
Frontiers in Neuroscience 01 frontiersin.org

Brain morphological analysis in 
mice with hyperactivation of the 
hedgehog signaling pathway
Tadashi Shiohama 1*, Hideki Uchikawa 1,2, Nobuhiro Nitta 3,4, 
Tomozumi Takatani 1, Shingo Matsuda 5,6,7, Alpen Ortug 8,9, 
Emi Takahashi 8,9, Daisuke Sawada 1, Eiji Shimizu 5, 
Katsunori Fujii 1,10, Ichio Aoki 3 and Hiromichi Hamada 1

1 Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan, 2 Department 
of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan, 3 Institute 
for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, 
Japan, 4 Central Institute for Experimental Medicine and Life Science Bio Imaging Center, Yokohama, 
Japan, 5 Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba 
University, Chiba, Japan, 6 Department of Pharmacotherapeutics, Showa Pharmaceutical University, 
Tokyo, Japan, 7 Department of Ultrastructural Research, National Institute of Neuroscience, National 
Center of Neurology and Psychiatry, Tokyo, Japan, 8 Athinoula A. Martinos Center for Biomedical 
Imaging, Massachusetts General Hospital, Boston, MA, United States, 9 Department of Radiology, 
Harvard Medical School, Boston, MA, United States, 10 Department of Pediatrics, International 
University of Health and Welfare Narita Hospital, Narita, Japan

Hedgehog signaling is a highly conserved pathway that plays pivotal roles in 
morphogenesis, tumorigenesis, osteogenesis, and wound healing. Previous 
investigations in patients with Gorlin syndrome found low harm avoidance traits, 
and increased volumes in the cerebrum, cerebellum, and cerebral ventricles, 
suggesting the association between brain morphology and the constitutive 
hyperactivation of hedgehog signaling, while the changes of regional brain 
volumes in upregulated hedgehog signaling pathway remains unclear so 
far. Herein, we  investigated comprehensive brain regional volumes using 
quantitative structural brain MRI, and identified increased volumes of amygdala, 
striatum, and pallidum on the global segmentation, and increased volumes 
of the lateral and medial parts of the central nucleus of the amygdala on the 
detail segmentation in Ptch heterozygous deletion mice. Our data may enhance 
comprehension of the association between brain morphogenic changes and 
hyperactivity in hedgehog signaling.
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1 Introduction

Hedgehog signaling is a highly conserved pathway that plays pivotal roles in 
morphogenesis, tumorigenesis, osteogenesis, and wound healing. The hedgehog signaling 
pathway is initiated by the binding of the hedgehog protein to its membrane receptor Patched 
(Ptch), resulting in the inhibition of the repression of the G protein-coupled receptor family 
protein Smoothened (Smo). SMO intracellularly activates hedgehog signaling through several 
cytoplasmic transduction steps, leading to the nuclear action of Gli proteins, which 
subsequently regulate target genes (Ruiz i Altaba et al., 2002; Andreu-Cervera et al., 2021). 
Especially, hedgehog protein is one of the most important morphogens that displays pleiotropic 
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functions during embryonic development, ranging from neuronal 
patterning to axon guidance (reviewed by Douceau et al., 2023; Avilés 
et al., 2013).

Among the morphogenetic adjustments by hedgehog signaling, 
its contribution to fetal brain development is well recognized. 
Hedgehog signaling controls brain morphology mainly by regulating 
neuronal proliferation, forebrain development, and cerebellar 
development (Davies and Miller, 2001; Komada et al., 2008; Komada, 
2012; Radonjić et al., 2016; Kiyasova and Gaspar, 2011; Abeliovich and 
Hammond, 2007; Fernandes and Hébert, 2008; Solomon et al., 2012; 
Andreu-Cervera et al., 2021; Vaillant and Monard, 2009; Corrales 
et al., 2004; Shiohama et al., 2017; Wechsler-Reya and Scott, 1999). 
Hedgehog signaling also positively regulates the proliferation of neural 
stem cells and oligodendroglia in the neocortex (Davies and Miller, 
2001; Komada et  al., 2008; Komada, 2012; Radonjić et  al., 2016), 
serotonin-producing neurons (Kiyasova and Gaspar, 2011), and 
dopaminergic neurons (Abeliovich and Hammond, 2007). Hedgehog 
signaling is also essential for the formation of the midline structure of 
the forebrain, and defects in this signaling pathway have been shown 
to lead to holoprosencephaly (Fernandes and Hébert, 2008; Solomon 
et  al., 2012; Andreu-Cervera et  al., 2021). In addition, Hedgehog 
signaling positively controls cerebellar size in both mice (Vaillant and 
Monard, 2009; Corrales et al., 2004) and humans (Shiohama et al., 
2017) by driving the proliferation of cerebellar granular cells 
(Wechsler-Reya and Scott, 1999).

Personality psychology has attracted considerable attention in 
personality disorders (Stockings et al., 2016), childhood adversities such 
as bullying and child abuse (Peh et al., 2019), bipolar disorders (Luciano 
et al., 2021), and Parkinson’s disorders (Santangelo et al., 2018). To 
assess personality, Cloninger’s biosocial model of personality assesses 
the four dimensions of fundamental temperament: novelty seeking, 
harm avoidance, reward dependence, and persistence, which have been 
widely used in children and adults (Cloninger et al., 1993; Hansenne 
and Ansseau, 1999; Däschle et  al., 2023). Each temperament is 
independently heritable and associated with neurotransmitters. Novelty 
seeking is associated with dopaminergic activity, harm avoidance is 
associated with serotonergic activity, reward dependence is associated 
with noradrenergic activity, and persistence is associated with unknown 
neurotransmitters (Cloninger, 1987; Hansenne and Ansseau, 1999).

Harm avoidance is a personality trait characterized by excessive 
worry, fear of uncertainty, shyness, and fatigue (Bey et al., 2017). Harm 
avoidance has strong heritability (Garcia et al., 2013; Keller et al., 2005), 
high stability throughout life (Josefsson et  al., 2013), and tight 
connectivity with obsessive-compulsive disorder (Ettelt et al., 2008; Bey 
et al., 2017), depression, and anxiety (Kenna et al., 2012; Meylakh and 
Henderson, 2016). However, the relationship among harm avoidance 
traits, brain morphology, and neurotransmitters remains unclear.

Magnetic resonance imaging (MRI) is a well-established tool in 
clinical practice and research on disorders with various conditions 
including neurodevelopmental disorders, neurodegenerative 
disorders, and psychiatric disorders/personality traits. The importance 
of neuroimaging in rodents has increased significantly and plays an 
important role in neuroscience research, translational medicine, and 
pharmaceutical advances (Liu et al., 2020). MRI studies in animal 
models (preclinical) aim to explore new aspects of disease processes 
that have not yet been fully understood in human diseases. Animal 
models are crucial for the scientific study of the normal physiological 
mechanisms that regulate both normal and abnormal behavior, as well 
as pathological outliers and processes (van der Staay et al., 2009). 

Many mouse models have been used to study inflammatory diseases 
of the central nervous system, neurodegenerative diseases, stroke, 
brain and spinal cord trauma models, as well as brain tumors, through 
MRI (Denic et al., 2011). However, to the best of our knowledge, this 
is the first study to correlate harm avoidance and Hedgehog signaling 
in a mouse model using a preclinical structural MRI technique.

Our previous study revealed a characteristic personal pattern with 
low levels of harm avoidance in patients with Gorlin syndrome 
(OMIM #109400) due to the PTCH1 pathogenic variant, suggesting 
that congenital hyperactivity in hedgehog signaling may contribute to 
controlling harm avoidance on biosocial characteristics (Uchikawa 
et al., 2021). In this study, we investigated the brain morphological 
changes by the hyperactivity in hedgehog signaling using high-
resolution structural MRI studies in Ptch heterozygous deletion mice.

2 Materials and methods

2.1 Experimental animals

All animal care and treatments were performed in accordance 
with the guidelines of the Experimental Animal Care Committee of 
Chiba University. The PTCH+/− mice (B6.Cg-Ret<tm1Mat> 
PTCH1 < tm1Mps>) (Goodrich et al., 1997) were provided by the 
RIKEN BRC through the National Bio-Resource Project of the MEXT, 
Japan. This genetically engineered mouse with Ptch heterozygous 
knockout has long been recognized as a mouse with enhanced 
hedgehog signaling (Goodrich et al., 1997; Aszterbaum et al., 1999; 
Rigby et al., 2019). All mice used in this study, both mutant (PTCH 
+/−) and wildtype (WT) littermates, were bred from wildtype 
C57BL/6 J females and Ptch1<tm1Mps> heterozygous males. All mice 
were housed 2–5 per cage and maintained on a 12-h light/dark cycle 
with water and food available ad libitum.

2.2 Genotyping

After weaning, mouse genomic DNA was extracted from the tip 
of the tail using phenol-chloroform DNA extraction, and a polymerase 
chain reaction strategy was applied to distinguish WT from mutant 
alleles using the GoTaq Green Master Mix (#M7122, Promega, 
Madison, WI, United States) following standard methodologies. The 
cycling conditions were 94°C for 2 min, followed by 32 cycles of 94°C 
for 30 s, 59°C for 0 s, and 72°C for 90 s. After 32 PCR cycles, the 
procedure was examined by electrophoresis on a 2% agarose gel. Run 
on 2% agarose gel. Wild-type (forward primer, TGG GGT GGG ATT 
AGA TAA ATG CC; reverse primer, TGT CTG TGT GTG CTC CTG 
AAT CAC) and mutant bands (forward primer, CTG CGG CAA GTT 
TTT GGT TG; reverse primer, AGG GCT TCT CGT TGG CTA 
CAAG) were identified at 217 and 501 bp, respectively.

2.3 MRI acquisition and processing

2.3.1 Animal procedure
Six 12-week-old male PTCH+/− mice and six 12-week-old male 

WT male mice were anesthetized by intraperitoneal injection of a 
mixture of medetomidine, midazolam, and butorphanol (Kirihara 
et  al., 2013), and were sacrificed by transcardial perfusion with 
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phosphate buffered saline and 4% paraformaldehyde. Mouse heads 
were decapitated and stored in 4% paraformaldehyde at 4°C until MRI 
scanning. The animal experimentation was conducted according to 
the protocol reviewed and approved by the institutional animal care 
and use committee of Chiba University (Permit No. 20–120).

2.3.2 MRI acquisition
Mouse brains were scanned using a 7-tesla preclinical MRI 

scanner (Bruker BioSpin, Ettlingen, Germany), equipped with actively 
shielded gradients (BGA12S, 116 mm i.d., BrukerBioSpin) and a 
transmitting/receiving volume coil with an inner diameter of 22 mm. 
High resolution anatomical images of the whole brain were acquired 
using a Rapid Acquisition with Relaxation Enhancement (RARE) 
sequence with the following parameters: effective echo time 
(eTE) = 26 ms, repetition time (TR) = 2,500 ms, RARE factor = 4, 
number of averages = 4, spatial resolution = 70 × 70 × 70 μm3, scan 
time = 14 h 17 min 32 s.

2.3.3 Automatic segmentation
The acquired structural T2-weighted images were analyzed using 

the Atlas Normalization Toolbox with elastiX version 2 (ANTx2) 
(Lein et al., 2007; Hübner et al., 2017; Koch et al., 2019)1 running in 
MATLAB (MathWorks, Natick, MA) toolbox for image registration 
of mouse MRI data. Through the ANTx2 pipeline, MR images were 
processed using SPM122 and nonlinear warping of tissue probability 
maps in ELASTIX (Klein et al., 2010),3 and registered in the Allen 
Mouse Atlas 2017 (CCFv3) (Lein et al., 2007; Hikishima et al., 2017; 
Hübner et al., 2017). After checking the visual inspection of atlas 
registration, the estimated volumes of each anatomical region in the 
native space were individually calculated for each mouse. As global 
segmentation common mice to human, cerebrum, amygdala, striatum, 
pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and 
cerebellum were selected for identifying candidate regions of volume 
change in PTCH +/− mice.

2.3.4 Laterality index (LI)
To evaluate the structural asymmetry of regional brain volumes, 

we employed the LI (Springer et al., 1999), which was calculated as the 
ratio [VL—VR] / [VL + VR] × 100 (VL, volume of the left hemisphere; 
VR, volume of the right hemisphere). LIs were subsequently classified 
as left hemisphere dominant (defined as LI > 20), symmetric 
(−20 ≤ LI ≤ +20) or right hemisphere dominant (LI < −20).

2.4 Statistical analysis

GraphPad Prism version 9.5.1 (GraphPad Software, Boston, 
MA, United  States) and Microsoft Excel 2019 (Redmond, WA, 
United  States) were used for statistically analysis. The 
concentration of monoamines, brain regional weight, and brain 
measurements including the laterality index in 10 major 
segmentations were evaluated by Welch’s two-tailed unpaired 
t-tests (p < 0.05). Regional brain volumes were comprehensively 

1 https://github.com/ChariteExpMri/antx2

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12

3 https://elastix.lumc.nl

evaluated through repeated Welch’s two-tailed unpaired t-tests 
with Benjamini-Hochberg methods (Benjamini et al., 2001; Reiner 
et al., 2003) for controlling the false discovery rate (FDR) (q = 0.1), 
rates of mean, and the absolute value of Cohen’s d statistic. Cohen’s 
d = 0.8 was recognized as the cut-off value for large-size effects 
(Cohen, 1992).

3 Results

3.1 Quantitative analysis of the brain 
morphology

The six 12-week-old WT and PTCH+/− male mice were finally 
used for the brain morphologic study after exclusion of one PTCH+/− 
mouse with a medulloblastoma-like tumor in the cerebellum 
identified on brain MRI. Brain regional segmentation was performed 
in both PTCH+/− and WT mice, and measurements of 958 among 
1,327 regions according to CCFv3 atlas were successfully determined 
for each mouse (Figures 1A,B, Supplementary Figure S1). Comparison 
of global regional volume showed statistically significant differences 
in the volumes of the amygdala, striatum, and pallidum between 
PTCH+/− and WT mice (Figure  1C). Although not reaching 
statistical significance, the volume of the cerebrum, thalamus, 
hypothalamus, midbrain, pons, and cerebellum tended to be higher 
in PTCH+/− mice than in WT mice.

The LI demonstrated a mild left hemisphere dominance in all 
parts of the global brain regions both in PTCH+/− mice and in WT 
mice (Figure  1D). No statistically significant difference of LI was 
identified between PTCH+/− and WT mice.

We subsequently compared the more detailed regional volumes of 
the amygdala, striatum, and pallidum of PTCH+/− and WT mice. 
Among the 11 regions of the amygdala, the lateral, basolateral, 
basomedial, posterior, striatum-like, central, intercalated, and medial 
part of amygdala nucleus showed statistically significant higher 
volume in PTCH+/− mice than in WT mice (Table 1). All of five parts 
of the striatum showed significantly higher volumes in PTCH+/− 
mice than in WT mice (Table 1). All of four parts of the pallidum 
showed statistically significant higher volume in PTCH+/− mice than 
in WT mice (Table 1).

4 Discussion

In this study, we  investigated comprehensive brain regional 
volumes using quantitative structural brain MRI, and identified 
increased volumes of amygdala, striatum, and pallidum on the global 
segmentation. There was a trend toward greater volumes of the 
infralimbic cortex and the lateral and medial parts of the central 
nucleus of the amygdala on the detail segmentation in Ptch 
heterozygous deletion mice. We chose ex vivo MRI instead of in vivo 
MRI to strictly match the scan week age, because of difficulty for 
preparing transgenic mice of the same sex and age siblings. 
Additionally, we  scanned brain images over 14 h per mouse to 
visualize brain structure in detail and reduce signal noise ratio. Ex vivo 
MRI is not easily affected by motion artifacts, and susceptibility 
artifacts can be reduced by proper and careful sample preparation, 
such as avoiding bubble formation (Vasung et al., 2019).
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FIGURE 1

Brain morphology analysis using MRI. T2 weighted images (A), atlas registration (B), quantification of anatomical regions using volume-based 
morphometry (C), and laterality index (D) in wild type (WT) and Ptch heterozygous deletion (PTCH+/−) mice. * indicates significantly difference 
(p  <  0.05).
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TABLE 1 Comparison between brain region volumes of the amygdala, striatum, and pallidum of WT and PTCH +/− mice obtained using detailed volume-based morphometry.

Regions WT mice (N =  5) mean 
[SD]

PTCH+/− mice (N =  5) 
mean [SD]

Rate of mean value of 
PTCH+/− to WT

Cohen’s D Welch’s t-test p values

Amygdala total 14.5 [0.54] 16.3 [1.47] 1.12 1.63 0.046*

Cortical amygdala area 2.62 [0.13] 2.84 [0.28] 1.08 1.01 0.160

Piriform-amygdala area 0.77 [0.05] 0.79 [0.06] 1.03 0.36 0.550

Lateral amygdala nucleus 0.62 [0.03] 0.71 [0.09] 1.15 1.34 0.069*

Basolateral amygdala nucleus 1.45 [0.08] 1.61 [0.15] 1.11 1.33 0.085*

Basomedial amygdala nucleus 1.06 [0.06] 1.21 [0.13] 1.14 1.48 0.063*

Posterior amygdala nucleus 0.31 [0.02] 0.37 [0.04] 1.19 1.90 0.022*

Striatum-like amygdala nucleus 4.04 [0.14] 4.64 [0.43] 1.15 1.88 0.033*

Anterior amygdala area 0.60 [0.03] 0.66 [0.07] 1.10 1.11 0.120

Central amygdala nucleus 1.24 [0.05] 1.41 [0.13] 1.14 1.73 0.034*

Intercalated amygdala nucleus 0.22 [0.01] 0.25 [0.03] 1.14 1.34 0.060*

Medial amygdala nucleus 1.55 [0.05] 1.81 [0.18] 1.17 1.97 0.032*

Striatum total 38.3 [1.08] 45.02 [3.81] 1.18 2.40 0.015*

Striatum dorsal region 22.6 [0.59] 26.76 [2.29] 1.18 2.49 0.013*

Striatum ventral region 8.60 [0.39] 9.61 [0.64] 1.12 1.91 0.020*

Nucleus accumbens 4.39 [0.13] 4.91 [0.36] 1.12 1.92 0.026*

Fundus of striatum 0.40 [0.01] 0.45 [0.04] 1.13 1.72 0.047*

Olfactory tubercle 3.81 [0.26] 4.25 [0.26] 1.12 1.69 0.026*

Pallidum total 8.76 [0.37] 10.23 [0.93] 1.17 2.08 0.021*

Pallidum dorsal region 2.04 [0.15] 2.48 [0.23] 1.22 2.27 0.009*

Pallidum ventral region 3.52 [0.17] 3.94 [0.26] 1.12 1.91 0.021*

Pallidum medial region 1.80 [0.08] 2.13 [0.23] 1.18 1.92 0.029*

Pallidum caudal region 1.40 [0.05] 1.67 [0.26] 1.19 1.44 0.078*

*Denotes a p-value of less than 0.087 for 23 repeated t-test with false discovery rate correction (q = 0.1), which is statistically significant. Abbreviation; PTCH+/−, Ptch heterozygous deletion; SD, standard deviation; WT, wild type. We provided a supplemental statistical 
summary table about raw values, p-values of Welch’s t-test, FDR adjustment (q = 0.1), fold change, and Cohen’s D for all measurements in the neuroimaging study as Supplementary Table S1. These alterations were considered candidate at p < 0.005 and Cohen’s D > 0.8, 
but there are no brain regions with statistically significantly difference after adjustments for the multiple comparisons using FDR for 958 repeated t-test.
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In the current study, PTCH+/− mice showed increased volumes 
of the the lateral and medial parts of the central nucleus of the 
amygdala. The LI of the amygdala in PTCH+/− mice showed left 
hemispheric dominancy, although this did not reach statistical 
significance. The left amygdala has been identified as a region related 
to the level of harm avoidance through human resting-state functional 
MRI (Meylakh and Henderson, 2016), while in a semiquantitative 
brain MRI study on patients with Gorlin syndrome showed a smaller 
amygdala only on the left side (Uchikawa et  al., 2021). The 
observations of the effect of increased Hedgehog signaling on 
amygdala volume differed between patients and model mice. Nees 
et al. (2020) found that in chronic pain patients, amygdala volume was 
not associated with pain avoidance itself but was significantly 
positively correlated with behavior to positive stimuli, which suggest 
that the amygdala’s response and volume changes related to harm 
avoidance may be more complex than in other brain regions.

Subsequently, we identified several morphological differences in 
the brain, using MRI, which may be associated with impaired harm 
avoidance. Harm avoidance is an adaptive defensive reaction to fear 
and anxiety (Robinson et al., 2019). Studies on the neural circuits of 
fear and anxiety (Calhoon and Tye, 2015; Robinson et al., 2019) have 
previously described that fear output is mediated by parts of the 
amygdala (the basolateral amygdala and the lateral and medial parts 
of the central nucleus of the amygdala) as well as the medial prefrontal 
cortex, and discussed that they are associated to harm avoidance. One 
functional MRI study also reported that the dorsal raphe nucleus, 
anterior cingulate cortex, and amygdala were correlated with harm 
avoidance (Meylakh and Henderson, 2016).

The lower harm avoidance was observed in our previous 
findings regarding the personality analysis in patients with Gorlin 
syndrome (Uchikawa et  al., 2021). In the behavioral study of 
PTCH+/− mice, the open-field test showed early habituation, while 
the elevated plus maze test showed decreased anxiety-related 
behavior (Antonelli et al., 2018). In contrast to PTCH +/− mice, 
SMO-deficient mice, in which SHH signaling is suppressed, exhibit 
increased anxiety/depression-like behaviors without affecting spatial 
and fear-related learning ability (Wang et al., 2022). These findings 
support the hypothesis that hyperactive hedgehog signaling 
suppresses harm avoidance (Antonelli et  al., 2018), and the 
extinction of fear memory is regulated by sonic hedgehog signaling 
(Hung et al., 2015). Harm avoidance is connected to the anxiety-
related personality dimension (Meylakh and Henderson, 2016), and 
high harm avoidance scores are associated with anxiety and 
depression (Carver and Miller, 2006). In contrast, low harm 
avoidance scores are associated with risk-taking, harmful behavior, 
impulsiveness, suicidal ideation, and aggression (Peirson et  al., 
1999). Therefore, controlling the degree of harm avoidance could 
potentially aid in the development of novel therapies for 
psychological disorders.

The current study had some limitations. First, we evaluated brain 
morphology using MRI, but we  did not employ a multimodal 
neuroimaging approach such as Blood Oxygenation Level Dependent 
(BOLD)-based functional MRI, perfusion/diffusion MRI, or PET/
SPECT imaging. Although brain regional volume is widely recognized 
as a factor related to regional brain function, multimodal 
neuroimaging approaches could improve our understanding of the 
association between the neuroNetwork of hedgehog signaling activity. 
Second, it remains unclear whether the hedgehog signaling enhances 

is associated to harm avoidance. Further studies are therefore required 
to determine whether the activity level of hedgehog signaling. Third, 
our study was carried on only male mice to match sex, because the 
influence of sex differences on brain morphology cannot be ignored. 
Although the Ptch gene is not a gene on the sex chromosome, 
we cannot rule out the possibility that the results may be  slightly 
altered in female mice. Differences between species may be another 
limitation of the present study. The comparison of human and mouse 
homolog cell types in the temporal lobe using single nucleus 
RNA-sequencing identified different patterns of gene expression in 
serotonin receptors, despite general conservation (Hodge et al., 2019); 
therefore, further investigation would be required to reveal whether 
the finding of the neuroimaging study could have much in common 
with humans.

In conclusion, we  investigated comprehensive brain regional 
volumes using quantitative structural brain MRI, and identified 
increased volumes of the infralimbic cortex and the lateral and medial 
parts of the central nucleus of the amygdala in Ptch heterozygous 
deletion mice. Our data suggest that morphogenic changes in the 
neural circuits of harm avoidance may be connected to low harm 
avoidance and hyperactivity of hedgehog signaling.
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