pnni_50 Percentage of NN intervals greater than 20 milliseconds lfnu Normalized low frequency power

nni_20 Number of times adjacent NN intervals differ by more than 20
milliseconds

hfnu Normalized high frequency power

nni_50 Number of times adjacent NN intervals differ by more than 50
milliseconds

total_power Total energy of the spectrum

rmssd Root mean square difference between adjacent NN intervals vlf Energy of the power spectrum

median_nni Median of NN intervals sd1 Standard Deviation 1 in Poincare Plot

range_nni Range of NN intervals sd2 Standard deviation 2 in Poincare Plot

cvsd Coefficient of variation for continuous differences ratio_sd2_sd1 Ratio of standard deviation 2 to standard
deviation 1

cvnni Coefficient of variation of NN intervals csi Sympathetic index

mean_hr Mean heart rate cvi Vagal index

max_hr Maximum heart rate Modified_csi Sympathetic Nerve Index

min_hr Minimum heart rate triangular_index Trigonometric index

significant differences. Based on these findings, the triangular
index, cvsd, rmssd, sdsd, min_hr, pnni_20, and nni_20 were
identified as key indicators reflective of the loading degree in
different types of turns.

Analysis of the HRV characteristics across three types of flight
turns—climbing, descending, and leveling—reveals distinctive
trends. The indicators such as pnni_20, range_nni, rmssd, sdsd,
nni_20, sd1, and triangular_index generally show an upward
trend, reflecting increased vagal activity and autonomic nervous
system regulation during these phases. Conversely, the min_hr
indicator exhibits a downward trend, indicative of the physiological
demands and adjustments during the flight. Interestingly, the cvsd
indicator did not display a clear trend, possibly due to the limited
monitoring time in the turning phase, which may not sufficiently
capture significant variations in cvsd. This result corroborates
the observed trends where rmssd, pnni_20, nni_20, and min_hr
are consistent with past findings, highlighting their reliability as
indicators of physiological responses to varying load. HRV serves
as a critical marker of the balance between sympathetic and
parasympathetic activities, reflecting the individual’s adaptation
to load (Hongfang et al., 2016). It is particularly responsive
to the psychophysiological changes and fatigue experienced by
pilots under dynamic conditions. During high-load conditions,
increased release of norepinephrine triggers sympathetic activation,
enhancing cardiac contractility and electrical signaling to meet
the heightened physiological demands. This sympathetic surge
reduces HRV characteristics due to the suppression of the vagus
nerve. Conversely, during low-load conditions, parasympathetic
activity dominates through acetylcholine release, promoting
recovery by decreasing HR, reducing cardiac contractility, and
inhibiting cardiac electrical signaling, thus enhancing HRV
(Naijing et al., 2022).

4 Classification models

Considering the time-series characteristics of HRV
during the turn phase of flight trainees, Long Short-Term
Memory (LSTM) model effectively identifies and utilizes
this time-series information. The addition of the Attention
mechanism allows the model to flexibly select and focus on
information based on the importance of data at different
positions, thereby improving the model’s accuracy. HRV such as
triangular_index, cvsd, rmssd, sdsd, min_hr, pnni_20, nni_20,
etc., in the turning phase of flight trainees’ flights are identified.
A classification model is constructed to accurately categorize
the cognitive load of flight trainees during the turn phase in
flight simulation.

4.1 LSTM algorithm

The LSTM algorithm extracts characteristic information from
the time dimension. It sends it to the subsequent network
for processing, prediction, and other operations, which is very
favorable for the processing of time series (Jiang et al., 2023) at the
moment t,

ft = σ(Wf · [ht−1, xt] + bf ) (2)

it = σ(Wi · [ht−1, xt] + bi) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

Ct = ftCt−1 + it ãt (5)
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TABLE 3 Characteristic K-W test results and average values.

Characteristics Climbing Turns Leveling Turns Descending Turns Significance

triangular_index 2.572 3.07 2.818 0.005

mean_nni 672.388 702.185 675.061 0.187

ratio_sd2_sd1 1.962 1.82 1.999 0.687

median_nni 669.358 699.177 671.657 0.176

csi 1.962 1.82 1.999 0.687

lf_hf_ratio 2.392 1.802 3.608 0.446

hf 794.54 1643.17 1600.845 0.066

Modified_csi 716.952 678.472 884.728 0.398

vlf 747.216 1241.329 1585.026 0.472

total_power 3412.599 7073.353 9027.519 0.249

std_hr 5.22 6.159 7.07 0.26

lf 1870.842 4188.854 5841.647 0.511

sdnn 48.727 58.045 62.238 0.162

cvsd 0.051 0.068 0.068 0.048

cvnni 0.063 0.079 0.087 0.192

range_nni 190.931 245.873 244.585 0.118

rmssd 37.203 49.198 47.770 0.043

sd2 62.611 73.333 80.048 0.222

sdsd 37.028 49.009 47.556 0.044

nni_20 10.310 12.591 11.096 0.048

sd1 26.646 35.269 34.221 0.043

pnni_50 14.602 19.408 18.330 0.198

TABLE 4 Characteristic ANOVA test results and average values.

Characteristics Climbing Turns Leveling Turns Descending Turns Significance

max_hr 105.617 101.301 106.289 0.095

hfnu 43.849 48.821 46.124 0.368

lfnu 56.151 51.179 53.876 0.368

mean_hr 94.826 89.558 93.049 0.109

min_hr 84.795 75.970 78.903 0.033

pnni_20 35.558 43.429 38.200 0.026

cvi 4.015 4.290 4.256 0.062

nni_20 10.310 12.591 11.096 0.028

ot = σ(Wo · |ht−1, xt| + bo) (6)

ht = ottan(Ct) (7)

Where, ft , it , ot is the forgetting gate, input gate, and
output gate respectively, Ct is the internal state value of the
cell, sigmoid and tanh are the sigmoid activation function
The hyperbolic tangent activation function, respectively,
Wf ,Wi,Wa,Wo is the matrix weights of the forgetting
gate, the input gate, the vector of candidate values, and
the output gate respectively, and bf , bi, ba, bo is the
corresponding deviation.

4.2 Self-Attention mechanism

The Self-Attention mechanism is a variant of the attention
mechanism that reduces the reliance on external information,
captures the internal relationships between data or characteristics
better, and considers all elements in the sequence simultaneously
(Zhang et al., 2020). Assume that the hidden layer output vector for
one sample of the LSTM network is.

H = (h1, h2, h3, · · · , hd)
T (8)

Where, hi ∈ Rn, n is the number of sequential steps of the
characteristics.
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By randomly initializing the attention mechanism weight
matrix w and the bias vector b, which in turn is associated with
performing the dot product operation, the importance of the
different sequential steps of the ith input characteristic hi can be
expressed as.

si = φ
(

WThi+b
)

(9)

Where, φ (·) is the score function.
The normalization operation is performed on it using Softmax

to obtain the weight coefficient matrix (Chen et al., 2020).

at = softmax (si) =
exp(si)

6iexp (si)
(10)

Put at and Ht through the attention mechanism to get the final
output vector Vt , as shown in the following equation:

Vt = 6atHt (11)

The assignment of probability weights is used to improve the
model’s evaluation metrics, such as accuracy and F1 value for the
unbalanced data in this study.

4.3 LSTM-attention model training

The LSTM-Attention classification algorithm consists of three
LSTM layers, an attention layer, a concatenate layer, and two dense
layers. Initially, the model has two LSTM layers, both set to return
sequences to allow subsequent layers to process more sequence
information. The outputs of these two LSTM layers are fed into a
self-attention layer (Attention), which performs feature weighting
on the inputs to enhance the model’s ability to capture important
information. Next, the output of the Attention layer is merged with
the output of the second LSTM layer through a Concatenate layer.
After that, the model further processes the merged data through
another LSTM layer, which does not return the sequence and only
outputs the final result. Finally, the data is processed through two
dense layers, the first dense layer using the ReLU activation function
and the second dense layer using the softmax activation function
for classification, as shown in Figure 3.

During the construction of the LSTM-Attention model, the
data were normalized to a range of 0 to 1. The dataset contains
labels 1, 2, and 3, corresponding to three different turn types.
Up-sampling was used to balance the number of samples in each
category to address data imbalance. The data were then divided
into training and test sets, with 70% for training and 30% for
testing. Each of the first LSTM layers had ten units, while the
remaining LSTM layers had 20 units. The fully connected layer had
six neurons with the ReLU activation function, and the output layer
had three neurons with the softmax activation function.

The Adam optimizer was used during model training with a
batch size of 150 and an initial learning rate of 0.005. Training was
planned for up to 50 iterations, combined with an early stopping
strategy to prevent overfitting. The training would terminate early
when performance on the validation set stopped improving. In
addition, L2 regularization was added to the LSTM, and the layers
were fully connected with a regularization factor set to 0.01.

5 Results

Various classification algorithms were applied to the extracted
HRV dataset to identify flight turns under different loading
conditions. The algorithms’ performance was assessed using
multiple metrics, including accuracy, precision, recall, and F1
score. The adoption of multiple classification algorithms aimed to
thoroughly explore the in-ternal structure and high-dimensional
characteristics of the time series data. This approach helps to verify
the consistency and reliability of different classification methods in
depicting the relationship between HRV and the load of various
flight turns. It also aims to elucidate the influence trends of these
characteristics while accurately identifying the load status of flight
turns. The classification results from multiple machine learning and
deep learning classifiers are presented in Figure 4. Additionally,
ROC curves and AUC values are utilized to provide a more intuitive
evaluation of model performance, as illustrated in Figure 5.

Considering the unevenness of the data and the differences
in load levels, the study mainly evaluates the performance of the
model in classifying flight turns with different loads based on the
F1 scores, and other classification metrics are only for reference
(Pereira and Saraiva, 2020). The KNN, RF, LSTM, and LSTM-
Attention classifiers show significant differences in the recognition
performance among the different turns of the pilots. The LSTM-
Attention classifier, with an F1 score of 0.9491, has the best
classification performance and the highest accuracy, precision, and
recall among all the models, followed by LSTM, which has the
highest F1 score. The performance of LSTM closely follows F1
score of 0.9407, while the F1 scores of KNN and RF are 0.8591
and 0.8469, respectively, which are significantly weaker than the
previous models. More intuitively, the closer the ROC curve is
to the upper left corner, the better the model performance is
(Wardhani et al., 2019), The AUC of KNN, RF, LSTM, and LSTM-
Attention are 0.82, 0.81, 0.96, and 0.99, respectively, which indicate
that LSTM-Attention is the most effective in recognizing the turns
of the pilots corresponding to the different load.

6 Discussion

Among the classification performances of conventional
machine learning models KNN and RF, the KNN model achieves
a better F1 score. This suggests that the KNN model is better at
capturing the boundary characteristics between different categories
in unbalanced data, thus outperforming the RF model in predicting
the HRV data in this study. However, due to the small difference
between the two in terms of predictive performance metrics, both
the KNN and RF methods have significant advantages.

Compared to traditional machine learning methods, the LSTM
model demonstrated superior classification results in HRV data
for different flight turn phases. This is mainly due to the fact that
the LSTM model is able to better handle long-term dependencies
and sequence patterns in unbalanced data by using memory
cells and gating mechanisms to improve the overall classification
accuracy (Coutts et al., 2020). In addition, the LSTM-Attention
model with the addition of the self-attention mechanism performs
better than the regular LSTM, demonstrating that the self-attention
mechanism more accurately captures important patterns and
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FIGURE 3

Flowchart of LSTM-Attention model structure.

characteristics in the sequences, a result that is consistent with
previous findings (Xialin et al., 2022).

Traditional measures of cognitive load rely on human judgment
or subjective scales, which often fail to provide the immediate
cognitive state of the operator in complex environments. In
this study, we assessed the cognitive state of pilots in real-time

by exploring the relationship between HRV characteristics and
the cognitive load of pilots’ turning behavior. From level flight
turning to descend turning to climb turning, the mean values of
pnni_20, range_nni, raced, sdsd, nni_20, sd1, and triangular_index
characteristic data showed a decrease. The heart rate indicator
min_hr showed an increasing trend, suggesting that changes in
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FIGURE 4

Results of the KNN, RF, LSTM, and LSTM-Attention models.

HRV characteristics and heart rate during changes in cognitive
load may be attributed to parasympathetic and sympathetic nerve
activity producing corresponding adaptive physiological changes
(Naijing et al., 2022; Cao et al., 2019). When performing complex
cognitive tasks, the resulting overall decrease in HRV suggests
that an individual’s physiological response tends toward a more
consistent heart rate pattern, often associated with increased
sympathetic activity. This indicates that the body is coping with
higher stress or concentration levels. The negative correlation
observed shows that as the complexity of cognitive tasks increases,
HRV decreases, reflecting the physiological response to heightened
cognitive load. For instance, a decrease in pnni_20 may be due
to the individual’s need to maintain greater alertness during
complex tasks, leading to reduced adaptability in heart rhythm.
A decrease in range_nni could result from the body’s response
to cognitive challenges, where the heart rhythm stabilizes to
ensure effective coordination between the brain and body. SD1
reflects decreased short-term heart rate variability and reduced
parasympathetic activity, while a lower Triangular Index indicates
a more concentrated heart rhythm with less variability. These
trends suggest that as mission difficulty and cognitive load
increase, the physiological state of pilots undergoes significant
changes to meet higher psychological and physiological demands.
Parasympathetic and sympathetic nerves are the two major
branches of the autonomic nervous system; parasympathetic nerves

contribute to the slowing of the heart rate and the cardiac
rhythm to become more stable mainly through the release of
acetylcholine, which is manifested as an increase in HRV, and
sympathetic nerves respond to emergencies by speeding up
the HR through the release of epinephrine and norepinephrine
which usually results in a decrease in HRV. During cognitive
tasks, especially in response to stress and increased difficulty,
sympathetic and parasympathetic nerves interact to produce
adaptive changes to regulate physiological and psychological states.
It was demonstrated that pilots exhibit significant differences in
quantitative indicators of HRV characteristics when performing
tasks of varying difficulty (Hajra and Law, 2020). Teachers can use
HRV to judge the pilot’s physiological state and adjust the training
difficulty to achieve personalized training. Additionally, this finding
is similar in other fields, not limited to aviation pilots, such as
athletes, civilian police, or hypertensive patients. In these domains,
individuals also show significant changes in HRV characteristics
when faced with stress (Yijun et al., 2023; Junsen et al., 2022; Munla
et al., 2015). By monitoring HRV indicators, instructors can assess
pilots’ stress levels and psychological load in real-time, allowing
them to adjust the difficulty of training missions accordingly. This
real-time monitoring helps prevent incorrect maneuvers caused
by excessive pilot stress, enhancing flight safety. Additionally,
targeted training enables pilots to manage stress and cognitive
load better, improving their performance in complex missions. The
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FIGURE 5

ROC curves and AUC for different models: (A) KNN; (B) RF; (C) LSTM; (D) LSTM-Attention.

present study only used HRV characteristics for pilot cognitive load
assessment in a simulated flight environment; however, lacking
comparative validation in real environments, its conclusions may
differ from reality. Therefore, future studies should include real-
flight experiments as well as extensive comparative baselines,
such as comparing HRV analyses with other physiological
and neuroimaging techniques like electroencephalography and
functional magnetic resonance imaging. Furthermore, the sample
size should be increased and include pilots with different
experience levels and backgrounds (age, sex, etc.) to enhance the
generalizability and reliability of the findings (Garavaglia et al.,
2021; Schaffarczyk et al., 2022). Such comparisons would not only
help to validate the heart rate variability analysis but also further
explore the differences in physiological responses to stress and
task difficulty among different pilots, enabling more personalized
training and support.

7 Conclusion

Based on the flight parameters and HRV characteristics
obtained from the Simulated Flight experiments, this study

classified the load levels corresponding to three types of turns:
climbing turns, leveling turns, and descending turns, and analyzed
the differences in HRV characteristics under different turn load,
which showed that most of the HRV characteristics differed
significantly among the three types of turns. The study shows
that most HRV characteristics are significantly different among the
three types of turns. The load level is relatively high for climbing
turns, lower for descending turns, and lowest for leveling turns.

The LSTM-Attention model performs the best in identifying
the cognitive load levels of different turns, surpassing the traditional
machine learning model and the model without attention
mechanism, and can effectively identify and classify the cognitive
load levels of different turns, which is conducive to the optimization
of load allocation. It can help flight schools, airlines, and general
aviation companies to make reasonable load assignments inflight
tasks and schedules with different turn demands.
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