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DFA-UNet: dual-stream 
feature-fusion attention U-Net 
for lymph node segmentation in 
lung cancer diagnosis
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Guanyu Zhu 2* and Liang Li 1*
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In bronchial ultrasound elastography, accurately segmenting mediastinal 
lymph nodes is of great significance for diagnosing whether lung cancer has 
metastasized. However, due to the ill-defined margin of ultrasound images 
and the complexity of lymph node structure, accurate segmentation of fine 
contours is still challenging. Therefore, we  propose a dual-stream feature-
fusion attention U-Net (DFA-UNet). Firstly, a dual-stream encoder (DSE) is 
designed by combining ConvNext with a lightweight vision transformer (ViT) 
to extract the local information and global information of images; Secondly, 
we  propose a hybrid attention module (HAM) at the bottleneck, which 
incorporates spatial and channel attention to optimize the features transmission 
process by optimizing high-dimensional features at the bottom of the network. 
Finally, the feature-enhanced residual decoder (FRD) is developed to improve 
the fusion of features obtained from the encoder and decoder, ensuring a more 
comprehensive integration. Extensive experiments on the ultrasound elasticity 
image dataset show the superiority of our DFA-UNet over 9 state-of-the-art 
image segmentation models. Additionally, visual analysis, ablation studies, and 
generalization assessments highlight the significant enhancement effects of 
DFA-UNet. Comprehensive experiments confirm the excellent segmentation 
effectiveness of the DFA-UNet combined attention mechanism for ultrasound 
images, underscoring its important significance for future research on medical 
images.
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1 Introduction

Lung cancer is one of the malignant tumors with the highest morbidity and mortality rates 
worldwide (Detterbeck et al., 2016; Siegel et al., 2023). The choice of treatment is closely related 
to cancer staging, determining whether the lymph nodes are involved is one of the key factors 
in clarifying the cancer staging (Asamura et al., 2015; Taylor et al., 2023). Numerous studies 
(Gu et al., 2017; Wang et al., 2018; Zhang et al., 2019; Wang B. et al., 2021; Wang R. et al., 2021) 
have demonstrated that compared with traditional ultrasound imaging, bronchial ultrasound 
elastography (BUE) can provide more accurate information on mediastinal lymph nodes, 
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reflecting the hardness information of lymph node tissues with 
different colors, which has a higher diagnostic value (Oglat and 
Abukhalil, 2024).

Ultrasound elastography (UE) is a novel ultrasound diagnostic 
technology that has rapidly developed in recent years. It utilizes 
dynamic imaging to measure tissue hardness (Zhang et al., 2019; Cui 
et al., 2022), allowing for non-invasive diagnosis of diseased tissues by 
analyzing the differences in hardness between various tissues. 
Currently, most UE used in endoscopy employs strain force 
elastography. This technique operates on the principle that softer and 
harder tissues deform differently under the same external force (Sigrist 
et al., 2017). Generally, tissues with lower elasticity coefficients exhibit 
greater displacement and deformation, appearing green; tissues with 
higher elasticity coefficients exhibit less displacement, appearing blue; 
and tissues with intermediate hardness appear reddish-blue or 
reddish-green. Since malignant lymph nodes are harder than benign 
ones, assessing the hardness of a lesion by measuring the proportion 
of the blue area within it can help identify benign and malignant 
lesions (Sun et  al., 2017). Therefore, accurate localization and 
segmentation of mediastinal lymph nodes based on BUE images are 
crucial steps in lung cancer diagnosis and treatment (Wang B. et al., 
2021; Wang R. et al., 2021).

Currently, professional doctors are typically required to manually 
segment lymph nodes in BUE images. This process is not only time-
consuming and labor-intensive but also subject to inter-individual 
differences among doctors, leading to subjective biases and potential 
omission of important features. Consequently, the same image can 
result in varying analyses and evaluations, causing segmentation 
errors. Therefore, developing automatic segmentation methods for 
lymph nodes in UE images is of great significance (Li and Xia, 2020; 
Tan et al., 2023).

With the continuous development of computer vision technology, 
the application of semantic segmentation in medical images has 
become increasingly important. Combining artificial intelligence with 
medical imaging to enable intelligent-assisted diagnosis has become 
an inevitable trend, leading to many typical application cases in the 
medical field (Long et al., 2015; Ronneberger et al., 2015; Oktay et al., 
2018; Chen et al., 2021; Bi et al., 2023). However, most studies have 
focused on grayscale images, using only single-channel data as 
network inputs, with fewer studies addressing three-channel data 
segmentation based on UE images. One existing study (Liu Y. et al., 
2022) introduces multiple skeleton networks to evaluate the 
segmentation performance of U-shaped model structures on the BUE 
dataset. This study also designs a context extractor at the bottleneck 
and employs an attention gate (AG) (Oktay et al., 2018) in the skip 
connections to suppress irrelevant information in the image. The 
proposed ACE-Net examines the impact of model structure changes 
on segmentation performance. Unfortunately, this model overlooks 
the channel features in the middle layer and relies solely on the soft 
attention mechanism for feature correction. Additionally, the 
traditional decoder structure is insufficient for fully recovering the 
features of the elastography image, indicating that the segmentation 
performance on mediastinal lymph nodes needs further improvement.

On the one hand, traditional ultrasound images suffer from low 
contrast and high noise, leading to blurred node edges and abnormal 
boundary changes (Xian et al., 2018; Liu et al., 2019; Chen et al., 2022). 
On the other hand, UE images with added pseudo color can assist 
physicians in locating the approximate position of nodules. However, 

they do not resolve the issues inherent in traditional ultrasound 
images and introduce additional challenges. Specifically, the pseudo 
colors obscure the texture information of mediastinal lymph nodes, 
making it more difficult to capture their actual boundaries, particularly 
for the accurate segmentation of small mediastinal lymph nodes. 
Therefore, we  combine the attention mechanism and vision 
transformer (ViT) to conduct an in-depth study of mediastinal lymph 
node segmentation in bronchial ultrasound elastography images. The 
main contributions of this research are summarized as follows:

 • We design a dual-stream encoder (DSE) combining ConvNext 
and a lightweight ViT to effectively extract both global and local 
features from UE images.

 • We propose a hybrid attention module (HAM) at the bottleneck 
to optimize the transmission of high-dimensional features.

 • We introduce a feature-enhanced residual decoder (FRD) to 
recover information and fully fuse the intermediate features of 
the encoder and decoder using attention and residual structures.

 • We use Grad-CAM to visualize heat maps of class activation at 
different stages of the model, providing insights into the 
action mechanisms.

2 Related work

2.1 Medical image segmentation based 
deep learning

In the early stages of medical image segmentation, traditional 
methods primarily relied on thresholding, region, edge detection, 
clustering, and deformable models (Tsai et  al., 2003). With the 
advancement of deep learning, fully convolutional networks (FCNs) 
(Long et al., 2015) emerged as the most classic segmentation models. 
FCNs address the limitations of convolutional neural networks 
(CNNs) in fine-grained image segmentation by replacing fully 
connected layers with convolutional layers, enabling pixel-level 
classification to achieve target segmentation. U-Net (Ronneberger 
et  al., 2015) employs a symmetric U-shaped encoder-decoder 
structure and is widely used in medical image segmentation. Each 
layer introduces skip connections that combine intermediate features 
from the encoder and decoder, reducing feature loss and making it 
particularly suitable for small sample datasets, thereby achieving faster 
and more efficient segmentation.

There are many variants of U-Net. To enhance the feature 
extraction capabilities of the model, Dense-UNet (Cai et al., 2020) 
uses a densely connected network as the decoder, effectively 
segmenting multiphoton live cell images. To improve the sensitivity to 
subtle boundaries, Iter-Net (Li et al., 2020) chains U-Net structures 
together, achieving retinal fundus vessel segmentation by analyzing 
U-Net structures of different sizes. However, these studies fail to 
capture contextual features from a global perspective, focusing 
primarily on spatial domain dependencies.

Recently, researchers have integrated vision transformers (ViT) 
(Dosovitskiy et al., 2020) into U-Net to enhance feature extraction. 
For example, Trans-UNet and Swin-UNet have demonstrated 
impressive performance and accuracy in medical image segmentation. 
Lin et al. (2023) explored the relationships among CNNs, ViT, and 
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traditional operators, proposing CTO, which performed exceptionally 
well on multiple medical image segmentation datasets. Bi et al. (2023) 
combined ViT with deformable convolutions to accurately segment 
thyroid nodules. These models utilize ViT as an encoder to effectively 
capture global contextual information while retaining U-Net’s unique 
multi-scale feature fusion structure. Despite the outstanding 
performance of ViT, the fixed-size patches limit its ability to perceive 
fine details and result in high computational costs. Considering the 
powerful capability of CNNs in capturing local features, we adopt a 
dual-stream network that combines ViT and CNN to fully exploit the 
information in medical images.

2.2 Attention mechanism

The attention mechanism has shown significant achievements and 
is widely used in medical image segmentation due to its ability to 
enhance feature representation and improve the accuracy of 
segmentation. By selectively focusing on the most relevant parts of the 
image, attention mechanisms can effectively highlight important 
regions, such as lesions or tumors, while suppressing irrelevant 
background noise. For example, Attention U-Net (Oktay et al., 2018) 
enhances the U-Net by adding AG mechanisms in the skip 
connections. These AGs re-adjust the encoder’s output features, 
emphasizing attention weights on the target organ region, thereby 
improving segmentation accuracy. Lee et  al. (2020) proposed an 
innovative channel attention module that employs a multi-scale 
averaging pooling operation to cleverly fuse global and local spatial 
information. MDA-Net (Iqbal and Sharif, 2022) replaces the normal 
convolution module in U-Net with a multi-scale fusion module and 
uses a dual attention mechanism to optimize intermediate features in 
the decoder. Chen et al. (2022) designed a hybrid adaptive attention 
module for the irregular lesion morphology, which combines channel 
self-attention and spatial self-attention, and replaced the convolution 
module in U-Net with it to form AAU-Net. However, given the 
limitations in feature extraction and enhancement, especially the 
high-dimensional complex features extracted by DSE, such research 
may encounter bottlenecks. To address this, we  design a hybrid 
attention module at the bottleneck. This module helps capture more 
semantically rich features, enables the network to focus on lesion 
areas, and filters out noise during the feature propagation process.

3 Methodology

3.1 Overview

The model proposed mainly contains the following components: 
dual stream encoder (DSE), hybrid attention module (HAM), and 
feature-enhanced residual decoder (FRD), and the structure is shown 
in Figure 1. Firstly, the UE image is fed into the network for multi-
order feature extraction using the DSE. Secondly, the features 
generated by the encoder are optimized using the HAM at the 
bottleneck. Then, FRD fully fuses the intermediate and underlying 
features to de-code them. Finally, the features are transformed into a 
binary map using a convolutional layer and an up-sampling layer. The 
following section describes in detail the structures in the figure.

3.2 Dual-stream encoder

Given that UE images can localize the position of lymph nodes 
and provide rich channel information, the masking of texture 
information also leads to the difficulty of performing this task. 
Therefore, we combine CNNs and ViTs to design a DSE, aiming to 
effectively capture both local and global features.

A convolutional network encoder is used to capture local feature 
information of mediastinal lymph nodes from BUE images. Numerous 
studies (Xie and Richmond, 2018; Raghu et al., 2019) have shown the 
benefits of pre-trained models, so we use the newly proposed powerful 
pre-trained ConvNext (Liu Z. et al., 2022) as a convolutional network 
encoder. It has four outputs are Fi , , , ,i =1 2 3 4, dimensions are 
C H W× ×/ /4 4 , 2 8 8C H W× ×/ / , 4 16 16C H W× ×/ /  and 
8 32 32C H W× ×/ / , where C is 128, H  and W  are both 256.

Vision transformer encoder is used to capture the global 
feature dependencies of mediastinal lymph nodes to assist the 
convolutional network encoder for feature extraction. As shown in 
Figure  1, to minimize model complexity and make full use of 
intermediate features, F1  is used as an input to ViT. Considering 
the size distribution of the mediastinal lymph node, we used 4 4×  
and 16 16×  patch sizes to divide F1 . F1  is split equally from the 
channel dimensions, using dimensionality change and linear layer 
to divide F1  into C H P W P/ / / , ,2 4 4 4 16× × =P  patches, where P 
denotes the size of the patch. The features are passed into the 
multi-head attention module, whose main role is to compute the 
self-attention of the input features to capture the correlation 
between the features. Specifically, we  first use the convolution 
operation to obtain the query vector Q, the key vector K , and the 
value vector V  of the features. Then the attention score matrix is 
obtained by the inner product operation between Q and K , which 
represents the feature-to-feature similarity. Next, the attention 
score matrix is scaled and probabilization to obtain the attention 
weight matrix. Finally, the attentional weight matrix is weighted 
and summed with V  to obtain the attentional weighted value 
matrix. This matrix represents the feature representation obtained 
after attentional weighting of the input features. Specifically as 
shown in Equation (1):

 
FMHA

T

k
Softmax QK

d
V=











 
(1)

where dk  is the length of K  and FMHA is the output of the multi-
head attention module.

Send FMHA into the feed forward module to get FFF . The feed 
forward module consists of two base convolutional modules: a 
convolutional layer with a kernel of 3 × 3, a batch normalization layer, 
and a leak ReLU activation function. To further speed up the training, 
F1 , FMHA, and FFF  are residually summed to obtain the feature FV  
extracted by the ViT encoder.

3.3 Hybrid attention module

To enhance the extraction of global and local features across 
various dimensions from the DSE, we design a HAM to optimize the 
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features transmission process by optimizing high-dimensional 
features at the bottom of the network.

First, by extracting global features using the lightweight ViT, 
with input and output dimensions unchanged, the resulting Fv 
dimension is C H W× ×/ /4 4. Then, local features F4 are extracted 
by CNN, with dimensions of 8 32 32C H W× ×/ / . We use down-
sampling to resize the Fv to the same size as F4. To further enhance 
the features extracted by the encoder, we concatenate the global 
feature Fv and the local feature F4 along the channel dimension and 
utilize a 1 × 1 convolution to reduce the number of channels to 1/4 
of the original, obtaining the feature Ff , thereby reducing parameter 
and computational complexity.

To minimize information loss while enhancing features, 
we parallelly employ spatial attention modules and channel attention 
modules to enhance encoder features. The channel attention module 
first transforms the dimensions of the input feature Ff  to ′ ′ ′×C HW , 
then generates the attention map Wc  through matrix multiplication. 
Finally, Ff  is multiplied by Wc  and uses the residual add, resulting in 
the feature Fc enhanced by channel attention, as shown in the 
formula below:

 
F Soft Rs F Rs F F Fc

T= ( ) ( )( )× +max f f f f•
 

(2)

where Rs •( )  denotes the dimensional transformation and 
Softmax •( )  denotes the activation function used to normalize the 
weight values.

For spatial attention, firstly, the channels of Ff  are reduced to 1 
through a 1 × 1 convolution. Then, the Softmax function is applied to 
normalize the features. Finally, the obtained feature map is multiplied 
by Ff  and undergoes residual add, resulting in the feature Fs enhanced 
by spatial attention, as shown in the formula below:

 F Soft Convs F F Fs = ( )( )× +max f f f  (3)

The obtained Fc and Fs are added and then the channel number 
is restored using a 1 × 1 convolution, obtaining the enhanced DSE 
features Fcv with dimensions of 8 32 32C H W× ×/ / . This approach 
comprehensively enhances the image features captured by the feature 
encoder. Moreover, this parallel attention mechanism reduces the 
influence of noise, optimizes the feature propagation process at the 
network bottleneck, and enhances the reliability of the model.

3.4 Feature-enhanced residual decoder

To alleviate the situation that ordinary decoder modules may lead 
to inaccurate segmentation results in the process of feature recovery, 
we propose the FRD, as shown in Figure 1. Firstly, the feature map 
FCV  is summed with Fi , , , ,i =1 2 3 4 to obtain the enhanced fused 
feature Fdi , , , ,i =1 2 3 4 by using bilinear interpolation and convolution 
operations. This preserves the details and location information of the 
original input image and improves the accuracy of the segmentation 
results. Then, to reduce the complexity and training difficulty of the 
model, the number of channels of Fdi , , , ,i =1 2 3 4 is converted to C / 2 
using a convolution operation to obtain the feature F di' , , , ,i =1 2 3 4. 
Finally, F di'  is passed into the FRD for feature recovery. Anyway, the 
features of the mediastinal lymph node can be  recovered more 
accurately utilizing FRD, and the accuracy of segmentation results can 
be improved. The formula is as follows:

 F Conv Up Conv F Fdi CV i' , , , ,= ( )( ) +( ) =× ×1 1 1 1 1 2 3 4i  (4)

where Up •( )  denotes bilinear interpolation for feature 
transformation and Conv1 1× ( )•  denotes 1 × 1 convolution for 
channel conversion.

FIGURE 1

The framework of the proposed dual-stream feature-fusion attention U-Net.
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To make full use of the intermediate features of the model, 
multiple parallel processing strategies are adopted at the bottom 
decoding stage. Specifically, there are three branches of processing for 
F d' 3 and F d' 4. The first branch performs the bilinear interpolation of 
F d' 4 with F d' 3 for channel concatenation and passes the result to the 
convolution module for initial feature recovery. The second branch 
passes F d' 4 into the spatial attention module to extract the position 
weight Ws, and then performs product operation between Ws and 
F d' 3 to obtain the attention-enhanced features. The third branch 
residually sums F d' 4 with the features of the first two branches to 
obtain the output of the decoder module Fo3. The formulas for the 
other decoder modules are shown in Equation (5):

 
F Convs F F F SA F Foi di

up
oi

up
oi

up
oi di= ⊕( ) + + ( )×+ + +' '1 1 1  

(5)

where Convs •( )  denotes the base convolution operation; ⊕ 
denotes channel concatenation; Fupoi+1 is the output of the decoder 
after up-sampling; and SA •( )  denotes the spatial attention operation. 
Through parallel processing and feature fusion, the decoder can fully 
utilize the features to recover lost details and positional information 
and improve the accuracy of the segmentation results. This design can 
effectively compensate for the shortcomings of the common decoder 
and further optimize the performance of mediastinal lymph 
node segmentation.

4 Experiments

4.1 Databases and experimental protocols

4.1.1 Dataset description
A cohort of 206 patients who underwent endobronchial 

ultrasound-guided trans-bronchial needle aspiration (EBUS-TBNA) 
was selected from the First Hospital of Nanjing, comprising 141 males 
and 65 females. We collected 263 UE images of lymph nodes, which 
were manually delineated by an experienced radiologist. The dataset 
includes 102 benign and 161 malignant samples. For the experiments, 
the UE images were uniformly resized to 256 × 256 pixels. The dataset 
is divided into six equal parts, five of which totalling 219 images are 
used for training and the other totaling 44 images are used for testing.

We conduct multiple experiments through a six-fold cross-
validation approach to fully evaluate the performance of the model. 
To increase the robustness of the model, we  use an online data 
augmentation method, where the read data are vertically flipped and 
rotated by a random angle (−30° or 30°) with a probability of 0.5 
during the model training iterations.

4.1.2 Implementation details
The proposed DFA-UNet is implemented based on Python 3.7 

and Pytorch 1.12. The image processing workstation is equipped with 
an Intel i9-13900 K CPU and two NVIDIA RTX 4090 GPUs with 24G 
memory. The initial parameters during model training are obtained 
by Pytorch default initialization and the Adam optimizer is used to 
update the network parameters. Specifically, the initial learning rate is 
set to 0.0001, the weight decay coefficient is 0.1, the learning rate is 
decayed every 90 rounds of iterations, and the number of iterative 

training of the model is 190 times in total. Dice (Milletari et al., 2016) 
is used as the loss function with the following formula:

 
Dice Loss

I I
I I

 
t p

t p

= −
∩
+

1
2 |

| |

|

| |
 

(6)

where I t is the true mask for UE image segmentation and Ip is the 
mask predicted by the model.

4.1.3 Evaluation metrics
To fully demonstrate the segmentation effect of the model, we use 

the Dice coefficient (Dice), Intersection over Union (IoU), Precision, 
Specificity, and Hausdorff distance 95th percentile (HD95) (Karimi 
and Salcudean, 2019) metrics to evaluate DFA-UNet. The Dice is a 
metric used to measure the similarity of a collection of two samples, 
in evaluating the performance of image segmentation, Dice can 
be expressed as:

 
Dice TP

TP FP TP FN
=

×
+ + +

2
 

(7)

where TP, FP, TN, and FN denote the set of pixel points for true 
positives, false positives, true negatives, and false negatives. Since the 
true positives of the background region are not computed during the 
pixel point classification process, the Dice is suitable for the task of 
evaluating segmentation targets of varying sizes.

The HD95 is a defined form of the distance between two point 
sets, calculated as:

 HD d d95 = { }max tp pt,  (8)

where dtp denotes the 95% quantile of the farthest distance from 
I t to I p, and dpt denotes the 95% quantile of the farthest distance from 
I p to I t. This metric is more robust to outliers and more suitable for 
biomedical image segmentation tasks.

In the aforementioned metrics, except for HD95, the value range 
of the other indicators is [0, 1], with values closer to 1 indicating better 
model segmentation performance. HD95 has no fixed value range, but 
lower values of HD95 signify better segmentation performance.

4.2 Comparison with the state-of-the-art

4.2.1 Quantitative analysis
To further validate the effectiveness of DFA-UNet on UE images, 

comparative experiments were conducted with several other models: 
U-Net (Ronneberger et  al., 2015), Att-UNet (Oktay et  al., 2018), 
Seg-Net (Badrinarayanan et al., 2017), DeepLabV3+ (Polat, 2022), 
Trans-UNet (Chen et al., 2021), U-Net++ (Zhou et al., 2018), BPAT-
UNet (Bi et  al., 2023), CTO (Lin et  al., 2023), and ACE-Net (Liu 
Y. et al., 2022). The results are presented in Table 1, with the best 
performance for each metric highlighted in bold.

From Table 1, it can be observed that DFA-UNet outperforms other 
models in terms of Dice, IoU, Precision, Specificity, and HD95. 
Specifically, DFA-UNet achieves higher Dice scores compared to U-Net, 
Seg-Net, Att-UNet, U-Net++, Trans-UNet, DeepLabV3+, BPAT-UNet, 
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CTO, and ACE-Net by 1.99, 1.18, 0.93, 1.13, 2.64, 0.98, 0.70, 0.51, and 
0.54%, respectively. Additionally, DFA-UNet shows an improvement of 
0.86% in IoU (77.41% vs. 76.55%) and a 1.48% increase in Precision 
(86.71% vs. 85.23%) compared to ACE-Net. The average improvement 
in Specificity across the nine compared models is 0.52%. Regarding 
HD95, DFA-UNet reduces the distance from 10.39 to 8.125 compared to 
U-Net, with an average reduction of 1.237 across the remaining models, 
indicating a significant enhancement in segmentation performance. 
Furthermore, due to the optimization of all parts of U-Net, DFA-UNet, 
similar to Trans-UNet, BPAT-UNet, CTO, and the other models, 
achieves better performance compared to U-Net with more parameters. 
However, it is worth noting that DFA-UNet achieves the best results in 
model computation within the well-established ConvNext, and also 
achieves optimal results in segmentation effectiveness.

4.2.2 Qualitative analysis
To further verify the generality of DFA-UNet for mediastinal 

lymph node segmentation. We randomly select four segmentation 
samples of different sizes for qualitative analysis, and their 
performance is shown in Figure 2.

From Figure  2, it is evident that DFA-UNet exhibits superior 
segmentation performance for mediastinal lymph nodes of varying 
sizes. When the target size is small (first row), U-Net, Seg-Net, 
Att-UNet, BPAT-UNet, CTO-Net, and ACE-Net produce 
seg-mentation results that are smaller than the actual target, whereas 
only U-Net++ and DFA-UNet achieve accurate segmentation. For 
moderately sized targets with relatively simple boundary structures 
(second row), Trans-UNet, U-Net, Att-UNet, and U-Net++ show 
significant mis-segmentation, with Trans-UNet performing 
particularly poorly, as corroborated by the data in Table  1. 
Additionally, CTO misses part of the segmentation in the lower-right 
corner of the node. For moderately sized targets with complex 
boundary structures (third row), Att-UNet, U-Net++, and Trans-
UNet fail to accurately segment the lower-right protruding region of 
the target area, whereas DFA-UNet consistently delivers precise 
segmentation results. In cases where the target size is large (fourth 
row), Seg-Net and Trans-UNet exhibit noticeable mis-segmentation 
in the lower-right depression of the target region, resulting in smaller 
overall segmentation outputs. U-Net, DeepLabV3+, and BPAT-UNet 
also show significant mis-segmentation in the low-er-right region. 
Only CTO-Net, ACE-Net, and DFA-UNet achieve more accurate 
overall segmentation results, with DFA-UNet providing the best 
performance across different target sizes and boundary complexities.

4.2.3 Visual analysis
To further explore the underlying mechanisms of DFA-UNet, 

we  employ Grad-CAM (Selvaraju et  al., 2017) to visualize the 
decoding stages of the model. A total of eight models, U-Net, 
Att-UNet, Seg-Net, Trans-UNet, BPAT-UNet, CTO, ACE-Net, and 
DFA-UNet, are selected and demonstrated in three stages.

From the overall analysis in Figure 3, it can be seen that the feature 
extraction capability of the model’s bottom stage determines the 
feature recovery of the model’s top stage. Specifically, all eight models 
can roughly locate the real segmentation region in the Decoder2 stage, 
and further continue to expand outward from the region of interest 
obtained in the previous stage in the Decoder3 stage. In the Decoder4 
stage, the model DFA-UNet shifted the region of interest from the 
interior to the boundary, which achieved better results in the overall 
segmentation results. The remaining seven models still further expand 

TABLE 1 Quantitative comparison of our DFA-UNet with other state-of-
the-art methods.

Model Dice 
(%)

IoU 
(%)

Pre 
(%)

HD95 Para 
(M)

Flops 
(G)

U-Net 84.61 74.73 84.88 10.39 31.04 54.60

Seg-Net 85.42 75.63 85.54 8.962 29.44 40.01

Att-UNet 85.67 76.04 84.05 9.056 57.16 66.61

U-Net++ 85.47 75.91 84.81 9.268 47.18 114.16

Trans-UNet 83.96 73.55 82.25 11.90 105.12 11.89

DeepLabv3+ 85.62 76.05 86.07 9.328 21.54 45.58

BPAT-UNet 85.90 76.38 84.83 8.725 71.01 64.12

CTO 86.09 76.71 85.05 8.751 60.01 22.59

ACE-Net 86.06 76.55 85.23 8.907 35.01 20.26

DFA-UNet 86.60 77.41 86.71 8.125 97.29 5.27

Bold values represent the best results.

FIGURE 2

Segmentation results of different models.
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the region of interest outwards, resulting in less accurate segmentation 
results in the higher stages of the model as determined by the target 
region positioned in the bottom stage of the model.

Secondly, a side-by-side comparison reveals that our DFA-UNet 
locates the target segmentation region more accurately in the lower 
stages. During the Decoder2 and Decoder3 phases, the red area 
representing the region of interest in the DFA-UNet is larger and more 
uniformly distributed compared to Seg-Net, Att-UNet, Trans-UNet, 
CTO, and ACE-Net. This uniform distribution closely aligns with the 
target segmentation region, indicating a better fit.

Finally, the reason for the poor segmentation performance of 
traditional models can also be analyzed from the figures: either the 
model’s ability to localize features in the lower layers or its ability to 
correct feature details in the higher layers is insufficient. Specifically, 
ACE-Net further extracts high-level semantic information at the 
bottleneck with the help of a context extractor, which leads to a certain 
degree of difficulty in re-covering high-level semantic information at 
the decoder stage, which is manifested in the form of smaller regions 
of interest in the Decoder2 and Decoder3 stages in Figure 3. Whereas 
the U-Net model is more accurate in its ability to localize the target 
segmentation region in the Decoder2 stage, its region of interest is 
almost unchanged in the Decoder3 and Decoder4 stages, suggesting 
that the model’s high-level stages are ineffective in correcting feature 
details. In contrast, DFA-UNet demonstrates superior performance in 
both the lower and higher stages, resulting in the best overall 
segmentation outcomes for the region of interest.

4.2.4 Ablation study
We perform ablation studies on each of the key modules of the 

DFA-UNet. The baseline network is U-Net, which is tested separately 
with the addition of DSE, HAM, and FRD. As seen in Table 2, the 
proposed modules promote significant improvements in the baseline 
network. This fully demonstrates the effectiveness of our DFA-UNet 
in mediastinal lymph node segmentation.

Firstly, using the DSE as the encoder significantly enhances the 
segmentation performance of the baseline network. The Dice increases 
by 0.79% (84.61% vs. 85.40%), and the IoU improves by 0.90% 
(74.73% vs. 75.63%). This notable performance boost is primarily due 

to the DSE helping the network extract both global and local features. 
Secondly, incorporating the HAM further improves the feature 
transfer capability from the DSE, resulting in an additional 
performance increase. Specifically, the Dice rises from 85.40 to 
85.84%, and the HD95 improves from 9.316 to 9.014. Finally, adding 
the FRD further improves segmentation performance. Compared with 
the baseline, the Dice is enhanced by 1.99% (84.61% vs. 86.60%), and 
the HD95 improves by 2.265 (10.39 vs. 8.125). In summary, 
systematically integrating the feature maps obtained through DSE, 
HAM, and FRD significantly contributes to the superior performance 
of our DFA-UNet. Additionally, it is important to note that the 
parameter count of the lightweight ViT module, DSE-ViT, only 
occupies a small portion (0.5%) of the total model parameters 
(88.58 M vs. 97.29 M), confirming its lightweight nature.

4.2.5 Generalization study
To validate the generalization of our DFA-UNet on ultrasound 

images, we conduct comparative experiments using the BUSI dataset 
(Al-Dhabyani et al., 2020). This dataset contains 780 breast ultrasound 
(BUS) images, including 437 benign images, 210 malignant images, 
and 133 normal images, acquired using the LOGIQ E9 and LOGIQ 
E9 Agile Ultrasound Systems. Since the primary goal of breast lesion 
segmentation is to evaluate and identify the distribution of lesions, 
normal cases without masks were excluded from the BUSI dataset 
(Ning et al., 2021; Xue et al., 2021). The results of these experiments 
are presented in Table 3.

FIGURE 3

Class activation maps generated by DFA-UNet using Grad-CAM. White contours indicate lymph node locations. Warmer-colored regions correspond 
to target class labels with higher confidence.

TABLE 2 Ablation experiment of the proposed DFA-UNet.

DSE-
CNN

DSE-
ViT

HAM FRD Dice 
(%)

IoU 
(%)

HD95 Para 
(M)

84.61 74.73 10.39 31.04

★ 85.07 75.23 9.809 88.58

★ ★ 85.40 75.63 9.316 89.15

★ ★ 85.84 76.40 9.014 96.94

★ ★ ★ ★ 86.60 77.41 8.125 97.29

Bold values represent the best results.
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The results in Table 3 demonstrate that our DFA-UNet achieves 
state-of-the-art performance in breast ultrasound image segmentation. 
Specifically, DFA-UNet shows significant improvements over U-Net, 
with increases of 11.74, 12.82, and 6.93% in Dice, IoU, and Precision, 
respectively, and a reduction of 13.83 in HD95. When compared with 
other models, DFA-UNet exhibits an average improvement of 5.59% 
in Dice, indicating its robust applicability to ultrasound images. 
Furthermore, comparing the results from Tables 1, 3 reveals that 
U-Net experiences a 13.67% decrease in Dice when applied to breast 
ultrasound images, highlighting the increased difficulty of this 
segmentation task. This also suggests that the color information in 
ultrasound elastography images aids segmentation. Notably, 
DFA-UNet shows only a 3.92% decrease in Dice, which underscores 
its superior generalization capability compared to other models that 
average a 6.49% decrease. Therefore, DFA-UNet is particularly well-
suited for segmenting mediastinal lymph nodes in ultrasound 
elastography images. This capability has potential clinical value, as it 
can assist doctors in using ultrasound elastography images for the 
diagnosis and treatment of lung cancer.

5 Conclusion

UE images with rich channel information can provide some 
guidance for segmentation of the region of interest, but their masking 
of texture information also leads to the difficulty of performing this 
task. Additionally, the varying characteristics of different mediastinal 
lymph node groups further challenge segmentation efforts. To address 
these issues, we designed a DSE based on ConvNext and a lightweight 
ViT incorporated into the U-Net. At the bottleneck, we introduced a 
HAM that combines channel attention with spatial attention to enrich 
the feature from DSE. The FRD fully fuses intermediate encoder 
features with decoder output features.

To verify the validity of our DFA-UNet, extensive experiments 
were conducted to several important conclusions. On the one hand, 
DFA-UNet employs a dual-stream encoder and an attention 
enhancement mechanism, which significantly increases the model’s 
stability. Comparative experiments show that DFA-UNet has clear 
competitive advantages over current mainstream segmentation 
models. Class activation maps demonstrate that DFA-UNet achieves 
superior segmentation sensitivity and completeness by focusing on the 
content of the region at the lower levels of the network and the 
boundaries of the region at the higher levels. On the other hand, 
we  optimized various components of the U-Net architecture and 

presented corresponding ablation experimental results. These findings 
offer insights for future research aimed at enhancing segmentation 
performance using U-Net structural variants. This optimization 
provides a foundation for subsequent studies to explore further 
improvements in segmentation effectiveness through structural 
enhancements of U-Net.

In the subsequent research, we will focus on data collection, semi-
supervised segmentation tasks, and model optimal structure 
exploration, to achieve better segmentation results and assist doctors 
to use UE images for relevant diagnosis and treatment of lung cancer.
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TABLE 3 Experiments for generalizability of the proposed DFA-UNet on 
the BUSI dataset.

Methods Dice (%) IoU (%) Pre (%) HD95

70.94 61.77 77.51 30.84

Att-UNet 72.80 63.90 75.49 32.99

DeepLabV3+ 78.12 68.75 80.75 21.91

Trans-UNet 76.82 67.41 80.45 21.25

BPAT-UNet 79.37 70.46 81.56 22.66

CTO 78.32 69.61 82.04 20.98

DFA-UNet 82.68 74.59 84.44 17.01

Bold values represent the best results.
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