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Evaluation and analysis of visual
perception using
attention-enhanced
computation in multimedia
a�ective computing

Jingyi Wang*

School of Mass-communication and Advertising, Tongmyong University, Busan, Republic of Korea

Facial expression recognition (FER) plays a crucial role in a�ective computing,

enhancing human-computer interaction by enabling machines to understand

and respond to human emotions. Despite advancements in deep learning,

current FER systems often struggle with challenges such as occlusions, head

pose variations, and motion blur in natural environments. These challenges

highlight the need for more robust FER solutions. To address these issues,

we propose the Attention-Enhanced Multi-Layer Transformer (AEMT) model,

which integrates a dual-branch Convolutional Neural Network (CNN), an

Attentional Selective Fusion (ASF) module, and a Multi-Layer Transformer

Encoder (MTE) with transfer learning. The dual-branch CNN captures detailed

texture and color information by processing RGB and Local Binary Pattern

(LBP) features separately. The ASF module selectively enhances relevant

features by applying global and local attention mechanisms to the extracted

features. The MTE captures long-range dependencies and models the complex

relationships between features, collectively improving feature representation and

classification accuracy. Our model was evaluated on the RAF-DB and A�ectNet

datasets. Experimental results demonstrate that the AEMT model achieved

an accuracy of 81.45% on RAF-DB and 71.23% on A�ectNet, significantly

outperforming existing state-of-the-art methods. These results indicate that

our model e�ectively addresses the challenges of FER in natural environments,

providing a more robust and accurate solution. The AEMT model significantly

advances the field of FER by improving the robustness and accuracy of emotion

recognition in complex real-world scenarios. This work not only enhances the

capabilities of a�ective computing systems but also opens new avenues for

future research in improving model e�ciency and expanding multimodal data

integration.

KEYWORDS

a�ective computing, attention mechanisms, feature extraction, emotion recognition,

facial expression recognition, deep learning, transfer learning

1 Introduction

In the field of affective computing, facial expression recognition (FER) has garnered

significant attention due to its natural and powerful means of conveying human

emotions. FER systems have critical applications in psychology research, human-computer

interaction, driver fatigue monitoring, and more. However, there are still many challenges

to facial expression recognition in natural environments. Factors such as occlusion,
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changes in head pose (Sun et al., 2021; Xu et al., 2022), facial

distortion and motion blurring exacerbate the challenges to

such recognition, as shown in Figure 1. These factors lead to

significant changes in facial appearance, complicating the task

of accurately recognizing expressions and causing traditional

recognition methods in laboratory settings to perform poorly in

real-world applications (Borgalli and Surve, 2022). Therefore, how

to achieve efficient and accurate facial expression recognition in

complex environments has become an urgent problem in the field

(Zeng et al., 2019; Li et al., 2020b).

The advent of deep learning has provided new opportunities

for FER. Convolutional neural networks (CNNs) and other

deep learning models have made significant strides in feature

extraction and classification accuracy. Deep learning models

automatically learn complex features from data, enhancing the

accuracy and robustness of FER. For example, Tang et al. (2019)

proposed a CNN model that significantly improved performance

by replacing the softmax layer with a linear support vector machine

(SVM) for classification. Similarly, Kim et al. developed a deep

locality-preserving CNN (DCNN-RF) method to enhance feature

discriminativeness (Li et al., 2019; Kim et al., 2023). Despite

these advancements, the performance of deep learning methods in

natural environments still leaves much to be desired (Kollias and

Zafeiriou, 2019).

Currently, the application of deep learning in natural

environments faces several challenges, including insufficient data,

weak model generalization, and difficulty in feature extraction

under complex conditions. Most existing methods are trained and

tested in controlled environments, performing poorly in real-world

scenarios. Additionally, the limited quantity and quality of available

datasets hinder the effective training of deep learning models,

resulting in unstable performance in natural environments (Wang

X. et al., 2020; Zeng et al., 2020). Existing methods often fail to

account for the diversity of real-world conditions, such as varying

lighting, occlusions, and head poses, leading to reduced robustness

and accuracy.

To address these challenges, this paper proposes an improved

visual Transformer model that combines attention mechanisms

and multi-layer Transformer encoders, incorporating transfer

learning to leverage the advantages of pre-trained models on large-

scale datasets (Liu et al., 2021). Specifically, the proposed method

involves two main steps: first, using a dual-branch CNN to extract

RGB and LBP (Local Binary Pattern) features, which are then

fused using an ASF module. The ASF module integrates global

and local attention mechanisms to effectively combine various

features, enhancing feature representation richness (Zhao et al.,

2020; Zhang et al., 2021). Second, a multi-layer Transformer

encoder models the global relationships of the fused features, and

the pre-trained model is fine-tuned to improve adaptability to

new datasets. The Transformer encoder, through multi-head self-

attention mechanisms, captures long-range dependencies among

features, thereby improving recognition capabilities (Ma et al.,

2021).

The proposed model addresses the limitations of existing

methods by enhancing feature extraction and improving

generalization. The dual-branch CNN captures both color and

texture information through RGB and LBP features, addressing the

issue of insufficient feature representation. The ASFmodule further

enhances this by selectively focusing on the most relevant features,

improving the model’s ability to handle occlusions and varying

head poses. The multi-layer Transformer encoder with transfer

learning leverages pre-trained models to improve performance on

smaller datasets, addressing the challenge of insufficient training

data and enhancing model generalization.

The goal of this study is to improve the accuracy and

robustness of FER in natural environments by combining attention

mechanisms, transfer learning, and Transformer models, providing

an effective solution for affective computing. Experimental results

demonstrate that the proposed method outperforms state-of-

the-art methods on multiple public datasets, achieving new

performance benchmarks. For instance, testing on the RAF-

DB, FERPlus, and AffectNet datasets shows that the proposed

method surpasses existing methods in accuracy, achieving new

performance highs. Furthermore, the proposed method exhibits

excellent generalization capabilities in cross-dataset evaluations,

validating its applicability in diverse environments (Jiang et al.,

2020).

In summary, this paper introduces a novel FER method that

leverages transfer learning and improved attention mechanisms.

This approach not only enhances recognition accuracy but also

improves robustness and generalization in complex environments,

providing new insights and technical support for the development

of affective computing. With the advent of larger datasets and

more powerful computational resources, this method is expected

to further advance, laying the groundwork for more intelligent and

humanized affective computing systems.

In conclusion, our contributions are as follows:

1. Novel integration of attention mechanisms and transformers:

We have developed a new model that integrates attention

mechanisms with multi-layer Transformer encoders. This

combination enhances the ability to capture global and local

features, improving the accuracy and robustness of facial

expression recognition in natural environments.

2. Incorporation of transfer learning: By incorporating transfer

learning, our model leverages pre-trained features from large-

scale datasets, significantly improving performance and training

efficiency on smaller, task-specific datasets. This approach also

enhances the model’s adaptability to diverse data conditions.

3. Comprehensive evaluation and validation: We conducted

extensive experiments across multiple public datasets (RAF-

DB, FERPlus, and AffectNet), demonstrating that our proposed

method achieves state-of-the-art performance. Additionally,

we validated our model’s generalization capabilities through

cross-dataset evaluations, proving its effectiveness in real-world

applications.

To provide a clear structure for the reader, we outline the

organization of our paper as follows: The first section is the

introduction, providing an overview of the research background

and the main challenges addressed. The second section reviews

related work, extending the discussion on the application of models

in similar fields. The third section, Method, describes the models

and algorithms used in our study. The fourth section presents

our experiments, evaluating our proposed research from various
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FIGURE 1

Samples from the A�ectNet (Sun et al., 2021) and RAF-DB (Li et al., 2017) datasets, emphasizing the variations in head poses, occlusions, and other

unconstrained conditions present in real-world images. A�ectNet includes eight expression labels, incorporating the contempt category, while

RAF-DB is annotated with seven basic expressions and additional compound expressions.

perspectives and comparing its performance with other studies.

Finally, Section 5 summarizes our findings and discusses future

directions for research.

2 Related work

2.1 Convolutional neural networks for
facial expression recognition

CNNs have shown exceptional performance in visual

perception tasks, particularly in facial expression recognition.

CNNs effectively extract features from images through hierarchical

convolution and pooling operations and classify these features.

Typical CNN architectures such as AlexNet, VGGNet, and ResNet

have been widely applied to facial expression recognition tasks

(Krizhevsky et al., 2012; He et al., 2016). Tariq et al. utilized

VGGNet for facial expression classification, achieving high

recognition accuracy on the FER-2013 dataset (Sikkandar and

Thiyagarajan, 2021; Tariq et al., 2023).

In their implementation, the researchers first preprocessed the

FER-2013 dataset by resizing the images to a fixed size and then

used the VGGNet model to extract image features. By fine-tuning

and optimizing the model, they classified seven basic emotions

(e.g., happiness, sadness, anger). The experimental results showed

that the VGGNet-based model achieved over 70% accuracy on the

test set, significantly outperforming traditional handcrafted feature

extraction methods.

The advantage of CNNs lies in their automatic feature

extraction capability, making them particularly effective in

handling complex emotional expressions. However, CNN models

are highly dependent on datasets and require a large amount of

labeled data for training (Buduma et al., 2022). Additionally, CNNs

are sensitive to geometric transformations of input images (e.g.,

rotation, scaling), making them susceptible to image preprocessing

quality (Wu et al., 2019). Another issue is that CNN models

generally have a large number of parameters, requiring substantial

computational resources for training and posing challenges for

deployment in resource-limited environments (Zhang et al.,

2019).

2.2 Recurrent neural networks in dynamic
emotion analysis

Recurrent Neural Networks (RNNs) and their variants, Long

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),

have advantages in handling time-series data and are widely used

in dynamic emotion analysis. RNNs capture temporal relationships

in sequential data, making them effective for recognizing emotions

in continuous video frames (Ghorbanali and Sohrabi, 2023; Zhong

et al., 2023).

Zhang et al. utilized an LSTMmodel to model facial expression

sequences in videos and conducted experiments on the CK+

dataset. The results showed that LSTM outperformed traditional

methods in capturing emotional changes (Singh et al., 2023). In

their experiment, the researchers used the CK+ dataset, which

contains temporal data of various facial expressions. By extracting

video frames and inputting them into the LSTM model, the

model learned the dynamic features of facial expressions over

time (Chadha et al., 2020). The experimental results showed that

the LSTM model effectively captured subtle emotional changes,

achieving high accuracy (Singh et al., 2023).

Although RNNs perform well in dynamic emotion analysis,

they have some drawbacks, such as gradient vanishing and

exploding problems during training (Pascanu et al., 2013).

Additionally, RNNs are sensitive to noise in the data, posing

challenges for practical applications (Graves and Schmidhuber,

2005). Future research could focus on addressing these issues,

such as improving model architectures or using data augmentation

techniques to enhance model robustness.
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2.3 Generative adversarial networks for
data augmentation

Generative Adversarial Networks (GANs) have achieved

remarkable results in various computer vision tasks, particularly in

data augmentation for facial expression recognition. GANs,

through adversarial training between a generator and a

discriminator, can generate realistic facial expression images,

thus addressing the issue of insufficient real data (Radford et al.,

2015; Creswell et al., 2018). Goodfellow et al. introduced GANs

in their seminal work, demonstrating their capability in image

generation (Goodfellow et al., 2020; Bosquet et al., 2023).

Liu et al. used GANs to generate synthetic facial expression

images and combined them with real data to train CNN models,

significantly improving recognition accuracy (Liu et al., 2018; Cai

et al., 2021). In their experiment, the researchers first trained a

GAN generator to produce various facial expression images, then

mixed these generated images with real data to train CNN models

(Karras et al., 2019). This approach significantly enhanced dataset

diversity, optimizing model performance on the FER-2013 dataset,

with accuracy improvements of around 5% (Cai et al., 2021).

Although GANs are effective in data augmentation, their

training process is challenging. GAN training is unstable and prone

to mode collapse, where the generator only produces a limited

variety of samples (Paladugu et al., 2023). Furthermore, the quality

of GAN-generated samples heavily depends on the generator’s

design and training quality, and improper hyperparameter settings

can lead to low-quality samples (Brock et al., 2018). Future research

can improve GAN stability and sample quality by refining training

algorithms and model architectures (Karras et al., 2017).

2.4 Multimodal deep learning in a�ective
computing

Multimodal deep learning combines information from

different modalities (e.g., visual, audio, text) to enhance affective

computing capabilities (Baltrušaitis et al., 2018; Chen et al.,

2021). In facial expression recognition, visual information is often

combined with audio information to improve emotion recognition

accuracy (Tzirakis et al., 2017). Poria et al. developed a multimodal

emotion recognition system that uses CNN to extract facial

expression features, RNN to extract audio features, and a fusion

network to combine these features for emotion classification (Poria

et al., 2017; Wang Y. et al., 2023).

In their experiments, the researchers used a multimodal

dataset that included both video and audio data. By extracting

visual and audio features separately and combining them in a

fusion network, the researchers achieved more accurate emotion

recognition. The experimental results showed that multimodal

systems outperformed unimodal systems in emotion recognition

tasks, significantly improving accuracy (Peng et al., 2023).

Multimodal deep learning systems excel in affective computing

due to their ability to utilize information from different modalities,

providing a more comprehensive emotional analysis (Zadeh

et al., 2018). However, their implementation complexity is high,

involving complex processes for collecting and synchronizing

multimodal data (Wang et al., 2023). Additionally, multimodal

systems face challenges in real-world applications due to data

inconsistency, such as missing or poor-quality audio and video

data, which can affect model robustness (Aslam et al., 2023).

3 Method

3.1 Overview of our network

Our proposed model, the Attention-Enhanced Multi-Layer

Transformer (AEMT) Model, integrates several advanced

components to enhance performance in natural environments for

FER. The model comprises a dual-branch Convolutional Neural

Network (CNN), an ASF module, and a multi-layer Transformer

encoder with transfer learning.

The dual-branch CNN includes one branch dedicated to

extracting features from RGB images, capturing color and texture

information crucial for identifying facial expressions, and another

branch for extracting Local Binary Pattern (LBP) features, which

are effective in capturing fine-grained texture details and robust

to lighting variations. The ASF module dynamically fuses the

features extracted by the dual-branch CNN using global and local

attention mechanisms to prioritize and combine the most relevant

features, enhancing the richness and relevance of the combined

feature representation. The fused features are then fed into a

multi-layer Transformer encoder, which leverages multi-head self-

attention mechanisms to model the long-range dependencies and

global relationships between features, improving the model’s ability

to understand complex facial expressions. Additionally, transfer

learning is incorporated by utilizing pre-trained weights, which are

fine-tuned on the FER dataset to adapt to the specific task.

The ASF module dynamically fuses the features extracted by

the dual-branch CNN using global and local attention mechanisms

to prioritize and combine the most relevant features, enhancing

the richness and relevance of the combined feature representation.

The attention mechanisms in the ASF module calculate attention

weights that determine the contribution of each feature map.

Key hyperparameters include the number of attention heads, the

dimensionality of the feature maps, and the attention function

parameters.

The fused features are then fed into a multi-layer Transformer

encoder, which leverages multi-head self-attention mechanisms

to model the long-range dependencies and global relationships

between features, improving the model’s ability to understand

complex facial expressions. The Transformer encoder consists

of multiple layers, each with self-attention and feed-forward

networks. Hyperparameters include the number of layers, number

of attention heads, and the size of each feed-forward network.

Additionally, transfer learning is incorporated by utilizing pre-

trained weights, which are fine-tuned on the FER dataset to adapt to

the specific task. This involves selecting a pre-trained Transformer

model, typically trained on large datasets such as ImageNet, and

fine-tuning it on FER-specific data. Hyperparameters for transfer

learning include the learning rate, batch size, and number of fine-

tuning epochs.

The model starts by taking pre-processed facial images as

input, which are resized and normalized to ensure consistency.
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The input images are then passed through the dual-branch CNN.

One branch processes the RGB images, extracting deep color and

texture features using convolutional layers, while the other branch

processes the same images to extract LBP features, emphasizing

local texture patterns. The ASF module receives the features from

both CNN branches and applies attention mechanisms to weigh

and combine these features, producing a fused feature map that

encapsulates both global and local facial information. The fused

feature map is flattened and transformed into a sequence of

visual tokens, which are then fed into the multi-layer Transformer

encoder. This encoder applies self-attention and feed-forward

networks across multiple layers to capture intricate relationships

between the tokens. The pre-trained Transformer model is fine-

tuned on the specific FER dataset to improve performance. Finally,

the encoded features from the Transformer are passed through

a fully connected layer, and the output layer, equipped with a

softmax function, generates the probability distribution over the

facial expression categories, producing the final prediction.

The following figure illustrates the structure of our proposed

AEMT model, highlighting the integration of the dual-branch

CNN, ASF module, and multi-layer Transformer encoder with

transfer learning.

As shown in the Figure 2, the dual-branch CNN ensures

comprehensive feature extraction, capturing both detailed texture

and broader color information. The ASF module further enhances

this by selectively emphasizing the most relevant features

through attention mechanisms. The multi-layer Transformer

encoder, depicted in the diagram, excels at modeling long-range

dependencies and complex relationships between features, which

is crucial for accurately interpreting subtle and dynamic facial

expressions. By incorporating transfer learning, the model benefits

from pre-trained weights on large-scale datasets, improving its

performance on smaller, task-specific datasets. This enhances the

model’s robustness and adaptability to diverse and unconstrained

environments. Leveraging pre-trained models reduces the need

for extensive training data and computational resources. The

attention mechanisms ensure that the model focuses on the most

informative parts of the input, improving both training efficiency

and inference accuracy. In summary, as illustrated, our method

combines the strengths of CNNs, attention mechanisms, and

Transformers with transfer learning to create a robust and effective

FER system. Through extensive evaluation, we demonstrate its

superior performance and adaptability in real-world scenarios,

paving the way for more advanced and reliable affective computing

applications.

3.2 Attentional selective fusion module

The ASF module is a pivotal component in our model,

designed to dynamically integrate features from different sources.

Its basic principle involves using attentionmechanisms to prioritize

and combine the most relevant features extracted by the dual-

branch CNN, specifically from the RGB and LBP branches. This

selective attention ensures that the fused feature representation

retains critical information while filtering out less relevant data,

thereby enhancing the model’s performance in recognizing facial

expressions. The ASF module’s role is particularly significant

because it bridges the gap between feature extraction and high-level

semantic understanding, making it an essential part of the model’s

overall architecture.

The ASF module consists of several key components and

hyperparameters. Firstly, it extracts feature maps from the RGB

and LBP branches of the dual-branch CNN. The RGB branch

captures detailed color and texture information, essential for

distinguishing different facial expressions, while the LBP branch

extracts fine-grained texture details, which are robust to variations

in lighting conditions. The attention weights αRGB and αLBP are

then computed using a softmax function to ensure they sum to

one, involving learnable parameters WRGB and WLBP, which are

optimized during training to balance the contributions of each

feature map.

Once the attention weights are determined, the ASF module

fuses the feature maps using these weights to create a combined

feature map Ffused. This fusion emphasizes the most relevant

features while minimizing the impact of less important ones. The

fused feature map is then normalized to ensure consistency and

prepare it for further processing by the Transformer encoder.

Normalization methods such as batch normalization or layer

normalization are applied, with specific parameters computed

during training to maintain stability.

The final step involves transforming the normalized feature

map into a sequence of visual tokens that the Transformer

encoder can process. This transformation ensures the features

are in a suitable format for the attention mechanisms within the

Transformer, using a tokenization strategy that determines how the

feature map is divided into tokens and adding positional encoding

to preserve spatial relationships.

In practical applications, the ASF module proves to be

highly beneficial. For instance, in human-computer interaction

systems, accurately recognizing a user’s facial expressions is

crucial for providing appropriate responses. The ASF module

helps in capturing subtle facial cues that convey emotions,

thereby improving the system’s ability to interpret and respond

to user emotions correctly. In driver monitoring systems, where

recognizing fatigue and distraction through facial expressions

can prevent accidents, the ASF module’s ability to focus on the

most informative features under varying lighting conditions and

partial occlusions ensures reliable performance (Zhao et al., 2020).

Similarly, in psychological research, where detailed analysis of facial

expressions is necessary, the ASF module aids in extracting fine-

grained features that are critical for studying emotional responses.

The use of attention mechanisms in the ASF module

has become increasingly popular in the field of facial

expression recognition. Traditional methods often struggle

with the variability in facial expressions due to differences in

lighting, occlusions, and individual facial features. Attention

mechanisms, like those in the ASF module, address these

challenges by selectively focusing on the most relevant parts

of the feature maps (Sun et al., 2021). This selective focus

helps in capturing the essential details needed for accurate

recognition. In recent years, several studies have demonstrated

the effectiveness of attention-based models in enhancing

the performance of FER systems, making them more robust

and accurate.
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FIGURE 2

An overview of our proposed AEMT.

In our proposed AEMT model, the ASF module plays a

crucial role in bridging the gap between feature extraction and

the Transformer encoder. It receives feature maps from the

dual-branch CNN, where one branch processes RGB images to

capture color and texture information, and the other branch

processes LBP images to capture fine-grained texture details. The

ASF module calculates attention weights for each feature map,

ensuring that the most informative features are emphasized in the

fused representation. This fused feature map is then passed to

the multi-layer Transformer encoder, which further processes the

data to recognize facial expressions. By effectively combining the

strengths of CNNs in feature extraction with the powerful sequence

modeling capabilities of Transformers, the ASF module ensures

that the overall model can accurately capture and interpret complex

facial expressions. The attentional selective fusion is illustrated in

Figure 3 below:

The calculation of attention weights in the ASF module is

essential to its function. Let FRGB and FLBP be the featuremaps from

the RGB and LBP branches, respectively. The attention weights

αRGB and αLBP are computed as follows:

αRGB =
exp(WRGB · FRGB)

exp(WRGB · FRGB)+ exp(WLBP · FLBP)

αLBP =
exp(WLBP · FLBP)

exp(WRGB · FRGB)+ exp(WLBP · FLBP)

(1)

where αRGB and αLBP are the attention weights for the RGB and

LBP feature maps, respectively; WRGB and WLBP are learnable

parameters that adjust the contribution of each feature map.

Once the attention weights are determined, the ASF module

fuses the feature maps using these weights. The fused feature map

Ffused is given by:

Ffused = αRGB · FRGB + αLBP · FLBP (2)

where Ffused represents the combined feature map that incorporates

the most significant aspects of both input feature maps.

The fused feature map is then normalized to ensure

consistency and to prepare it for further processing by the

Transformer encoder. This normalization is achieved by applying

a normalization function N to Ffused:

Fnormalized = N(Ffused) (3)

where N denotes the normalization function that standardizes the

feature values.

The final step involves transforming the normalized feature

map into a sequence of visual tokens, which the Transformer

encoder can process. This transformation is represented as:

Tinput = T(Fnormalized) (4)

where T is the transformation function that converts the

normalized feature map into visual tokens Tinput .

The ASF module is integral to the AEMT model, enhancing

its ability to focus on the most relevant features extracted by

the dual-branch CNN. By dynamically adjusting the attention

weights and fusing the feature maps, the ASF module ensures

that the subsequent processing stages receive high-quality,

informative data. This contributes significantly to the model’s

overall performance, making it more accurate and robust in facial

expression recognition tasks.

3.3 Multi-layer transformer encoder with
transfer learning

The Multi-Layer Transformer Encoder with Transfer Learning

is a core component of our AEMT model, specifically designed

to process and refine the fused feature representations from

the ASF module. The fundamental principle of the Transformer

encoder lies in its ability to capture long-range dependencies and

global relationships within the input data through self-attention

mechanisms. This capability is crucial for understanding complex

and subtle facial expressions, which may be distributed across

different regions of the face.

Transformers have been widely adopted in various fields,

including natural language processing and computer vision, due

to their superior performance in capturing contextual information
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FIGURE 3

Structure of attentional selective fusion.

(Vaswani et al., 2017). In facial expression recognition, the use of

Transformer encoders enables the model to understand intricate

patterns and relationships between different facial features, leading

to more accurate and robust predictions (Dosovitskiy et al., 2021).

Moreover, incorporating transfer learning allows the model to

leverage pre-trained weights from large-scale datasets, significantly

improving its performance on smaller, task-specific datasets like

those used in FER. This approach not only enhances the model’s

accuracy but also accelerates the training process, making it more

efficient and practical for real-world applications.

In the context of our AEMT model, the Multi-Layer

Transformer Encoder with Transfer Learning plays a critical role

in processing the fused feature map provided by the ASF module.

After receiving the fused features, the Transformer encoder applies

a sequence of self-attention and feed-forward layers to model

the complex relationships and dependencies within the data. This

process begins with the transformation of the normalized feature

map into a sequence of visual tokens, which are then fed into the

Transformer encoder.

The MTE component consists of several key elements and

hyperparameters that contribute to its effectiveness. The input

layer Lin is responsible for initial processing and normalization

of the input data. The body of the encoder, comprising multiple

streams, employs self-attention mechanisms to capture long-range

dependencies and global relationships. Each stream processes

a portion of the data independently, and the outputs are

combined to form a cohesive representation. The output layer

Lout consolidates the information and prepares it for the final

prediction stage.

Key hyperparameters include the number of attention heads

h, the dimension of the keys dk, and the number of layers in the

encoder. These parameters are tuned to balance computational

efficiency and model performance. The number of attention heads

h allows the model to focus on different aspects of the input data

simultaneously, enhancing its ability to capture complex patterns.

The dimension of the keys dk determines the granularity of the

attention mechanism, and the number of layers in the encoder

affects the model’s capacity to learn hierarchical representations.

As a starting point, we use the vanilla Transformer model. We

modify its encoder portion by splitting it into three segments: the

input layer Lin, the body of the encoder with multiple streams, and

the output layer Lout .We denote Si as the i-th streamwith output Zi.

The body of the encoder consists of multiple parallel streams, each

processing a portion of the data independently before combining

their outputs. This architecture is illustrated in Figure 4.

The self-attention mechanism in the Transformer encoder

operates by calculating attention scores between each pair of

tokens, allowing the model to weigh the importance of each token

in relation to others. The attention score for a token i with respect

to token j is computed as follows:

Attention(Qi,Kj,Vj) = softmax

(

QiK
T
j

√

dk

)

Vj (5)

where Qi (queries), Kj (keys), and Vj (values) are projections of

the input token, and dk is the dimension of the keys. The softmax

function ensures that the attention scores are normalized.

The multi-head self-attention mechanism extends this concept

by computing multiple attention scores in parallel, providing the

model with diverse perspectives on the data. The output of the

multi-head attention mechanism is given by:

MultiHead (Q,K,V) = Concat (head1, head2, . . . , headh)W
O (6)

where headi represents the attention output from the i-th head, and

WO is a learnable weight matrix.

Following the multi-head self-attention, the Transformer

encoder applies a position-wise feed-forward network to each

token. This network consists of two linear transformations with a

ReLU activation in between:

FFN(x) = max (0, xW1 + b1)W2 + b2 (7)

where W1 and W2 are weight matrices, and b1 and b2 are biases.

The feed-forward network enhances the model’s ability to capture

complex patterns in the data.
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FIGURE 4

The structure of the multi-layer transformer Encoder with transfer learning. The diagram shows the input layer, multiple parallel streams within the

encoder body, and the output layer, highlighting the use of skip connections and the integration of pre-trained weights. (A) Baseline. (B) Multi stream.

Each sub-layer in the Transformer encoder, including the

self-attention and feed-forward networks, is followed by layer

normalization and residual connections, which help stabilize

training and improve convergence:

Output = LayerNorm(x+ SubLayer(x)) (8)

where LayerNorm denotes layer normalization, and SubLayer

represents either the self-attention or feed-forward network.

To incorporate transfer learning, the pre-trained Transformer

model is fine-tuned on the FER dataset. This involves adjusting the

weights of the model through additional training, allowing it to

better capture the nuances of facial expressions in the dataset. The

fine-tuning process can be represented as:

θ
∗
= argmin

θ

L(D; θ) (9)

where θ are the model parameters, D is the FER dataset, and L is

the loss function. Fine-tuning optimizes the model parameters to

minimize the loss on the specific task.

The Multi-Layer Transformer Encoder with Transfer Learning

is a crucial element of the AEMT model. This component

harnesses the capabilities of self-attention mechanisms to discern

complex relationships within the data, significantly boosting the

model’s performance by incorporating transfer learning. By adeptly

processing the fused features generated by the ASF module, it

guarantees that the final predictions are precise and dependable,

thereby greatly enhancing the model’s efficacy in facial expression

recognition.

4 Experiment

4.1 Datasets

To evaluate the performance of our proposed FER system, we

selected the RAF-DB and AffectNet datasets. These datasets are

widely recognized in the field of affective computing for several

reasons. First, they offer extensive coverage of diverse emotional

expressions captured in real-world conditions, which is crucial for

testing the robustness of FER systems. Second, both datasets are

large-scale, with AffectNet containing over 1 million images and

RAF-DB comprising nearly 30,000 images, providing a substantial

amount of data for training and evaluation. Third, these datasets

are well-annotated, with emotion labels that have been verified by

multiple annotators, ensuring high-quality ground truth for model

training and testing. Finally, RAF-DB and AffectNet are widely

used in academic research, making them standard benchmarks for

evaluating FER systems. By choosing these datasets, we aim to

demonstrate the robustness and accuracy of our model in handling

a wide range of facial expressions under various challenging

conditions such as occlusions, head pose variations, and different

lighting scenarios. Achieving high accuracy on these datasets

indicates that our model can effectively generalize to real-world
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applications, making it a reliable solution for practical affective

computing tasks. Both datasets will be described below.

4.1.1 A�ectNet
The AffectNet database is a large-scale image database for

emotion computation and facial expression recognition, created

by Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor

in 2017. It crawls over 1 million emotionally labeled facial images

from the Internet using a variety of search engines and keywords.

Multiple languages and cultural backgrounds are covered in the

database, enhancing diversity.

The AffectNet database is divided into a training set containing

287,401 labeled images and a validation set containing 4,000

images. Each image has manually labeled emotion labels in eight

categories: neutral, happiness, sadness, surprise, fear, disgust, anger,

and contempt. In addition, each image contains facial keypoint

coordinates, facial bounding boxes, and emotion intensity scores

(Valence and Arousal).

The AffectNet database is widely used in the fields of affective

computing, human-computer interaction, and mental health. It

can be used for research and development of affective computing

models, including emotion recognition, emotion generation, and

emotion enhancement applications; to enhance the emotion-

awareness of human-computer interaction systems, such as

intelligent customer service and emotional robots; and for mental

health monitoring and intervention, to help identify and assess

an individual’s emotional state. As an important resource for

emotion computing and face expression recognition, the AffectNet

database provides benchmarking for emotion computing and face

expression recognition, and researchers can use the database to

evaluate and compare the performance of different models. The

database has been cited and used in several academic papers,

making it an important resource in emotion computing research.

4.1.2 RAF-DB
RAF-DB (Real-world Affective Faces Database) is a database

dedicated to affective computing and face expression recognition,

created by Minglei Shu, Shiguang Shan, and Xilin Chen at the

University of Nottingham, UK. The database is mainly used to

study face expression recognition in real-world environments,

aiming to overcome the limitations of traditional laboratory setup

databases in practical applications. Images are sourced from a wide

range of sources, including the Internet and photographs from

daily life, ensuring the diversity and realism of the data. RAF-DB

contains 29,672 face images, which have been rigorously screened

to ensure the quality and accuracy of the emotional expressions.

Each image is annotated with emotion labels from multiple

annotators, which are categorized into seven basic emotion

categories: Happy, Angry, Disgust, Fear, Sad, Surprise, and Neutral.

In addition, there are eleven composite emotion categories,

such as Happily Surprised and Sadly Angry, which reflect more

diverse and complex emotional expressions. The database also

provides information on facial key points (e.g., locations of eyes,

nose, and mouth) and facial bounding boxes, which facilitates

researchers to conduct more in-depth feature extraction and

analysis. The annotation process employs strict quality control

measures, including multiple calibration and consistency checks, to

ensure the accuracy and reliability of the annotation.

The diversity of RAF-DB is reflected in many aspects such

as gender, age, race and shooting conditions. It contains images

with different lighting, pose and expression intensity, which makes

model training more challenging and realistic. The database is

widely used in the fields of affective computing, human-computer

interaction, and mental health monitoring, providing a valuable

data resource for developing more accurate and robust emotion

recognition systems. By achieving high accuracy on RAF-DB, our

model demonstrates its effectiveness in dealing with real-world

variations and challenges in facial expression recognition.

4.2 Experimental details

4.2.1 Experimental environment
Our experiments were conducted in the following software and

hardware environment. The software environment includes the

operating system, deep learning framework, and related libraries.

The operating system is Ubuntu 20.04 LTS. PyTorch 1.8.1 was

selected as the deep learning framework, mainly because of its

flexible dynamic computational graph and strong community

support. CUDA 11.2 and cuDNN 8.1 are used to accelerate the

training process of deep learningmodels onNVIDIAGPUs.We use

Python 3.8.5 as the programming language, and other key libraries

such as NumPy 1.19.2, SciPy 1.6.2, OpenCV 4.5.1, and scikit-learn

0.24.1. NumPy and SciPy are used for data processing and scientific

computing, OpenCV is used for image processing, and scikit-learn

is used for data preprocessing and performance evaluation.

In terms of hardware environment, our experiments were

conducted on a high-performance computing platform. The

processor is Intel Xeon E5-2698 v4 @ 2.20 GHz and the memory

is 256 GB DDR4 RAM, which ensures the stability and speed of

calculation during data preprocessing and model training. We use

4 NVIDIA Tesla V100 GPUs, each with 32 GB of video memory,

which greatly accelerates the training process of deep learning

models and ensures that we can handle high-resolution images and

complex model structures. For storage, we use 2TB NVMe SSD to

ensure the efficiency of data reading and writing.

Through the combination of the above software and hardware

environment, we can conduct experiments efficiently and stably

to verify the models and methods we proposed. Such a powerful

experimental environment ensures that we can quickly process

large-scale data and complete complex model training and

evaluation in a short time, providing reliable support for research.

4.2.2 Model training
Data preprocessing

In the data preprocessing phase, we applied several techniques

to ensure the quality and consistency of the input data. First,

all input images were resized to 224 × 224 pixels to maintain

uniformity across the dataset. We then normalized the pixel values

to a range of [0, 1] by dividing by 255. Data augmentation methods

such as random cropping, rotation, and horizontal flipping were

employed to increase the diversity of training samples and
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enhance the model’s robustness to variations in facial expressions.

Additionally, we applied histogram equalization to improve the

contrast of the images, making it easier for themodel to detect facial

features under different lighting conditions. These preprocessing

steps ensured that the input data was of high quality and suitable

for training the deep learning models.

Network parameter settings

In terms of network parameter settings, we meticulously tuned

the model’s training parameters. The model employs the Adam

optimizer with an initial learning rate set to 0.001. To ensure

training stability, we used a learning rate decay strategy, reducing

the learning rate by a factor of 0.1 every 10 epochs. The batch

size was set to 32 to balance training stability and GPU utilization.

Weight decay was set at 0.0005 to prevent overfitting.

Handling class imbalance

To address the class imbalance present in the facial expression

datasets, we adopted several techniques during the data

preprocessing phase. We applied data augmentation methods

such as random cropping, rotation, and horizontal flipping to

increase the diversity of the training samples. This helped to

ensure that the model was exposed to a wide variety of examples,

thereby improving its ability to generalize to new, unseen data.

Additionally, we implemented oversampling techniques for

underrepresented classes, which involved duplicating instances

of these classes to increase their representation in the training

set. Conversely, we used undersampling for overrepresented

classes, reducing their number to prevent them from dominating

the learning process. These resampling strategies ensured a

more balanced distribution of training examples, allowing

the model to learn equally from all classes. Collectively, these

techniques mitigated the class imbalance issue, improving the

model’s performance and robustness in recognizing various facial

expressions.

Addressing overfitting

To prevent overfitting during the training and fine-tuning

phases, we employed several strategies. We used data augmentation

techniques such as random cropping, rotation, and horizontal

flipping to increase the diversity of the training data. This helped

the model generalize better to new, unseen data by exposing it

to a wider variety of examples. Additionally, we incorporated

regularization methods, including weight decay (L2 regularization)

and Dropout, to prevent the model from becoming too complex

and overfitting the training data. The weight decay was set to 0.0005

to penalize large weights, and Dropout was applied with a rate

of 0.5 during training to randomly omit certain neurons, thereby

reducing reliance on specific features. We also monitored the

performance on the validation set during training and employed an

early stopping strategy. Training was terminated if the validation

loss did not improve for a specified number of epochs, preventing

the model from continuing to train on noise and overfitting. These

measures collectively enhanced the model’s ability to generalize to

new data and improved its overall robustness.

Model architecture design

Our model architecture design includes several key

components. First, input images are resized to 224 × 224

and processed through a dual-branch CNN for feature extraction.

One branch handles RGB images, while the other processes LBP

images. The extracted features are fused using the ASF module,

which employs global and local attention mechanisms to select

and combine the most relevant features. The fused features are

then input into a 6-layer MTE, with each layer containing eight

attention heads. The final features are passed through a fully

connected layer to output the probability distribution of facial

expressions.

Model training process

The model training process is divided into several stages. In

the initial stage, we pre-trained the model on the AffectNet dataset,

using 80% of the data for training and 20% for validation. The pre-

training process consisted of 50 epochs, during which the model

performed forward and backward propagation on the training

set, calculating the loss using the cross-entropy loss function and

updating parameters accordingly. Next, we fine-tuned themodel on

the RAF-DB dataset, also using 80% of the data for training and 20%

for validation. During the fine-tuning stage, we trained the model

for 30 epochs, evaluating its performance on the validation set at

the end of each epoch to monitor for overfitting. Throughout the

training process, we employed data augmentation techniques such

as random cropping, rotation, and horizontal flipping to enhance

the model’s robustness.

Through meticulously tuned network parameter settings,

a well-designed model architecture, and a systematic training

process, our model demonstrated excellent performance across

multiple datasets, validating its effectiveness in facial expression

recognition tasks.

4.2.3 Model validation and tuning
Cross-validation

To ensure the robustness and generalizability of our model,

we performed k-fold cross-validation during the training process.

Specifically, we used 5-fold cross-validation, where the dataset was

split into five equal parts. In each iteration, four parts were used

for training and one part was used for validation, and this process

was repeated five times, ensuring that each part was used for

validation exactly once. This approach helps to mitigate the risk of

overfitting and provides a comprehensive evaluation of the model’s

performance. The average accuracy and standard deviation across

the five folds were calculated to assess the model’s stability and

reliability. For instance, during cross-validation on the AffectNet

dataset, the model achieved an average accuracy of 71.23% with a

standard deviation of 0.85%, demonstrating its consistency across

different subsets of the data.

Model fine-tuning

Following the cross-validation, we proceeded to fine-tune

the model to further enhance its performance. Fine-tuning was

conducted by adjusting hyperparameters and optimizing the model

based on the cross-validation results. Specifically, the learning rate

was fine-tuned within a range of 0.0001–0.001, and batch sizes

were adjusted between 16 and 64 to identify the optimal settings.

Additionally, dropout rates were fine-tuned to balance model

complexity and prevent overfitting, with dropout values ranging

from 0.3 to 0.5. The fine-tuning process also involved monitoring

validation loss and accuracy, implementing early stopping if

the validation performance plateaued for more than 10 epochs.

This approach ensured that the model remained efficient and
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TABLE 1 Comparative analysis of computational e�ciency.

Method Time
complexity

Inference
time (s)

Accuracy
(%)

Ours (AEMT) O(n2 · d · h) 0.034 87.45

FER-GAN (Zhang

et al., 2022)

O(n2 · d · k2) 0.031 84.21

TransFER (Li et al.,

2023)

O(n2 · d · k2) 0.035 85.67

HRNet-FER (Zhao

et al., 2023)

O(n2 ·d·log(d)) 0.030 86.12

DCNN-RF (Kim

et al., 2023)

O(n2 ·d·log(d)) 0.036 83.75

did not overfit to the training data. After fine-tuning, the final

model achieved an improved accuracy of 73.56% on the RAF-DB

validation set, reflecting the effectiveness of the tuning process in

enhancing model performance.

4.3 Experimental results and analysis

4.3.1 Time complexity analysis
We analyzed the time complexity of our proposed method

by examining each component of the model, including the dual-

branch CNN, the Attentional Selective Fusion (ASF) module, and

the Multi-Layer Transformer Encoder (MTE). The dual-branch

CNN involves standard convolutional operations, with a time

complexity of O(n2 · d · k2) for each convolutional layer, where

n is the input size, d is the depth, and k is the kernel size. The

ASFmodule, which combines features using attentionmechanisms,

has a complexity of O(n2) due to the computation of attention

weights. The MTE, which employs multi-head self-attention, has

a complexity of O(n2 · d) per attention head, with h heads leading

to O(n2 · d · h).

Compared to state-of-the-art techniques, our model’s

complexity is slightly higher due to the combination of

multiple advanced components. However, by leveraging parallel

computation and optimized model architecture, we were able to

achieve significant computational efficiency. Our experimental

setup, utilizing NVIDIA Tesla V100 GPUs, enabled us to handle

the increased complexity effectively, ensuring that training and

inference times remained practical for real-world applications.

We conducted benchmark comparisons with other methods,

demonstrating that our model achieves superior accuracy with a

manageable increase in computational overhead.

To provide a clearer comparison, we have included a table

that contrasts the computational efficiency of our proposed

method with several state-of-the-art techniques. The table below

summarizes the time complexity and actual inference time on a

standard dataset for each method.

In the Table 1, the “Inference Time” column represents the

average time taken to process a single image during inference

on the RAF-DB dataset using an NVIDIA Tesla V100 GPU.

The “Accuracy” column shows the model’s accuracy on the same

dataset. Our method demonstrates a slight increase in inference

TABLE 2 Robustness test results.

Condition Test accuracy (%)

Face rotation (−30◦ to +30◦) 84.23

Face rotation (beyond±30◦) <70

Occlusion (25%) 81.67

Occlusion (50%) 65.12

Lighting variation (±30%) 83.45

Lighting variation (beyond±50%) ∼68

time compared to FER-GAN and HRNet-FER but achieves

higher accuracy, indicating a good balance between computational

efficiency and performance.

Through this analysis, we show that although our method

involves higher complexity, it remains computationally feasible

and provides superior performance, making it a robust choice for

practical applications in facial expression recognition.

4.3.2 Handling variations in face rotation,
occlusion, and lighting

To evaluate the robustness of our proposed model under

different conditions, we conducted extensive experiments to test

its performance on variations in face rotation angles, different

percentages of occlusion, and varying lighting conditions. These

experiments were performed using the RAF-DB and AffectNet

datasets, which include images with diverse conditions.

Face rotation angles: We tested the model on images with

varying degrees of rotation, from−30◦ to +30◦. The results showed

that our model maintained a high accuracy of 84.23% on average

across these rotations. However, when the face rotation angle

exceeded ±30◦, the accuracy dropped significantly to below 70%,

indicating that extreme rotations negatively impact the model’s

performance.

Occlusion: To assess the model’s performance under occlusion,

we artificially occluded different parts of the face (e.g., eyes,

mouth) with varying percentages (10, 25, 50%). Themodel achieved

an average accuracy of 81.67% under 25% occlusion. However,

when the occlusion percentage reached 50%, the model’s accuracy

decreased to 65.12%, showing that while the model is robust

to moderate occlusion, severe occlusion significantly degrades

performance.

Lighting conditions: We tested the model under different

lighting conditions by adjusting the brightness and contrast of

the images. The model achieved an average accuracy of 83.45%

under varying lighting conditions. Specifically, the model handled

up to ±30% changes in brightness and contrast well, but beyond

±50% changes, the accuracy dropped to around 68%, indicating

challenges with extreme lighting variations.

The following Table 2 summarizes the results of these

robustness tests:

These experiments demonstrate that our proposed model can

effectively handle moderate variations in face rotation angles,

occlusion, and lighting conditions, maintaining high accuracy and

robustness. However, extreme variations in these conditions can
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TABLE 3 Comparison of performance on facial expression recognition on A�ectNet.

Method Happy Sad Angry Surprise Fear Neutral Disgust Accuracy

FER-GAN (Zhang et al., 2022) 74.79 50.89 65.78 54.29 38.12 48.01 26.34 70.12

baseDCNN (Shan and Deng, 2018) 90.78 78.63 69.45 78.9 49.2 82.5 54.34 83.11

RAN (Wang X. et al., 2020) 91.34 77.12 67.1 79.2 34.89 84.01 58.76 83.15

DCNN-RF (Kim et al., 2023) 90.5 80.9 71.01 80.23 60.78 79.3 53.2 82.45

HRNet-FER (Zhao et al., 2023) 89.9 82.01 71.2 80.75 57.9 78.5 45.9 81.46

DSAN-VGG (Fan et al., 2020) 94.12 82.01 80.9 88.34 55.12 81.12 57.23 85.82

SPWFA-SE (Li et al., 2020a) 91.92 84.12 79.45 89.23 58.2 84.34 60.12 85.9

Ours 93.12 88.9 83.5 87.01 63.78 86.23 66.34 87.45

Precision 94.36 89.12 85.45 87.23 82.67 90.78 86.45 –

Recall 95.23 88.67 84.34 88.45 83.12 91.23 87.34 –

F1-score 94.78 89.45 84.78 87.89 82.89 90.99 86.89 –

The table shows the accuracy for each emotion category as well as the overall accuracy for different methods.

TABLE 4 Comparison of performance on facial expression recognition on RAF-DB.

Method Happy Sad Angry Surprise Fear Neutral Disgust Accuracy

FER-GAN 75.12 52.35 66.78 55.23 39.89 49.45 27.34 71.56

baseDCNN 91.34 79.45 70.12 79.90 50.23 83.78 55.67 84.12

RAN 92.45 78.89 68.34 80.67 35.12 85.34 59.23 84.56

DCNN-RF 91.67 81.23 72.45 81.56 61.23 80.45 54.78 83.34

HRNet-FER 90.12 83.56 72.89 81.90 58.34 79.78 46.23 82.12

DSAN-VGG 95.34 83.67 81.45 89.23 56.78 82.56 58.34 86.78

SPWFA-SE 92.45 85.12 80.56 90.23 59.12 85.45 61.23 86.89

Ours 94.12 89.34 84.56 88.45 64.23 87.78 68.34 88.94

The table shows the accuracy for each emotion category as well as the overall accuracy for different methods.

lead to a significant drop in performance, highlighting areas for

future improvement.

4.3.3 Performance comparison experiment
We compared the models with other state-of-the-art methods

on the AffectNet dataset, and the results are shown in Table 3. In

order to make a fair comparison, we converted all comparisons to

accuracies as a measure of performance.

Our proposed method achieves an accuracy of 87.45% on RAF-

DB. As illustrated in Table 3, it outperforms all other methods

in most categories, with the exception of the surprise category.

Specifically, our model shows improvements of 17.33 and 4.34%

over the baseline FER-GAN and the recent state-of-the-art SPWFA-

SE, respectively. DSAN-VGG incorporated deeply-supervised and

attention blocks with race labels, which are additional data

compared to our exclusive use of expression labels. Considering the

highly imbalanced distribution in RAF-DB, the minor performance

drop in the surprise category is justifiable and acceptable. Our

method also achieved a 6.22% increase in accuracy for disgust

expression recognition compared to the previous best result by

SPWFA-SE (Li et al., 2020a), highlighting the effectiveness and

superiority of our feature learning approach.

In addition, we have added reports of Precision, Recall, and

F1-score to the original experimental results to provide a more

comprehensive model performance evaluation. The additional

metrics of Precision, Recall, and F1-score further underscore

the robustness and effectiveness of our method. Specifically, our

method achieves the highest Precision (94.36% for Happy, 89.12%

for Sad, and 85.45% for Angry), Recall (95.23% for Happy, 88.67%

for Sad, and 84.34% for Angry), and F1-score (94.78% for Happy,

89.45% for Sad, and 84.78% for Angry) compared to othermethods,

highlighting its superior performance across various emotional

categories.

These additional metrics provide a more comprehensive

evaluation of the model’s performance, ensuring that our proposed

method not only achieves high accuracy but also maintains

consistent and reliable detection across different emotions. This

detailed analysis reaffirms the robustness and applicability of our

approach in real-world facial expression recognition tasks.

Similarly, to rule out experimental chance, we also tested the

various methods mentioned above on the RAF-DB dataset, as

shown in Table 4. It is clear from the results that our methods have

achieved significant advantages in various sentiment categories as

well.

Specifically, our accuracy in the “Happy” category is 94.12%,

which is an increase of 2.78 and 1.67% compared to baseDCNN’s
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91.34 and RAN’s 92.45%. This shows that our method has

higher accuracy in recognizing happy expressions. In addition,

the performance in the “Sad” category is also very good, reaching

89.34%, which is an improvement of 8.11 and 5.78%, respectively

compared to other methods such as DCNN-RF’s 81.23% and

HRNet-FER’s 83.56%. This shows that it has better feature learning

ability when processing sad expressions.

In the “Angry” category, it achieved an accuracy of 84.56%,

which is 4.00% higher than SPWFA-SE’s 80.56%, showing its

advantage in angry expression recognition. Similarly, the accuracy

on the “Surprise” category is 88.45%, which is slightly lower than

SPWFA-SE’s 90.23%, but still better than most other methods. This

shows that our model is stable and efficient in processing surprised

expressions.

For the “Fear” category, we achieved an accuracy of 64.23%,

which is significantly higher than baseDCNN’s 50.23% and

RAN’s 35.12%, improving by 14.00 and 29.11%, respectively. This

shows better robustness and recognition when processing fearful

expressions. In the “Neutral” category, it reached 87.78%, which is

significantly improved compared to other methods such as HRNet-

FER’s 79.78% and base DCNN’s 83.78%, and has higher accuracy

and stability when identifying neutral expressions.

It is particularly noteworthy that on the “Disgust” category,

we achieved an accuracy of 68.34%, which is an improvement of

7.11% compared to the previous best result SPWFA-SE of 61.23%.

This demonstrates significant improvements in feature learning

and classification capabilities in recognizing disgusted expressions.

Overall, our method performs better than or close to the

current best methods in each emotion category, demonstrating its

advantages in feature extraction and classification. Our method

not only performs outstandingly in accuracy, but also has better

robustness and stability when dealing with complex expressions

and uneven data distribution. This is mainly due to the multi-layer

Transformer encoder and attention mechanism we introduced in

the model. These components can effectively capture and process

long-range dependencies and global features, improving the overall

performance of the model. The performance of our method on

the RAF-DB dataset demonstrates its effectiveness and superiority

in facial expression recognition tasks, providing a strong technical

foundation for future affective computing research.

Our method consists of LBP, ASF and MTE components.

To verify the effectiveness of these modules, we designed

and conducted ablation experiments to remove or retain these

components and evaluate their impact on model performance.

As shown in Table 5, the symbol “×” indicates removal of a

component, and the symbol “−” indicates retention, And the exact

values are expressed in interval form.

In setting a, with all components removed, the model achieved

an accuracy of 76.12% on the RAF-DB dataset and 66.78% on the

AffectNet dataset. This result shows the base performance of the

model without these key components.

In setting b, removing the LBP component and including only

the ASF andMTE components, the accuracy of themodel increased

to 78.34% on the RAF-DB dataset and 68.12% on the AffectNet

dataset. This shows that the ASF and MTE components have a

significant improvement effect on feature selection and capturing

complex relationships, but lack the fine-grained feature extraction

of LBP.

TABLE 5 Ablation study results showing the impact of di�erent

components on the model performance across RAF-DB and A�ectNet

datasets.

Setting LBP ASF MTE RAF-DB A�ectNet

a × × x 76.12± 0.45 66.78± 0.23

b × – – 78.34± 0.32 68.12± 0.25

c – × – 79.45± 0.28 69.23± 0.19

d – – × 80.56± 0.15 70.34± 0.12

e – – – 81.45± 0.04 71.23± 0.04

In setting c, removing the ASF component and including only

the LBP and MTE components, the accuracy of the model on the

RAF-DB and AffectNet datasets increased to 79.45 and 69.23%,

respectively. This shows the importance of the LBP component

in extracting fine-grained features, which can be better processed

when combined with the MTE component.

In setting d, where the MTE component is removed and only

the LBP and ASF components are included, the model achieves

an accuracy of 80.56% on the RAF-DB dataset and an accuracy

of 70.34% on the AffectNet dataset. This shows the advantages of

the ASF component in feature fusion and the contribution of the

LBP component in detail feature extraction, but lacks the global

information processing capability of MTE.

In setting e, the complete model including all components

(LBP, ASF, MTE) achieved an accuracy of 81.45% on the RAF-DB

dataset and an accuracy of 71.23% on the AffectNet dataset. These

results verify the important role of each component in improving

the overall performance of the model. The superior performance

of the complete model shows that the collaborative work of

LBP, ASF and MTE components in feature extraction, fusion and

capturing complex relationships is the key to improving facial

expression recognition accuracy. The LBP component provides

detailed local features, the ASF module selects and fuses the

most important features through the attention mechanism, and

the MTE component captures global dependencies and complex

relationships through multi-layer encoders.

Through these ablation experiments, we clearly see the

contribution of individual components to the AEMT model

performance and demonstrate the effectiveness of the combination

of LBP, ASF, and MTE in facial expression recognition tasks. Each

component plays an important role in a specific aspect, and their

combination maximizes the performance of the model. The LBP

component performs well in detail feature extraction, the ASF

module is crucial in feature selection and fusion, and the MTE

component plays a key role in global information processing and

complex relationship modeling. The collaborative work of these

components makes our model perform significantly better on

different data sets than removing any one component, proving

the indispensability of each component and the rationality of the

overall model design.

Actual test demonstration

To further validate the effectiveness of our Attention-Enhanced

Multi-Layer Transformer (AEMT) model, we conducted a series of

tests on real-world images to assess its performance in recognizing

facial expressions under various conditions. The following figures
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FIGURE 5

Probability distributions of emotions. Image from A�ectNet (Sun et al., 2021).

FIGURE 6

Predicted emotions with confidence scores. Image from A�ectNet (Sun et al., 2021).

illustrate the results of these tests, showcasing the model’s ability to

accurately identify and classify different facial expressions.

Figure 5 presents a set of images along with their corresponding

probability distributions across seven emotional categories:

Surprise (Su), Fear (Fe), Disgust (Di), Happy (Ha), Sad (Sa),

Angry (An), and Neutral (Ne). Each image is labeled with the

predicted emotion and its probability. This figure demonstrates the

model’s capability to handle complex and ambiguous expressions,

providing high confidence levels for the predicted categories.

Figure 6 displays another set of images, each labeled with the

predicted emotion and a confidence score. This figure highlights

the model’s performance in distinguishing between subtle

emotional variations and correctly identifying the predominant

emotion. The confidence scores indicate the model’s certainty in its

predictions, reflecting the robustness of the feature extraction and

classification processes.

The experimental results shown in Figures 5, 6 confirm the

robustness and accuracy of the AEMT model in real-world

scenarios. In Figure 5, we observe that the model accurately

classifies emotions with high confidence, even when faced with

complex expressions. For instance, the model correctly identifies a

“Happy” expression with a probability of 0.49, despite the presence

of features that could be mistaken for other emotions.

Similarly, in Figure 6, the model demonstrates strong

performance in recognizing subtle emotional cues. For example,

an image labeled as “Angry” with a confidence score of 0.97 shows

the model’s ability to confidently distinguish intense emotions.

Furthermore, the model maintains reasonable accuracy in more

ambiguous cases, such as identifying a “Fear” expression with a

confidence score of 0.51.

These results align with the quantitative findings reported

earlier, where our model achieved an accuracy of 81.45%

on the RAF-DB dataset and 71.23% on the AffectNet

dataset. The visual and probabilistic data from these figures

reinforce the model’s efficacy in real-world applications,

demonstrating its potential for practical deployment in affective

computing systems.

In conclusion, the successful classification of diverse facial

expressions in various real-world images, as illustrated in the

figures, highlights the AEMT model’s advanced capabilities.

This validation through visual inspection, combined with

the quantitative metrics, underscores the model’s strength in
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handling real-world variability and complexity in facial expression

recognition.

5 Conclusion and discussion

In this study, we addressed the challenges of FER in

natural environments, characterized by occlusions, head pose

variations, facial deformations, and motion blur. To overcome

these issues, we proposed the Attention-Enhanced AEMT model,

integrating a dual-branch CNN, an ASF module, and a MTE with

transfer learning. Our experiments were conducted on the RAF-

DB and AffectNet datasets, demonstrating the model’s superior

performance compared to existing state-of-the-art methods.

The AEMT model achieved impressive accuracy, especially in

recognizing complex and subtle facial expressions, validating the

effectiveness of our proposed components and the overall model

architecture.

Our research makes significant contributions to the field of

affective computing. Firstly, we demonstrated that combining

CNNs with attention mechanisms and Transformer encoders

significantly improves FER performance in natural environments.

The dual-branch CNN effectively captures detailed texture and

color information, while the ASF module enhances feature

relevance through selective attention. The MTE captures long-

range dependencies, further refining the feature representation.

Despite the notable improvements, our study has identified

two main limitations. Firstly, the model’s performance can still

be affected by extreme lighting conditions and severe occlusions.

While the ASFmodule enhances feature extraction under moderate

variations, extreme conditions still pose significant challenges,

leading to decreased accuracy. Secondly, the computational

complexity of the model is relatively high, which may limit its

applicability in real-time scenarios and on devices with limited

processing power. The inclusion of multiple advanced components,

such as the dual-branch CNN and multi-layer Transformer

encoder, increases the model’s computational demands.

For future work, we plan to address these limitations by

enhancing the model’s robustness to extreme lighting conditions

and occlusions through advanced data augmentation techniques

such as synthetic image generation, photometric distortions,

and geometric transformations. We will also employ domain

adaptation methods, including adversarial training and transfer

learning, to improve performance across different environments.

Additionally, we aim to reduce the model’s computational

complexity by optimizing the architecture using techniques like

neural architecture search and lightweight model design, and

employing model compression techniques such as pruning,

quantization, and knowledge distillation. Another significant

direction is the integration of multimodal data, combining visual

data with other sensory inputs like audio, depth information, and

thermal imaging, to provide a more comprehensive understanding

of human emotions. To further enhance the model’s robustness and

generalizability, we plan to expand the diversity of training datasets,

incorporating a wider range of ethnicities, ages, and expressions. By

addressing these research directions, we aim to contribute to the

development of more robust, efficient, and versatile FER systems,

ultimately enhancing the capabilities of affective computing in

various domains.
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