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Exploring neural oscillations
during speech perception via
surrogate gradient spiking neural
networks
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Understanding cognitive processes in the brain demands sophisticated
models capable of replicating neural dynamics at large scales. We present
a physiologically inspired speech recognition architecture, compatible and
scalable with deep learning frameworks, and demonstrate that end-to-end
gradient descent training leads to the emergence of neural oscillations in
the central spiking neural network. Significant cross-frequency couplings,
indicative of these oscillations, are measured within and across network layers
during speech processing, whereas no such interactions are observed when
handling background noise inputs. Furthermore, our findings highlight the crucial
inhibitory role of feedback mechanisms, such as spike frequency adaptation and
recurrent connections, in regulating and synchronizing neural activity to improve
recognition performance. Overall, on top of developing our understanding of
synchronization phenomena notably observed in the human auditory pathway,
our architecture exhibits dynamic and e�cient information processing, with
relevance to neuromorphic technology.
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1 Introduction

In the field of speech processing technologies, the effectiveness of training deep artificial
neural networks (ANNs) with gradient descent has led to the emergence of many successful
encoder-decoder architectures for automatic speech recognition (ASR), typically trained in
an end-to-end fashion over vast amounts of data (Gulati et al., 2020; Baevski et al., 2020;
Li et al., 2021; Radford et al., 2023). Despite recent efforts (Brodbeck et al., 2024; Millet
et al., 2022; Millet and King, 2021; Magnuson et al., 2020) toward understanding how
these ANN representations can compare with speech processing in the human brain, the
cohesive integration of the fields of deep learning and neuroscience remains a challenge.
Nonetheless, spiking neural networks (SNNs), a type of artificial neural network inspired
by the biological neural networks in the brain, present an interesting convergence point of
the two disciplines. Although slightly behind in terms of performance compared to ANNs,
SNNs have recently achieved concrete progress (Hammouamri et al., 2024; Sun et al.,
2023; Bittar and Garner, 2022a; Yin et al., 2021) on speech command recognition tasks
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using the surrogate gradient method (Neftci et al., 2019) which
allows them to be trained via gradient descent. Further work has
also shown that they can be used to define a spiking encoder
inside a hybrid ANN-SNN end-to-end trainable architecture
on the more challenging task of large vocabulary continuous
speech recognition (Bittar and Garner, 2022b). Their successful
inclusion into contemporary deep learning ASR frameworks offers
a promising path to bridge the existing gap between deep learning
and neuroscience in the context of speech processing. This
integration not only equips deep learning tools with the capacity to
engage in speech neuroscience but also offers a scalable approach to
simulate spiking neural dynamics, which supports the exploration
and testing of hypotheses concerning the neural mechanisms and
cognitive processes related to speech. This investigation of complex
brain functions via physiologically inspired networks aligns with
the work of Pulvermüller et al. (2021); Henningsen-Schomers and
Pulvermüller (2022); Pulvermüller (2023), who applied biological
constraints to large-scale simulations of language learning in SNNs.
We complement their approach by training on more realistic
speech data, albeit at the cost of some simplifications.

In neuroscience, various neuroimaging techniques such
as electroencephalography (EEG) can detect rhythmic and
synchronized postsynaptic potentials that arise from activated
neuronal assemblies. These give rise to observable neural
oscillations, commonly categorized into distinct frequency bands:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),
low-gamma (30–80 Hz), and high-gamma (80–150 Hz) (Buzsaki,
2006). It is worth noting that while these frequency bands provide
a useful framework, their boundaries are not rigidly defined and
can vary across studies. Nevertheless, neural oscillations play a
crucial role in coordinating brain activity and are implicated in
cognitive processes such as attention (Fries et al., 2001; Jensen
and Colgin, 2007; Womelsdorf and Fries, 2007; Vinck et al.,
2013), memory (Kucewicz et al., 2017), sensory perception (Başar
et al., 2000; Senkowski et al., 2007), and motor function (MacKay,
1997; Ramos-Murguialday and Birbaumer, 2015). Of particular
interest is the phenomenon of cross-frequency coupling (CFC)
which reflects the interaction between oscillations occurring in
different frequency bands (Jensen and Colgin, 2007; Jirsa and
Müller, 2013). As reviewed in Abubaker et al. (2021), many studies
have demonstrated a relationship between CFC and working
memory performance (Tort et al., 2009; Axmacher et al., 2010).
In particular phase-amplitude coupling (PAC) between theta and
gamma rhythms appears to support memory integration (Buzsáki
and Moser, 2013; Backus et al., 2016; Hummos and Nair, 2017),
preservation of sequential order (Reddy et al., 2021; Colgin, 2013;
Itskov et al., 2008) and information retrieval (Mizuseki et al.,
2009). In contrast, alpha-gamma coupling commonly manifests
itself as a sensory suppressionmechanism during selective attention
(Foxe and Snyder, 2011; Banerjee et al., 2011), inhibiting task-
irrelevant brain regions (Jensen and Mazaheri, 2010) and ensuring
controlled access to stored knowledge (Klimesch, 2012). Finally,
beta oscillations are commonly associated with cognitive control
and top-down processing (Engel et al., 2001).

In the context of speech perception, numerous investigations
have revealed a similar oscillatory hierarchy, where the temporal
organization of high-frequency signal amplitudes in the gamma

range is orchestrated by low-frequency neural phase dynamics,
specifically in the delta and theta ranges (Canolty et al., 2006;
Ghitza, 2011; Giraud and Poeppel, 2012; Hyafil et al., 2015;
Attaheri et al., 2022). These three temporal scales—delta, theta
and gamma—naturally manifest in speech and represent specific
perceptual units. In particular, delta-range modulation (1–2 Hz)
corresponds to perceptual groupings formed by lexical and phrasal
units, encapsulating features such as the intonation contour of
an utterance. Modulation within the theta-range aligns with the
syllabic rate (4 Hz) around which the acoustic envelope consistently
oscillates. Finally, (sub)phonemic attributes, including formant
transitions that define the fine structure of speech signals, correlate
with higher modulation frequencies (30–50 Hz) within the low-
gamma range. The close correspondence between the perception of
(sub)phonemic, syllabic and phrasal attributes on one hand, and the
manifestation of gamma, theta and delta neural oscillations on the
other, was notably emphasized in Giraud and Poeppel (2012). These
different levels of temporal granularity inherent to speech signals
therefore appear to be processed in a hierarchical fashion, with the
intonation and syllabic contour encoded by earlier neurons guiding
the encoding of phonemic features by later neurons. Some insights
about how phoneme features end up being encoded in the temporal
gyrus were given in Mesgarani et al. (2014). Drawing from recent
research (Bonhage et al., 2017) on the neural oscillatory patterns
associated with the sentence superiority effect, it is suggested that
such low-frequency modulation may facilitate automatic linguistic
chunking by grouping higher-order features into packets over
time, thereby contributing to enhanced sentence retention. The
engagement of working memory in manipulating phonological
information enables the sequential retention and processing of
speech sounds for coherent word and sentence representations.
Additionally, alpha modulation has also been shown to play a role
in improving auditory selective attention (Strauß et al., 2014b,a;
Wöstmann et al., 2017), reflecting the listener’s sensitivity to
acoustic features and their ability to comprehend speech (Obleser
and Weisz, 2012).

Computational models (Hyafil et al., 2015; Hovsepyan et al.,
2020) have shown that theta oscillations can indeed parse speech
into syllables and provide a reliable reference time frame to improve
gamma-based decoding of continuous speech. These approaches
(Hyafil et al., 2015; Hovsepyan et al., 2020) implement specific
models for theta and gamma neurons along with a distinction
between inhibitory and excitatory neurons. The resulting networks
are then optimized to detect and classify syllables with very limited
numbers of trainable parameters (10–20). In contrast, this work
proposes to utilize significantly larger end-to-end trainable multi-
layered architectures (400k–20M trainable parameters) where all
neuron parameters and synaptic connections are optimized to
predict sequences of phoneme/subword probabilities, that can
subsequently be decoded into words. By avoiding constraints
on theta or gamma activity, the approach allows us to explore
which forms of CFC naturally arise when solely optimizing the
decoding performance. Even though the learning mechanism is
not biologically plausible, we expect that a model with sufficiently
realistic neuronal dynamics and satisfying ASR performance should
reveal similarities with the human brain. We divide our analysis in
two parts,
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1. Architecture: As a preliminary analysis, we conduct
hyperparameter tuning to optimize the model’s architectural
parameters. On top of assessing the network’s capabilities
and scalability, we notably evaluate how the incorporation of
spike-frequency adaptation (SFA) and recurrent connections
impact the speech recognition performance.

2. Oscillations: We then explore the central aspect of our
analysis concerning the emergence of neural oscillations within
our model. Each SNN layer is treated as a distinct neuron
population, from which spike trains are aggregated into
a population signal similar to EEG data. Through intra-
and inter-layer CFC analysis, we investigate the presence of
significant delta-gamma, theta-gamma, alpha-gamma and beta-
gamma PAC. We also investigate how incorporating Dale’s law,
SFA and recurrent connections affect the synchronization of
neural activity.

2 Materials and methods

2.1 Spiking neuron model

Physiologically grounded neuron models such as the well-
known Hodgkin and Huxley model (Hodgkin and Huxley,
1952) can be reduced to just two variables (FitzHugh, 1961;
Morris and Lecar, 1981). More contemporary models, such
as the Izhikevich (Izhikevich, 2003) and adaptive exponential
integrate-and-fire (Brette and Gerstner, 2005) models, have
similarly demonstrated the capacity to accurately replicate voltage
traces observed in biological neurons using just membrane
potential and adaptation current as essential variables (Badel
et al., 2008). With the objective of incorporating realistic
neuronal dynamics into large-scale neural network simulations
with gradient descent training, the linear AdLIF neuron model
stands out as an adequate compromise between physiological
plausibility and computational efficiency. It can be described
in continuous time by the following differential equations
(Gerstner and Kistler, 2002),

τu u̇(t) = −
(

u(t)− urest
)

− Rw(t)+ R I(t)

−τu (ϑ − ur)
∑

f δ(t − tf ) (1)

τw ẇ(t) = −w(t)+ a
(

u(t)− urest
)

+ τw b
∑

f δ(t − tf ) . (2)

The neuron’s internal state is characterized by the membrane
potential u(t) which linearly integrates stimuli I(t) and gradually
decays back to a resting value urest with time constant τu ∈ [3, 25]
ms. A spike is emitted when the threshold value ϑ is attained,
u(t) ≥ ϑ , denoting the firing time t = tf , after which the potential
is decreased by a fixed amount ϑ − ur . In the following, we will
use ur = urest for simplicity. The second variable w(t) is coupled to
the potential with strength a and decay constant τw ∈ [30, 350]
ms, characterizing sub-threshold adaptation. Additionally, w(t)
experiences an increase of b after a spike is emitted, which
defines spike-triggered adaptation. The differential equations can

be simplified as,

τu u̇(t) = −u(t)− w(t)+ I(t)− τu

∑

f

δ(t − tf ) (3)

τw ẇ(t) = −w(t)+ a u(t)+ τw b
∑

f

δ(t − tf ) . (4)

by making all time-dependent quantities dimensionless with
changes of variables,

u →
u− urest

ϑ − urest
, w →

Rw

ϑ − urest
and I →

RI

ϑ − urest
,

and redefining neuron parameters as,

a → Ra , b → R b
ϑ−urest

, ϑ → ϑ−urest
ϑ−urest

= 1

and urest →
urest−urest
ϑ−urest

= 0 .

This procedure gets rid of unnecessary parameters such as the
resistance R, as well as resting, reset and threshold values, so that
a neuron ends up being fully characterized by four parameters:
τu, τw, a and b. As derived in Appendix, the differential equations
can be solved in discrete time with step size 1t using a forward-
Euler first-order exponential integrator method. After initializing
u0 = w0 = s0 = 0, and defining α : = exp −1t

τu
and β : = exp −1t

τw
,

the neuronal dynamics can be solved by looping over time steps
t = 1, 2, . . . ,T as,

ut = α
(

ut−1 − st−1
)

+ (1− α)
(

It − wt−1
)

(5)

wt = β
(

wt−1 + b st−1
)

+ (1− β) a ut−1 (6)

st =
(

ut ≥ 1
)

. (7)

Stability conditions for the value of the coupling strength a are
derived in Appendix. Additionally, we constrain the values of the
neuron parameters to biologically plausible ranges (Gerstner and
Kistler, 2002; Augustin et al., 2013),

τu ∈ [3, 25]ms, τw ∈ [30, 350]ms, a ∈ [−0.5, 5], b ∈ [0, 2].
(8)

This AdLIF neuron model is equivalent to a Spike Response
Model (SRM) with continuous time kernel functions illustrated in
Figure 1. The four neuron parameters τu, τw, a and b all characterize
the shape of these two curves representing the membrane potential
response to an input spike and to an emitted spike, respectively.
A derivation of the kernel-based SRM formulation is presented in
Appendix.

2.1.1 Spiking layers
The spiking dynamics described in Equations 5–7 can be

computed in parallel for a layer of neurons. In a multi-layered
network, the l-th layer receives as inputs a linear combination of
the previous layer’s outputs sl−1 ∈ {0, 1}B×T×N l−1

where B, T and
N l−1 represent the batch size, number of time steps and number
of neurons, respectively. Feedback from the l-th layer can also be
implemented as a linear combination of its own outputs at the
previous time step slt−1 ∈ {0, 1}N

l
, so that the overall neuron

stimulus Ilt for neurons in the l-th layer at time step t is computed as,

Ilt = W l sl−1
t + V l slt−1. (9)
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FIGURE 1

Kernel functions of AdLIF neuron model. Membrane potential response to an input pulse at t = 10 ms (in blue) and to an emitted spike at t = 60 ms
(in orange). The neuron parameters are τu = 5 ms, τw = 30 ms, a = 0.5 and b = 1.5.

Here the feedforward W l ∈ R
N l−1×N l

and feedback
connections V l ∈ R

N l×N l
are trainable parameters. Diagonal

elements of V l are set to zero as afterspike self inhibition is already
taken into account in Equation 5. While this choice excludes
autapses, which are rare but do exist in the brain, it simplifies the
model for our study. Additionally, a binary mask can be applied to
matrices W l and V l to limit the number of nonzero connections.
Similarly, a portion of neurons in a layer can be reduced to leaky
integrate-and-fire (LIF) dynamics without any SFA by applying
another binary mask to the neuron adaptation parameters a and
b. Indeed, if a = b = 0, the adaptation current vanishes wt = 0
∀t ∈ {1, 2, . . . ,T} and has no more impact on the membrane
potential.

2.1.2 Surrogate gradient method
The main challenge in applying stochastic gradient descent to

the derived neuronal dynamics stems from the threshold operation
described in Equation 7, which has a derivative of zero everywhere
except at the threshold point, where it is undefined. To address
this, a surrogate derivative can bemanually specified using PyTorch
(Paszke et al., 2017), which enables the application of the Back-
Propagation Through Time algorithm for training the resulting
SNN in a manner similar to recurrent neural network (RNN)
training. In this paper, we adopt the boxcar function as our
surrogate function. This choice has been proven effective in various
contexts (Kaiser et al., 2020; Bittar and Garner, 2022a,b) and
requires minimal computational resources as expressed by the
derivative definition,

∂st

∂ut
=

{

0.5 if |ut − 1| ≤ 0.5

0 otherwise .
(10)

2.1.3 Spike frequency regularization
The firing rate f l

b,n of neuron n in layer l when processing
utterance b can be calculated in Hz as,

f lb,n =
1

Tb

T
∑

t=1

slb,t,n , (11)

where Tb is the utterance duration in seconds. We regularize the
firing rates of all spiking neurons between fmin = 0.5 Hz and
fmax = fNyquist using the following regularization loss,

Lreg =
1

B L

B
∑

b=1

L
∑

l=1

1

N l

N l
∑

n=1

ReLU
(

fmin− f lb,n

)

+ReLU
(

f lb,n− fmax

)

,

(12)
to discourage neurons from remaining silent or from firing above
the Nyquist frequency.

2.2 Overview of the auditory pathway in
the brain

Sound waves are initially received by the outer ear and then
transmitted as vibrations to the cochlea in the inner ear, where
the basilar membrane allows for a representation of different
frequencies along its length (Gundersen et al., 1978). Distinct
sound frequencies induce localized membrane vibrations that
activate adjacent inner hair cells. These specialized sensory cells,
covering the entire basilar membrane, release neurotransmitters
when activated, stimulating neighboring auditory nerve fibers
and initiating the production of action potentials. Tonotopy is
maintained through the conversion of mechanical motion into
electric signals as each inner hair cell, tuned to a specific frequency,
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only affects nearby auditory nerve fibers (Saenz and Langers, 2014).
The resulting spike trains then propagate through a multi-layered
neural network, ultimately reaching cortical regions associated
with higher-order cognitive functions such as speech recognition.
Overall, the auditory system is organized hierarchically, with
each level contributing to the progressively more sophisticated
processing of auditory information.

2.3 Simulated speech recognition pipeline

Our objective is to design a speech recognition architecture
that, while sufficiently plausible for meaningful comparisons with
neuroscience observations, remains simple and efficient to ensure
compatibility with modern deep learning techniques and achieve
good ASR performance. We implement the overall waveform-to-
phoneme pipeline illustrated in Figure 2 inside the Speechbrain
(Ravanelli et al., 2021) framework.We provide a description of each
of its components here below.

2.3.1 Feature extractor
Mel filterbank features are extracted from the raw waveform

using 80 filters and a 25 ms window with a shift of 2 ms. This
procedure down samples the 16 kHz input speech signal to a 500
Hz spectrogram representation with 80 frequency bins.

2.3.2 Auditory CNN
A single-layered two-dimensional convolution module is

applied to the 80 extracted Mel features using 16 channels, a kernel
size of (7, 7), a padding of (7, 0) and a stride of 1, producing
16 ·

(

(80 − 7) + 1
)

= 1, 184 output signals with unchanged
number of time steps. Layer normalization, drop out on the
channel dimension and a Leaky-ReLU activation are then applied.
Each produced signal characterizes the evolution over time of
the spectral energy across a frequency band of seven consecutive
Mel bins.

2.3.3 Auditory nerve fibers
Each 500 Hz output signal from the auditory CNN constitutes

the stimulus of a single auditory nerve fiber, which converts the
real-valued signal into a spike train. These nerve fibers are modeled
as a layer of LIF neurons without recurrent connections and using a
single trainable parameter per neuron, τu ∈ [3, 25]ms, representing
the time constant of the membrane potential decay.

2.3.4 Multi-layered SNN
The resulting spike trains are sent to a fully connected multi-

layered SNN architecture with 512 neurons in each layer. The
proportion of neurons with nonzero adaptation parameters is
controlled in each layer so that only a fraction of the neurons are
AdLIF and the rest are LIF. Similarly the proportion of nonzero
feedforward and recurrent connections is controlled in each layer
by applying fixed random binary masks to the weight matrices.
Compared to a LIF neuron, an AdLIF neuron has three additional

trainable parameters, τw ∈ [30, 350] ms, a ∈ [−0.5, 5] and b ∈

[0, 2], related to the adaptation variable coupled to the membrane
potential.

2.3.5 Spikes to probabilities
The spike trains of the last layer are sent to a an average

pooling module which down samples their time dimension to 25
Hz. These are then projected to 512 phoneme features using two
fully connected (FC) layers with Leaky-ReLU activation. A third FC
layer with Log-Softmax activation finally projects them to 40 log-
probabilities representing 39 phoneme classes and a blank token as
required by connectionist temporal classification (CTC).

2.3.6 Training and inference
The log-probabilities are sent to a CTC loss (Graves et al., 2006)

so that the parameters of the complete architecture can be updated
through back propagation. Additionally, regularization of the firing
rate as defined in Equation 12 is used to prevent neurons from
being silent or firing above the Nyquist frequency. At inference,
CTC decoding is used to output the most likely phoneme sequence
from the predicted log-probabilities, and the phoneme error rate
(PER) is computed to evaluate the model’s performance.

2.4 Physiological plausibility and
limitations

2.4.1 Cochlea and inner hair cells
While some of the complex biological processes involved in

converting mechanical vibrations to electric neuron stimuli can be
abstracted, we assume that the key feature to retain is the tonotopic
encoding of sound information. A commonly used metric in
neuroscience is the ratio of characteristic frequency to bandwidth,
which defines how sharply tuned a neuron is around the frequency
it is most responsive to. As detailed in Supplementary Table S6,
from measured Q10 values in normal hearing humans reported in
Devi et al. (2022), we evaluate that a single auditory nerve fiber
should receive inputs from 5 to 7 adjacent frequency bins when
using 80 Mel filterbank features. The adoption of a Mel filterbank
frontend can be justified by its widespread utilization within deep
learning ASR frameworks. Although we do not attempt to directly
model cochlear and hair cell processing, we can provide a rough
analog in the form of Mel features passing through a trainable
convolution module that yields plausible ranges of frequency
sensitivity for our auditory nerve fibers.

2.4.2 Simulation time step
Modern ASR systems (Gulati et al., 2020; Radford et al., 2023)

typically use a frame period of 1t = 10 ms during feature
extraction, which is then often sub-sampled to 40 ms using a
CNN before entering the encoder-decoder architecture. In the
brain, typical minimal inter-spike distances imposed by a neuron’s
absolute refractory period can vary from 0 to 5 ms (Gerstner
and Kistler, 2002). We therefore assume that using a time step
>5 ms could result in dynamics that are less representative of
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FIGURE 2

End-to-end trainable speech recognition pipeline. Input waveform is converted to a spike train representation to be processed by the central SNN
before being transformed into output phoneme probabilities sent to a loss function for training.

biological phenomena. Although using a time step 1t < 1 ms may
yield biologically more realistic simulations, we opt for time steps
ranging from 1 to 5 ms to ensure computational efficiency. After
the SNN, the spike trains of the last layer are down-sampled to 25
Hz via average pooling on the time dimension. This prevents an
excessive number of time steps from entering the CTC loss, which
could potentially hinder its decoding efficacy. We use 1t = 5 ms
for most of the hyperparameter tuning to reduce training time, but
favor 1t = 2 ms for the oscillation analysis so that the full gamma
range of interest (30–150 Hz) remains below the Nyquist frequency
at 250 Hz.

2.4.3 Neuron model
The LIF neuron model is an effective choice for modeling

auditory nerve fibers as it accurately represents their primary
function of encoding sensory inputs into spike trains. We avoid
using SFA and recurrent connections, as they are not prevalent
characteristics of nerve fibers. On the other hand, for the multi-
layered SNN, the linear AdLIF neuron model with layer-wise
recurrent connections stands out as a good compromise between
accurately reproducing biological firing patterns and remaining
computationally efficient (Bittar and Garner, 2022a; Deckers
et al., 2024). Although less popular than the moving threshold
formulation by Bellec et al. (2018), recently reviewed in Ganguly
et al. (2024), our implementation of SFA using the AdLIF model
combines spike-triggered adaptation with subthreshold coupling.
Previous work (Bittar and Garner, 2022a) demonstrated that the
AdLIF outperforms moving threshold implementations (Yin et al.,
2021; Salaj et al., 2021; Shaban et al., 2021; Yin et al., 2020) in speech
command recognition tasks. Nevertheless, we will still implement
and train an additional model with moving threshold SFA to ensure
that our conclusions hold consistently across different SFA models.

2.4.4 Organization in layers
Similarly to ANNs, our simulation incorporates a layered

organization, which facilitates the progressive extraction and

representation of features from low-order to higher-order, without
the need of concretely defining and distinguishing neuron
populations. This fundamental architectural principle aligns with
the general hierarchical processing observed in biological brains.
However, it oversimplifies the complexities of auditory processing,
which extends beyond a straightforward sequential framework.
While there is some sort of sequential processing in sub-cortical
structures, the levels of processed features are more intricate
than a simple hierarchy. This simplification is made to ensure
compatibility with deep learning frameworks.

2.4.5 Layer-wise recurrence
While biological efferent pathways in the brain involve complex

and widespread connections that span across layers and regions,
modeling such intricate connectivity can introduce computational
challenges and complexity, potentially hindering training and
scalability. By restricting feedback connections to layer-wise
recurrence, we simplify the network architecture and enhance
compatibility with deep learning frameworks.

2.4.6 Excitatory and inhibitory
In the neuroscience field, neurons are commonly categorized

into two types: excitatory neurons, which stimulate action
potentials in postsynaptic neurons, and inhibitory neurons, which
reduce the likelihood of spike production in postsynaptic neurons.
This principle is referred to as Dale’s law.

In ANNs, weight matrices are commonly initialized with
zero mean and a symmetric distribution, so that the initial
number of excitatory and inhibitory connections is balanced.
During training, synaptic connections are updated across all layers
without enforcing a distinction between excitatory and inhibitory
neurons. Dale’s law can nevertheless be imposed (Li et al., 2024;
Cornford et al., 2021) even if it typically results in slightly reduced
performance.

In our baseline model, Dale’s law is not applied, so that
similarly to standard ANNs, weight matrices are trained without
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constraining values to be positive or negative. Additionally, we train
separate SNNs with Dale’s law to evaluate its impact on neural
oscillations. In this setup, half the neurons are excitatory and half
are inhibitory, while the auditory nerve fibers are all excitatory.

2.4.7 Delays
In biological neural networks, the propagation time of spikes

between neurons introduces delays, primarily due to axonal
transmission. To incorporate and assess the impact of these delays
on neural oscillations, we additionally train separate SNNs using
dilated convolutions in the temporal dimension instead of fully
connected feedforward matrices. This approach, introduced in
Hammouamri et al. (2024), allows us to introduce controlled delays
directly into the network architecture. Based on their configuration
for speech command recognition tasks, we use a maximum delay
value of 300 ms.

2.4.8 Learning rule
Stochastic gradient descent, though biologically implausible

due to its global and offline learning framework, allows us to
leverage parallelizable and fast computations to optimize larger-
scale neural networks. While this approach facilitates effective
training and scaling, it diverges from biologically inspired synaptic
plasticity mechanisms, such as those mediated by AMPA and
NMDA receptors.

2.4.9 Decoding into phoneme sequences
Although lower PERs could be achieved with a more

sophisticated decoder, our primary focus is on analyzing the spiking
layers within the encoder. For simplicity, we therefore opt for
straightforward CTC decoding, which more directly reflects the
encoder’s capabilities.

2.4.10 Hybrid ANN-SNN balance
The CNN module in the ASR frontend as well as the ANN

module (average pooling and FC layers) converting spikes to
probabilities are intentionally kept simple to give most of the
processing and representational power to the central SNN onwhich
focuses our neural oscillations analysis.

2.5 Speech processing tasks

The following datasets are used in our study.

• The TIMIT dataset (Garofolo et al., 1993) provides a
comprehensive and widely utilized collection of phonetically
balanced American English speech recordings from 630
speakers with detailed phonetic transcriptions and word
alignments. It represents a standardized benchmark for
evaluating ASR model performance. The training, validation
and test sets contain 3,696, 400, and 192 sentences,
respectively. Utterance durations vary between 0.9 and 7.8 s.
Due to its compact size of ∼5 h of speech data, the

TIMIT dataset is well-suited for investigating suitable model
architectures and tuning hyperparameters. It is however
considered small for ASR hence the use of Librispeech
presented below.

• The Librispeech corpus (Panayotov et al., 2015) contains about
1,000 h of English speech audiobook data read by over 2,400
speakers with utterance durations between 0.8 and 35 s. Given
its significantly larger size, we only train a few models selected
on TIMIT to confirm that our analysis holds when scaling to
more data.

• The Google Speech Commands dataset (Warden, 2018)
contains one-second audio recordings of 35 spoken
commands such as “yes,” “no,” “stop,” “go,” “left,” “right”
“up”. The training, validation and testing splits contain ∼85,
10, and 5k examples, respectively. It is used to test whether
similar CFCs arise when simply recognizing single words
instead of phoneme or subword sequences.

When evaluating an ASR model, the error rate signifies the
proportion of incorrectly predicted words or phonemes. The
count of successes in a binary outcome experiment, such as ASR
testing, can be effectively modeled using a binomial distribution.
In the context of trivial priors, the posterior distribution of the
binomial distribution follows a beta distribution. By leveraging
the equal-tailed 95% credible intervals derived from the posterior
distribution, we establish error bars, yielding a range of ±0.8%
for the reported PERs on the TIMIT dataset, about ±0.2% for the
reported word error rates on LibriSpeech, and about±0.4% for the
reported accuracy on Google Speech Commands.

2.6 Analysis methods

2.6.1 Hyperparameter tuning
Before reporting results on the oscillation analysis, we

investigate the optimal architecture by tuning some relevant
hyperparameters. All experiments are run using a single NVIDIA
GeForce RTX 3090 GPU. On top of assessing their respective
impact on the error rate, we test if more physiologically plausible
design choices correlate with better performance. Here is the list
of the fixed parameters that we do not modify in our reported
experiments:

• number of Mel bins: 80
• Mel window size: 25 ms
• auditory CNN kernel size (7, 7)
• auditory CNN stride: (1, 1)
• auditory CNN padding: (7, 0)
• average pooling size: 40/1t

• number of phoneme FC layers: 2
• number of phoneme features: 512
• dropout: 0.15
• activation: LeakyReLU

where for CNN attributes of the form (nt , nf ), nt and nf
correspond to time and feature dimensions, respectively. The
tunable parameters are the following,
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• filter bank hop size controlling the SNN time step in ms: {1, 2,
5}

• number of auditory CNN channels (filters): {8, 16, 32, 64, 128}
• number of SNN layers: {1, 2, 3, 4, 5, 6, 7}
• neurons per SNN layer: {64, 128, 256, 512, 768, 1024, 1536,

2048}
• proportion of neurons with SFA: [0, 1]
• feedforward connectivity: [0, 1]
• recurrent connectivity: [0, 1]

While increasing the number of neurons per layer primarily
impacts memory requirements, additional layers mostly extend
training time.

2.6.2 Population signal
In the neuroscience field, EEG stands out as a widely employed

and versatile method for studying brain activity. By placing
electrodes on the scalp, this non-invasive technique measures the
aggregate electrical activity resulting from the synchronized firing
of neurons within a specific brain region. An EEG signal therefore
reflects the summation of postsynaptic potentials from a large
number of neurons operating in synchrony. The typical sampling
rate for EEG data is commonly in the range of 250–1,000 Hz which
matches our desired simulation time steps. With our SNN, we do
not have EEG signals but directly the individual spike trains of all
neurons in the architecture. In order to perform similar population-
level analyses, we sum the binary spike trains sl

b
∈ {0, 1}T×N l

emitted by all neurons in a specific layer l for a single utterance b
as follows,

plb,t =

N l
∑

n=1

slb,t,n. (13)

Before performing the PAC analysis, the resulting population
activity signal pl

b,t is then normalized over the time dimension with
a mean of 0 and a standard deviation of 1, yielding the normalized
population signal p̂l

b,t defined as,

p̂lb,t =
pl
b,t − µl

b

σ l
b

, (14)

where µl
b
is the mean and σ l

b
is the standard deviation of pl

b,t over
the time dimension.

2.6.3 Phase-amplitude coupling
Using finite impulse response band-pass filters, the obtained

population signals are decomposed into different frequency ranges.
We study CFC in the form of PAC both within a single population
and across layers. This technique assesses whether a relationship
exists between the phase of a low frequency signal and the
envelope (amplitude) of a high frequency signal. As recommended
in Hülsemann et al. (2019), we implement both the modulation
index (Tort et al., 2008) and mean vector length (Canolty et al.,
2006) metrics to quantify the observed amount of PAC. For
each measure type, the observed coupling value is compared
to a distribution of 10,000 surrogates to assess the significance.

Surrogate couplings are computed by disrupting the temporal
order of the amplitude time series while preserving its overall
characteristics. Specifically, the amplitude time series is permuted
by cutting it at a random point and reversing the order of the
two segments. This method, as discussed by Hülsemann et al.
(2019), maintains all inherent properties of the original data
except for the temporal relationship between phase angle and
amplitude magnitude, providing a conservative test of significance.
A p-value is then obtained by fitting a Gaussian function on
the distribution of surrogate coupling values and calculating
the area under the curve for values greater than the observed
coupling value.

As pointed out in Jones (2016), it is important to note
that observed oscillations can exhibit complexities such as non-
sinusoidal features and brief transient events on single trials. Such
nuances become aggregated when averaging signals, leading to the
widely observed continuous rhythms. We therefore perform all
analysis on single utterances.

For intra-layer interactions, a single population signal is
used to extract both the low-frequency oscillation phase and
the high-frequency oscillation amplitude. In a three-layered
architecture, these interactions include nerve-nerve, first layer-
first layer, second layer-second layer, and third layer-third
layer couplings.

For inter-layer interactions, we consider couplings between
the low-frequency oscillation phase in one layer and the high-
frequency oscillation amplitude in all subsequent layers. These
interactions include nerve-first layer, nerve-second layer, nerve-
third layer, first layer-second layer, first layer-third layer, second
layer-third layer couplings.

For all aforementioned intra- and inter-layer combinations, we
use delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–
30Hz) ranges as low-frequencymodulating bands, and low-gamma
(30–80Hz) and high-gamma (80–150Hz) ranges as high-frequency
modulated bands. For a given model, we iterate through the 64
longest utterances in the TIMIT test set. For each utterance, we
consider the 10 aforementioned intra- and inter-layer relations, as
well as the eight possible combinations of low-frequency to high-
frequency bands. We conduct PAC testing on each of the 5,120
resulting coupling scenarios, and only consider a coupling to be
significant when both modulation index and mean vector length
metrics yield p-values below 0.05.

3 Results

3.1 Architectural analysis

In order to draw a comparison with the human auditory
pathway, we have introduced the physiologically inspired ASR
pipeline illustrated in Figure 2. The proposed hybrid ANN-SNN
architecture is trained in an end-to-end fashion on the TIMIT
dataset (Garofolo et al., 1993) to predict phoneme sequences
from speech waveforms. In the architectural design, we aimed to
minimize the complexity of ANN components and favor the central
SNN which will be the focus of the oscillation analysis. Here as a
preliminary step, we examine how relevant hyperparameters affect
the PER. On top of assessing the scalability of our approach to larger
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TABLE 1 Hyperparameter tuning for the number of SNN layers and neurons per layer on the TIMIT dataset.

Number of layers and neurons per layer Number of parameters Test PER (%) Validation PER (%)

1× 512 740k/1.3M 23.3 21.8

2× 512 1.1/1.7M 21.0 19.2

3× 512 1.5/2.1M 20.5 18.2

4× 512 1.9/2.5M 20.2 17.4

5× 512 2.3/2.9M 20.0 17.6

6× 512 2.7/3.3M 20.0 17.9

7× 512 3.1/3.7M 20.5 18.0

3× 64 91/394k 30.9 29.6

3× 128 211/547k 25.5 24.1

3× 256 537/938k 22.5 20.9

3× 768 3.0/3.7M 19.6 17.4

3× 1,024 4.9/5.7M 19.1 17.1

3× 1,536 10.1/11.2M 19.0 17.3

3× 2,048 17.1/18.5M 19.2 17.2

No nerve, no SNN 0/873k 34.2 32.0

The second column gives both the number of trainable parameters in the multi-layered SNN (left) and in the whole encoder (right). The PERs are reported after 50 training epochs using a 5 ms

time step, 16 CNN channels, 50% of AdLIF neurons, 100% feedforward and 50% recurrent connectivity. The performance of the architecture when removing the SNN is also reported (bottom).

Bold values indicate the lowest achieved PERs.

networks, we identify the importance of the interplay between
recurrence and SFA.

3.1.1 Network scalability
As reported in Table 1, performance improves with added

layers, peaking at 4–6 layers before declining, which suggests
a significant contribution to the final representation from all
layers within this range. Compared to conventional non-spiking
RNN encoders used in ASR, our results support the scalability
of surrogate gradient SNNs to relatively deep architectures.
Additionally, augmenting the number of neurons until about
1,000 per layer consistently yields lower PERs, beyond which
performance saturates.

3.1.2 Recurrent connections and
spike-frequency adaptation

The impact of adding SFA in the neuron model as well as using
recurrent connections are reported in Table 2. Interestingly, we
find that without SFA, optimal performance is achieved by limiting
the recurrent connectivity to 80%. When additionally using SFA,
further limitation of the recurrent connectivity about 50% yields
the lowest PER. This differs from conventional non-spiking RNNs,
where employing FC recurrent matrices is favored. These results
indicate that while requiring fewer parameters, an architecture with
sparser recurrent connectivity and more selective parameter usage
can achieve better task performance.

Overall, SFA and recurrent connections individually yield
significant error rate reduction, although they, respectively,
grow as O(N) and O(N2) with the number of neurons N. In

line with previous studies on speech command recognition
tasks (Perez-Nieves et al., 2021; Bittar and Garner, 2022a), our
results emphasize the metabolic and computational efficiency
gained by harnessing the heterogeneity of adaptive spiking
neurons. Furthermore, effectively calibrating the interplay
between unit-wise feedback from SFA and layer-wise feedback
from recurrent connections appears crucial for achieving
optimal performance.

3.1.3 Enforcing Dale’s law
To align with common ANN practice, the previous results

were obtained without restricting neurons to be either strictly
excitatory or strictly inhibitory. We now train more physiologically
inspired models that satisfy Dale’s law, with results presented in
Table 3. Although ASR performance decreased (1–4% absolute
PER increase), this may simply be due to suboptimal weight
initialization, which is known to affect performance (Li et al.,
2024). This could likely be mitigated in future work by
using the approach of Rossbroich et al. (2022), who derived
fluctuation-driven initialization schemes compatible with
Dale’s law.

3.1.4 Supplementary findings
We observe in Supplementary Table S1 that decreasing the

simulation time step does not affect the performance. Although
making the simulation of spiking dynamics more realistic, one
might have anticipated that backpropagating through more time
steps could hinder the training and worsen the performance as
observed in standard RNNs often suffering from vanishing or
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TABLE 2 Ablation experiments for the recurrent connectivity and proportion of neurons with SFA on the TIMIT dataset.

Model type Recurrent
connectivity

Proportion of
AdLIF neurons

Number of
parameters

Test PER (%) Validation PER (%)

No recurrence no SFA 0 0 1.1/1.7M 26.9 24.8

Recurrence only 0.2 0 1.3/1.8M 22.0 20.1

0.5 0 1.5/2.1M 21.0 18.9

0.8 0 1.8/2.3M 20.8 18.7

1 0 1.9/2.5M 21.8 19.3

SFA only 0 0.2 1.1/1.7M 24.2 21.7

0 0.5 1.1/1.7M 23.7 21.6

0 0.8 1.1/1.7M 23.3 21.0

0 1 1.1/1.7M 22.9 21.1

Recurrence and SFA 0.2 0.2 1.3/1.8M 20.9 19.3

0.5 0.5 1.5/2.1M 20.5 18.2

0.8 0.8 1.8/2.3M 21.2 18.8

1 1 1.9/2.5M 23.3 21.5

PERs are reported after 50 epochs using a 5 ms time step, 16 CNN channels, three layers, 512 neurons per layer and 100% feedforward connectivity. Bold values indicate the lowest achieved

PERs.

TABLE 3 Ablation experiments for the recurrent connectivity and proportion of neurons with SFA on the TIMIT dataset when additionally using Dale’s

law.

Model type Recurrent
connectivity

Proportion of
AdLIF neurons

Number of
parameters

Test PER (%) Validation PER (%)

No recurrence no SFA 0 0 1.1/1.7M 30.7 28.7

Recurrence only 0.5 0 1.5/2.1M 23.6 20.6

SFA only 0 0.5 1.1/1.7M 25.1 22.9

Recurrence and SFA 0.5 0.5 1.5/2.1M 21.2 19.2

PERs are reported after 50 epochs using a 2 ms time step, 16 CNN channels, three layers, 512 neurons per layer, 100% feedforward connectivity and an excitatory-inhibitory ratio of 1. Bold

values indicate the lowest achieved PERs.

exploding gradients (Bengio et al., 1994). With inputs ranging from
1,000 to over 7,000 steps using 1 ms intervals on TIMIT, our results
demonstrate a promising scalability of surrogate gradient SNNs for
processing longer sequences.

Secondly, as reported in Supplementary Table S2, we did not
observe substantial improvement when increasing the number of
auditory nerve fibers past∼5,000, even though there are∼30,000 of
them in the human auditory system. This could be due to both the
absence of a proper model for cochlear and hair cell processing in
our pipeline and to the relatively low number of neurons (<1,000)
in the subsequent layer.

As detailed in Supplementary Table S3, reduced feedforward
connectivity in the SNN led to poorer overall performance. This
contrasts with our earlier findings on recurrent connectivity,
highlighting the distinct functional roles of feedforward and
feedback mechanisms in the network.

Additionally, we incorporated trainable delays by replacing the
fully connected feedforward matrices with dilated convolutions
over the temporal dimension. While including delays resulted in
similar overall performance, using the groups parameter to control
connectivity led to more parameter-efficient models, as shown
in Supplementary Table S4. This method of reducing connectivity

proved more effective than our previous approach of randomly
masking fully connected matrices.

Finally, Supplementary Table S5 shows our results when
using the more popular moving threshold formulation of SFA
instead of the AdLIF model. Consistent with our previous
findings on speech command recognition (Bittar and Garner,
2022a), the AdLIF implementation of SFA outperforms
its moving threshold alternative, with the same number
of parameters.

3.2 Oscillation analysis

Based on our previous architectural results that achieved
satisfactory speech recognition performance using a physiologically
inspired model, we hypothesize that the spiking dynamics of a
trained network should, to some extent, replicate those occurring
throughout the auditory pathway. Our investigation aims to discern
if synchronization phenomena resembling brain rhythms manifest
within the implemented SNNs as they process speech utterances to
recognize phonemes.
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3.2.1 Synchronized gamma activity produces
low-frequency rhythms

As illustrated in Figure 3A, the spike trains produced by
passing a test-set speech utterance through the trained architecture
exhibit distinct low-frequency rhythmic features in all layers. By
looking at the histogram of single neuron firing rates illustrated
in Figure 3B, we observe that the distribution predominantly peaks
at gamma range, with little to no activity below beta. This reveals
that the low-frequency oscillations visible in Figure 3A actually
emerge from the synchronization of gamma-active neurons. The
resulting low-frequency rhythms appear to follow to some degree
the intonation and syllabic contours of the input filterbank features
and to persist across layers. Compared to the three subsequent
layers, higher activity in the auditory nerve comes from the
absence of inhibitory SFA and recurrence mechanisms. These
initial observations suggest that the representation of higher-order
features in the last layer is temporally modulated by lower level
features already encoded in the auditory nerve fibers, even though
each layer is seen to exhibit distinct rhythmic patterns. In the next
section, we focus onmeasuring thismodulationmore rigorously via
PAC analysis.

3.2.2 Phase-amplitude couplings within and
across layers

By aggregating over the relevant spike trains, we compute
distinct EEG-like population signals for the auditory nerve fibers
and each of the three SNN layers. These are then filtered in the
different frequency bands, as illustrated in Figure 4A, which allows
us to perform CFC analyses. We measure PAC within-layer and
across-layers between all possible combinations of frequency bands
and find multiple significant forms of coupling for every utterance.

An example of significant theta low-gamma coupling between
the auditory nerve fibers and the last layer is illustrated in Figure 4B.
Here input low-frequency modulation is observed to significantly
modulate the output gamma activity. This indicates that the
network integrates and propagates intonation and syllabic contours
across layers through synchronized neural activity along these
perceptual cues.

On the majority of utterances, we found significant CFCs
between the input waveform and the population signal of the last
layer. It is important to note that the synchronization of neural
signals to the auditory envelope emerged without imposing any
theta or gamma activity in our network. The optimization of the
PER combined with sufficiently realistic spiking neuronal dynamics
therefore represent sufficient conditions to reproduce some broad
properties of neural oscillations observed in the brain, suggesting a
general functional role of facilitating information processing.

The activity of the final layer of the SNN stands out as the
most significantly modulated overall. By architectural construction,
modulation in that final layer has the greatest impact on the
ASR task, as the spike trains from this layer are converted to
phoneme probabilities using a small ANN. A higher number of
couplings in the final layer correlates with a decrease in the PER.
This suggests that CFCs may be associated with more selective
integration of phonetic features, enhanced attentional processes, as
well as improved assimilation of contextual information.

Alpha-band oscillations were the most frequently measured,
consistent with biological evidence that the alpha rhythm is the
most prominent oscillation in spontaneous EEG (Berger, 1929).

More generally, the patterns of coupling between different
neural populations and frequency bands were found to differ from
one utterance to another. These variations indicate that the neural
processing of our network is highly dynamic and depends on
the acoustic properties and linguistic content of the input. The
observed rich range of intra- and inter-layer couplings suggests that
the propagation of low-level input features such as intonation and
syllabic rhythm is only one aspect of these synchronized neural
dynamics.

3.2.3 Impact of Dale’s law on oscillations
As illustrated in Table 4, SNNs that satisfy Dale’s law display

significantly higher numbers of CFCs. In biological neural
networks, this principle contributes to a more structured and
organized form of network dynamics, as each neuron is either
excitatory or inhibitory but not both. When applying Dale’s
principle to SNNs, it constrains the network with more defined
roles for neurons, leading to more coherent oscillatory patterns and
more CFCs.

In this study, we use equivalent models for both excitatory
and inhibitory neurons, and simply allow them to adapt their
parameters within the same fixed ranges during training. We
observe that trained values of both membrane and adaptation
time constants τu and τw converge to lower average values across
the inhibitory populations compared to the excitatory ones. This
suggests that, even with initially equivalent models, the network
naturally differentiates the dynamics of excitatory and inhibitory
neurons to fulfill their distinct functional roles. Future work could
focus on better defining these two types of neurons from the outset,
incorporating more biologically plausible initial parameter ranges.

When using Dale’s law, the fixed excitatory-inhibitory (E/I)
ratio plays a crucial role in shaping the neuronal dynamics inside
the SNN. In our study, we observed that increasing the proportion
of inhibitory neurons (E/I = 0.33) resulted in a similar ASR
performance (∼1% absolute PER difference) compared to the
standard ratio (E/I = 1), but with a reduced average firing rate
of 56 Hz instead of 68 Hz for equivalent models with 50% of
neurons with SFA and 50% of recurrent connectivity (see Table 4).
This finding suggests that a higher ratio of inhibitory neurons can
achieve comparable task performance while maintaining a lower
overall level of network activity.

3.2.4 Impact of spike-frequency adaptation and
recurrent connections on oscillations

Across all model types (AdLIF or moving threshold SFA,
with or without delays and Dale’s law), both SFA and recurrent
connections had an overall inhibitory effect, typically reducing the
average network firing rate from around 100 Hz to roughly 60 Hz
(see Table 4).

This regularization of the network activity appears to enable
more effective parsing and encoding of speech information, as it
reliably led to improved ASR performance. While both forms of
feedback exhibit an overall inhibitory effect, SFA operates at the
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FIGURE 3

Spiking activity in response to speech input. (A) Input filterbank features and resulting spike trains produced across layers. For each layer, the neurons
are vertically sorted on the y-axis by increasing average firing rate (top to bottom). The model uses a 2 ms time step, 16 CNN channels, three layers
of size 512, 50% AdLIF neurons, 100% feedforward and 50% recurrent connectivity with Dale’s law. (B) Corresponding distribution of single neuron
firing rates.

FIGURE 4

Cross-frequency coupling of population aggregated activity. (A) Population signals of auditory nerve fibers (blue) and last layer (orange) filtered in
distinct frequency bands. (B) Modulation index and mean vector length metrics as measures of PAC between the theta band of the auditory nerve
fibers and the low-gamma band of the last layer.

individual neuron level whereas recurrent connections act at the
layer level.

SFA is known to encourage and stabilize the synchronization
of cortical networks (Crook et al., 1998) and to promote periodic
signal propagation (Augustin et al., 2013). In our results, this effect
is pronounced in SNNs without Dale’s law, where the inclusion
of SFA was consistently associated with a significant increase in
the number of measured CFCs. However, when Dale’s law is
applied, the overall number of CFCs is significantly higher with
no noticeable impact of SFA on CFCs. This suggests that the
stricter constraints imposed byDale’s lawmay lead tomore uniform
behavior in CFCs, thereby reducing the observed influence of SFA.

In models with and without Dale’s law, incorporating recurrent
connections was consistently associated with a decrease in
the number of inter-layer couplings, indicating more localized
synchronization.

Finally, using the moving threshold formulation of SFA
produces a lower firing rate and fewer significant PACs compared
to our AdLIF baseline. The lower number of PACs might mean
that the moving threshold formulation is less effective than the
AdLIF at coordinating these interactions, which could explain the
inferior task performance. Nevertheless, the discrepancy between
the two approaches could potentially be narrowed with further
hyperparameter optimization.
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TABLE 4 E�ect of Dale’s law, SFA, recurrence and delays on oscillatory activity.

Model
type

Model
configuration

Test PER (%) Firing rate (Hz) Number of
intra-layer PACs

Number of inter-layer
PACs

AdLIF baseline No recurrence no SFA 26.9 98 133 192

SFA only 23.7 72 213 390

Recurrence only 21.0 76 180 132

Recurrence and SFA 20.5 71 265 177

AdLIF with
Dale

No recurrence no SFA 30.7 100 513 643

SFA only 25.1 77 564 603

Recurrence only 23.6 67 432 278

Recurrence and SFA 21.2 68 329 290

Recurrence and SFA,
E/I=0.33

22.3 56 526 496

AdLIF with
delays

No recurrence no SFA 26.2 92 116 54

SFA only 23.3 77 91 53

Recurrence only 21.6 68 205 66

Recurrence and SFA 20.8 68 253 60

Moving
threshold

SFA only 26.3 56 136 131

Recurrence and SFA 22.1 62 182 135

Comparison of the oscillatory activity resulting from passing the 64 longest TIMIT test-set utterances through different types of trained networks. The last two columns show the total number

of significant PACs summed across all 64 utterances and frequency bands, for intra- and inter-layer relations, respectively. All networks use a 2 ms time step, 16 CNN channels, three layers, 512

neurons per layer and 100% feedforward connectivity (i.e., groups = 1 for delays). The E/I ratio is 1 for models with Dale’s law, except the last one where it is 0.33.

3.2.5 Impact of delays on oscillations
As illustrated in Table 4, SNNs with delays produced

significantly fewer PACs, especially for inter-layer couplings,
compared to the baseline with fully connected feedforward
matrices. Introducing trainable delays through dilated
convolutions allows for temporal dispersion of signals, which
may desynchronize neural activity and explain the observed
reduction in CFCs.

3.2.6 E�ects of training and input type on
neuronal activity

In order to further understand the emergence of coupled
signals, we consider passing speech through an untrained network,
as well as passing different types of noise inputs through a trained
network.

Trained architectures exhibit persisting neuronal activity across
layers compared to untrained ones, where the activity almost
completely decays after the first layer, as illustrated in Figure 5.
This decay across layers persists even when increasing the
input magnitude up to saturating auditory nerve fibers. This
phenomenon can be attributed to the random weights in untrained
architectures, which transform structured input patterns into
uncorrelated noise, leading to vanishing neuronal activity in deeper
layers. Our CFC analysis shows no significant coupling, even in
layers with sufficient spiking activity, i.e., within the auditory nerve
population and the first layer.

In trained networks, noise inputs lead to single neuron firing
rate distributions peaking at very low rates and where the activity
gradually decreases across layers, as illustrated in Figure 6B. This
contrasts with the response to speech inputs seen in Figure 3B
where the activity was sustained across layers with most of the
distribution in the gamma range.We tested uniform noise as well as
different noise sources (air conditioner, babble, copy machine and
typing) from the MS-SNSD dataset (Reddy et al., 2019). Compared
to a speech input, all noise types yielded reduced average firing
rates (from 60 Hz to about 40 Hz) with most of the neurons
remaining silent. This highly dynamic processing of information
is naturally efficient at attenuating its activity when processing
noise or any input that does not induce sufficient synchronization.
Interestingly, babble noises were found in certain cases to induce
some significant PAC patterns, whereas other noise types resulted
in no coupling at all. Even though babble noises resemble speech
and produced some form of synchronization, they only triggered
a few neurons per layer (see Figure 6). Overall, we showed that
synchronicity of neural oscillations in the form of PAC results
from training and is only triggered when passing an appropriate
speech input.

3.2.7 Scaling to a larger dataset
Our approach was extended to the Librispeech dataset

(Panayotov et al., 2015) with 960 h of training data. After 8 epochs,
we reached 9.5% word error rate on the test-clean data split. As
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FIGURE 5

Spiking activity in an untrained network in response to speech input. (A) Input filterbank features and resulting spike trains produced across layers.
The model uses a 2 ms time step, 16 CNN channels, 3 layers of size 512, 50% AdLIF neurons, 100% feedforward and 50% recurrent connectivity. (B)
Corresponding single neuron firing rate distributions.

FIGURE 6

Spiking activity in response to babble noise input. (A) Input filterbank features and resulting spike trains produced across layers. The model uses a 2
ms time step, 16 CNN channels, three layers of size 512, 50% AdLIF neurons, 100% feedforward and 50% recurrent connectivity. (B) Corresponding
single neuron firing rate distributions.

observed on TIMIT, trained models demonstrated similar CFCs in
their spiking activity.

3.2.8 Training on speech command recognition
task

With our experimental setup, the encoder is directly trained to
recognize phonemes on TIMIT and subwords on Librispeech. One
could therefore assume that the coupled gamma activity emerges
from that constraint. In order to test this hypothesis, we run
additional experiments on a speech command recognition task
where no phoneme or subword recognition is imposed by the
training. Instead the model is directly trained to recognize a set of

short words. We use the same architecture as on TIMIT, except the
average pooling layer is replaced by a readout layer as defined in
Bittar and Garner (2022a) which reduces the temporal dimension
altogether, as required by the speech command recognition task.
Interestingly, using speech command classes as ground truths still
produces significant PAC patterns, especially in the last layer.
These results indicate that the emergence of the studied rhythms
does not require phoneme-based training and may be naturally
emerging from speech processing. Using the second version of
the Google Speech Commands data set (Warden, 2018) with 35
classes, we achieve a test set accuracy of 97.05%, which, to the
best of our knowledge, improves upon the current state-of-the-art
performance using SNNs of 95.35% (Hammouamri et al., 2024).
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4 Discussion

In this study, we introduced a physiologically inspired speech
recognition architecture, centered around an SNN, and designed to
be compatible with modern deep learning frameworks. As set out
in the introduction, we first explored the capabilities and scalability
of the proposed speech recognition architecture before analyzing
neural oscillations.

Our preliminary architectural analysis demonstrated a
satisfactory level of scalability to deeper and wider networks, as
well as to longer sequences and larger datasets. This scalability was
achieved through our approach of utilizing the surrogate gradient
method to incorporate an SNN into an end-to-end trainable
speech recognition pipeline. In addition, our ablation experiments
emphasized the importance of including SFA within the neuron
model, along with layer-wise recurrent connections, to attain
optimal recognition performance. Notably, our implementation
of SFA using the AdLIF model outperformed the more popular
moving threshold formulation, which corroborates our previous
results on speech command recognition (Bittar and Garner,
2022a).

The subsequent analysis of the spiking activity across our
trained networks in response to speech stimuli revealed that neural
oscillations, commonly associated with various cognitive processes
in the brain, did emerge from training an architecture to recognize
words or phonemes. Through CFC analyses, we measured similar
synchronization phenomena to those observed throughout the
human auditory pathway. During speech processing, trained
networks exhibited several forms of PAC, including delta-gamma,
theta-gamma, alpha-gamma, and beta-gamma, while no such
coupling occurred when processing pure background noise. Our
networks’ ability to synchronize oscillatory activity in the last layer
was also associated with improved speech recognition performance,
which points to a functional role for neural oscillations in
auditory processing. Even though we employ gradient descent
training, which does not represent a biologically plausible learning
algorithm, our approach was capable of replicating natural
phenomena of macro-scale neural coordination. By leveraging the
scalability offered by deep learning frameworks, our approach can
therefore serve as a valuable tool for studying the emergence and
role of brain rhythms.

Building upon the main outcome of replicating neural
oscillations, our analysis on SFA and recurrent connections
emphasized their key role in actively shaping neural responses
and driving synchronization via inhibition in support of efficient
auditory information processing. Our results point toward further
work on investigating more realistic feedback mechanisms
including efferent pathways across layers. More accurate neuron
populations could also be obtained using clustering algorithms.

Further analysis incorporated Dale’s law which constrains
neurons to be exclusively excitatory or inhibitory. This
physiologically inspired principle proved to be a crucial
consideration as it significantly increased the number of
measured oscillations.

Aside from the fundamental aspect of developing the
understanding of biological processes, our research on SNNs
also holds significance for the fields of neuromorphic computing

and energy efficient technology. Our exploration of the spiking
mechanisms that drive dynamic and efficient information
processing in the brain is particularly relevant for low-power
audio and speech processing applications, such as on-device
keyword spotting. In particular, the absence of synchronization
in our architecture when handling background noise results
in fewer computations, making our approach well-suited for
always-on models.
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