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Can the radiomics features of 
intracranial aneurysms predict the 
prognosis of aneurysmal 
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Objectives: This study attempted to determine potential predictors among 
radiomics features for poor prognosis in aneurysmal subarachnoid hemorrhage 
(aSAH), develop models for prediction, and verify their predictive power.

Methods: In total, 252 patients with aSAH were included in this study and 
categorized into favorable and poor outcome groups based on the modified 
Rankin Scale score 3  months after event. Radiomics features of the ruptured 
intracranial aneurysm extracted from computed tomography angiography 
images were selected using least absolute shrinkage and selection operator 
regression and 10-fold cross-validation. A radiomics score was created by 
selecting the optimal features. Other risk factors for a poor prognosis were 
screened using multivariate regression analysis. Three models (clinical, aneurysm, 
and clinical-aneurysm combined models) were developed. The performance of 
the models was assessed using receiver operating characteristic (ROC) curves. 
A clinical-aneurysm combined nomogram was constructed to forecast the risk 
of poor prognosis in patients with aSAH.

Results: A total of three clinical variables and six radiomics features were shown 
to have a significant association with poor prognosis in patients with aSAH. In the 
training cohort, the clinical, aneurysm, and clinical-aneurysm combined models 
had areas under the ROC curves of 0.846, 0.762, and 0.893, respectively. In the 
testing cohort, these models had areas under the ROC curves of 0.848, 0.753, 
and 0.869, respectively.

Conclusion: The radiomics characteristics of ruptured intracranial aneurysms 
are valuable to predict prognosis after aSAH. The clinical-aneurysm combined 
model exhibited the best among the three models. The clinical-aneurysm 
combined nomogram is a reliable and effective tool for predicting poor 
prognosis in patients with aSAH.
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1 Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a highly lethal 
and debilitating kind of hemorrhagic stroke (Virani et  al., 2020; 
Connolly et  al., 2012). Approximately 33% of survivors exhibit 
significant impairments and rely on others for their daily functioning 
(Rinkel and Algra, 2011; Mackey et al., 2016; Petridis et al., 2017). 
Therefore, an early and reliable predictive model to evaluate the 
prognosis of aSAH is urgently required.

Previous studies (Lagares et al., 2015; van der Steen et al., 2020) 
have shown that the total volume of the subarachnoid hemorrhage 
(SAH) is closely related to the prognosis of aSAH. The Fisher scale is 
widely used in clinical practice to estimate the severity of blood loss in 
subarachnoid hemorrhage (Woo et al., 2017). However, this scale is a 
crude assessment of blood loss and has limited predictive ability. Some 
studies (van der Steen et al., 2020; Jiménez-Roldán et al., 2013) in 
which the traditional Fisher scale was replaced with the total 
subarachnoid hemorrhage volume to predict the prognosis of aSAH 
reported good predictive power. The inclusion of more comprehensive 
factors, such as aneurysm characteristics (size, shape, and surface 
irregularities) (Duan et al., 2018; Zheng et al., 2016; Wiebers et al., 
2003) influencing the extent and distribution of subarachnoid 
hemorrhage and consequently the degree of brain injury may help 
improve predictive ability (Parekh et al., 2023; Duan et al., 2016).

Recently, radiomics has become widely used in radiological 
studies. Being a high-throughput technology, it efficiently extracts a 
large number of features from images and offers further information 
for the purposes of diagnosis, prognosis evaluation, and treatment 
response assessment (Lambin et al., 2012). More comprehensive image 
features can be obtained using radiomics. Studies using radiomics to 
extract additional aneurysm-related features have achieved good 
results in predicting aneurysm rupture (Liu et al., 2019; Zhu et al., 
2021). However, these features cannot be used to predict the prognosis 
of aSAH, and their predictive performance remains unknown.

The aim of this research was to find independent factors among 
radiomics features for the prediction of aSAH prognosis. Three 
different models (clinical, aneurysm, and clinical-ancurysm (C-A) 
combined) were created based on the results, and their predictive 
power was evaluated to determine which one was more appropriate to 
help clinicians to predict the prognosis of patients affected by aSAH.

2 Methods

2.1 Participants

This retrospective study received approval from the Human 
Experimentation Ethical Standards Committee of the Second 
Affiliated Hospital of the Chongqing Medical University. 
We conducted a retrospective analysis of 312 patients, all of whom 

were above the age of 18 and has been diagnosed with SAH using 
non-contrast computed tomography (NCCT). The data was collected 
from two centers in our hospital, from January 2019 to November 
2023. The criteria for exclusion were as follows: (a) SAH caused by 
non-aneurysmal causes (such as trauma, hypertensive cerebral 
hemorrhage, or vascular malformation). (b) History of intracranial 
tumors or stroke with neurological dysfunction. (c) Poor-quality 
computed tomography angiography (CTA) and NCCT images (d) 
History of intracranial aneurysm surgery. (e) Incomplete 
clinical data.

2.2 Prognosis evaluation

The clinical functional outcome of patients with aSAH was 
evaluated using the modified Rankin Scale (mRS) at 90 days after 
onset, either by structured telephone interviews or by reviewing 
medical records. Patients with a score of 4–6 range were considered to 
exhibit a poor outcome, while those with scores within the 0–3 range 
were considered to manifest a favorable outcome (Hanley et al., 2017).

2.3 Demographic and clinical date

We collected the demographic data and clinical characteristics of 
each participant from the information system of our institution. The 
demographic data encompassed age, gender, medical history 
pertaining to coronary heart disease, hypertension, and diabetes 
mellitus; smoking history, and alcohol intake. Clinical features 
included Hunt–Hess score on admission, intracranial infection, acute 
hydrocephalus during hospitalization, and laboratory examinations 
before surgical intervention. Laboratory examinations included white 
blood cell count, neutrophil count, lymphocyte count, neutrophil-to-
lymphocyte ratio, platelet count, and hemoglobin count. To obtain the 
Hunt–Hess score, we  followed the protocol described in previous 
studies (Konczalla et al., 2018).

2.4 Image acquisition and analysis

CT of the head was conducted utilizing a multi-slice spiral CT 
scanner (Siemens Healthcare, Somatom Definition Force, Canon 
Medical Systems, or Aquilion ONE). The procedures for CT and CTA 
were as follows: 200–300 mA, 110–120 kV, layer thickness of 1 mm, 
and a 512 × 512 matrix. The administered amount of the contrast agent 
(iohexol solution) ranged from 150 to 300 mg/kg, and the rate of 
injection was 4.5–5.0 mL/s.

To reduce the impact of potential differences between the CT 
scanners on the image before image analysis, we performed image 
pre-processing: (a) the CTA data were resampled to 1.0 × 1.0 × 1.0 mm3 
voxel size; (b) gray level discretization were resampled on a fixed 
number of 256 bins; (c) the CTA images were set to a window level of 
50 Hounsfield units (Hu) and a window width of 110 Hu.

The following information was obtained from the NCCT images 
before the surgical intervention: volume of subarachnoid hemorrhage, 
mean CT value of subarachnoid hemorrhage, midline shift (MLS), 
intracerebral hemorrhage (ICH), and intraventricular hemorrhage 
(IVH). The volume and mean CT value of subarachnoid hemorrhage 

Abbreviations: aSAH, Aneurysmal subarachnoid hemorrhage; C-A, clinical-aneurysm; 

NCCT, Non-contrast computed tomography; CTA, Computed tomography 

angiography; MLS, Midline shift; ICH, Intracerebral hemorrhage; IVH, Intraventricular 

hemorrhage; ROI, The region of interest; LASSO, Least absolute shrinkage and selection 

operator; ROC, Receiver operating characteristic; AUC, Area under curve; DCA, 

Decision curve analysis; Hu, Hounsfield unit; ICC, Interclass correlation coefficient.
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were measured using StrokeDoc software,1 which started with 
automatic segmentation of different brain structures and identification 
of the volume and CT value of blood; all segmentations were checked 
and corrected by an experienced radiologist who was blinded to all 
clinical data and outcomes. A midline shift >4 mm was considered an 
MLS (Yang et al., 2018).

2.5 Radiomics analysis

The process of radiomics analysis is illustrated in Figure 1, which 
consists of image segmentation, feature extraction, and feature selection.

2.5.1 Image segmentation
We selected the region of interest (ROI) of the ruptured intracranial 

aneurysm (IA) from CTA images obtained before the surgical 
intervention. When multiple aneurysms were found, surgical records 
were used to identify the aneurysm responsible for the hemorrhage. The 
ROI of each IA was generated using the ITK-SNAP software package.2 

1 https://www.shukun.net/

2 http://www.itksnap.org/pmwiki/pmwiki.php

ROIs were manually designated along the boundary of the aneurysm on 
each slice of the original axial, reconstructed coronal and sagittal images.

2.5.2 Reproducibility analysis
Data from 50 randomly selected cases in the training cohort was 

used for inter-observer and intra-observer reproducibility assessment. 
The ROIs for each patient were semi-automatically segmented again 
by the same radiologist after 7 days and by a different trained 
radiologist using the same method. The interclass correlation 
coefficient (ICC) was employed for assessment of inter-observer and 
intra-observer agreement.

2.5.3 Feature extraction
Following the segmentation of ROIs, the radiomics features were 

extracted automatically using Python software (version 3.2) from eight 
feature groups. These groups included the neighborhood gray level 
dependency matrix, the neighborhood gray difference matrix, gray 
level run length matrix, the gray level size zone matrix, the gray level 
co-occurrence matrix, 2D shape, 3D shape, and first-order statistics. 
A total of 107 radiomics features were acquired from each IA.

2.5.4 Feature selection
Python (version 3.8.1) was used to select the radiomics features. 

A t-test was used to reduce the dimensionality of the radiomics 

FIGURE 1

Workflow of radiomics analysis.
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features, and those exhibiting p < 0.05 in the test were retained. The 
least absolute shrinkage and selection operator (LASSO) was then 
employed to select the optimal subset of features from the remaining 
set, while parameter tuning performed with 10-fold cross-validation 
to mitigate overfitting.

2.6 Model construction

In the training cohort, independent risk factors for a poor 
prognosis of aSAH were examined using univariate and multivariate 
logistic regression analyses (p < 0.05). We  utilized statistically 
significant independent clinical features (p < 0.05) to construct a 
clinical model by logistic regression analysis.

The radiomics score (R-score) for each patient was used to 
construct the aneurysm model. R-score of each patient was calculated 
according to the following formula based on the optimal features: 
R-score = (∑βi*xi) + β0, where xi represents the ith feature, βi represents 
the correlation coefficient in LASSO, and β0 represents the constant.

Finally, the C-A combined model, which integrates independent 
clinical risk factors and R-scores, was developed using logistic 
regression. We conducted independent verification of these models in 
the test cohort and assessed their performance by computing the area 
under the curve (AUC).

2.7 Model evaluation

We employed the receiver operating characteristic (ROC) curve 
to assess the effectiveness of each model and computed its specificity, 
sensitivity, accuracy, and AUC. The DeLong test was employed to 
compare the AUCs of the various models. Calibration and decision 
curve analysis (DCA) were employed to evaluate the calibration ability 
and clinical usefulness of the C-A combined model, respectively.

2.8 Statistical analysis

The statistical analysis was conducted using R software (version 
3.6.0). Variables were characterized using measures such as 
mean ± standard deviation, median (interquartile range), or counts 
(percentages). The Kolmogorov–Smirnov test was used to assess the 
normality of the continuous variables. The Mann–Whitney U test, 
student’s t-test or Fisher’s exact test were employed to ascertain 
differences between groups. A p-value less than 0.05 was deemed to 
be statistically significant.

3 Results

3.1 Demographic and clinical 
characteristics

This study included 252 patients with aSAH, with 171 and 81 
patients in the training and testing cohorts, respectively. With the 
exceptions of neutrophil count (p = 0.032) and ICH (p = 0.045), there 
were no significant differences in the demographic, clinical, and CT 
imaging characteristics between the training and testing cohorts 

(Table 1). In the training cohort, patients were divided into a favorable 
outcome group (n = 105) or the poor outcome group (n = 66) based on 
the mRS. Univariate analysis (Table 2) of the training cohorts revealed 
that in terms of demographic data and medical history, the incidence 
of hypertension, coronary heart disease, and diabetes was lower in the 
group with favorable outcome. Age (p < 0.001), Hunt–Hess score at 
admission (p = 0.002), hemoglobin count (p < 0.001), subarachnoid 
hemorrhage volume (p < 0.001), ICH (p < 0.001), and IVH (p < 0.001) 
were risk factors associated with poor outcomes after 90-days.

Multiple regression (Table 3) showed that age [odds ratio (OR), 
1.061; 95% CI, 1.010–1.115; p = 0.018], the volume of SAH (OR, 1.032; 
95% CI, 1.003–1.063; p = 0.031), ICH (OR, 0.132; 95% CI, 0.036–0.483; 
p = 0.002) and R-score (OR, 1.21;95% CI, 1.107–1.322; p < 0.001) were 
independent risk predictors of poor outcomes in the training cohort.

3.2 Radiomics analysis

The results of the intra-observer reproducibility test showed that 
97 radiomics features (90.7%) had ICCs >0.8, and the results of the 
inter-observer reproducibility test demonstrated that 100 radiomics 
features (93.5%) had ICCs >0.8.

Of the 107 radiomics features, only 39 features with significant 
differences between the favorable and poor prognostic groups were 
retained (t-test, p < 0.05). Following LASSO and 10-fold cross-
validation, six features were acquired (Figures 2A,B). The values of the 
coefficients for each feature are displayed in Figure 2C.

3.3 Model evaluation

The ROC curves of the three models in the training and testing 
cohorts for predicting a poor prognosis of aSAH are shown in 
Figures 3A,B. The aneurysm model had an AUC of 0.762 and 0.753 
for the training and testing cohorts, respectively. The AUCs of the 
clinical model based on age and the volumes of SAH and ICH were 
0.846 and 0.848 in the training and testing cohorts, respectively. The 
AUCs of the C-A combined model in the training and testing cohorts 
were 0.893and 0.869, respectively, showing the best predictive 
performance among the three models. In the testing cohort, DeLong 
tests showed that there were no statistical differences between the C-A 
combined model and the clinical model, or between the clinical model 
and the aneurysm model, whereas there was a significant difference 
between the C-A combined model and the Aneurysm model 
(p = 0.0087). The performance metrics of the three models, including 
sensitivity, specificity, positive predictive value, negative predictive 
value, and accuracy in testing cohorts are shown in Table 4.

A multi-predictor nomogram (incorporating age, the volume of 
SAH, ICH, and R-score) was created based on the C-A combined 
model to accurately assess the likelihood of a poor outcome in patients 
with aSAH (Figure 4). The DeLong test indicated that there was no 
statistically significant difference in the AUCs of the C-A combined 
model between the training and testing cohorts (p = 0.641). The 
calibration curve demonstrated that the C-A combined nomogram 
exhibited consistent predictive performance in both the training and 
testing groups (Figures  5A,B). DCA proved that the combined 
nomogram had good clinical benefits in the training and testing 
cohorts (Figures 6A,B).
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4 Discussion

In this study, we used the radiomics characteristics of aneurysms 
in an innovative manner to predict the prognosis of patients with 
aSAH, and found that the R-score was an independent risk factor for 
poor outcomes. Among the three models developed, the C-A 
combined model had the best predictive performance and could 
effectively and reliably predict the short-term prognosis for patients 
with aSAH.

In our study, age, total volume of SAH, and ICH were proven to 
be  independent risk factors for poor prognosis. Old age is 
considered a risk factor of adverse outcomes in patients affected by 
aSAH (Zheng et al., 2019; Rosengart et al., 2007). In agreement with 
this, we found that older patients are more likely to have a poor 
prognosis compared to young patients. This can be interpreted as 
an increase in the incidence of complications in case of older 
patients, which leads to a rapid deterioration of their condition. 
Similar to previous studies (Lagares et al., 2015; van der Steen et al., 
2020; Boers et al., 2014), our data suggest that a larger volume of 
SAH is associated with poorer functional outcomes. Cerebral 
vasospasm produced by blood breakdown products in the 
subarachnoid space has been directly linked to the total volume of 
SAH. Vasospasms are closely associated with delayed cerebral 

ischemia and poor functional outcomes (Savarraj et al., 2021). In 
our study, ICH was also associated with adverse outcomes, which 
has been confirmed in a previous study (Rosengart et al., 2007) as 
well. This may be  explained by the fact that a larger hematoma 
produces higher intracranial pressure, resulting in more severe early 
brain injury.

Radiomics features can objectively and comprehensively reflect 
some characteristics of the aneurysm that cannot be recognized by 
the naked eye. We extracted six radiomics features of aneurysms 
(The Maximum2D Diameter Column, cluster shade, IDMN, inverse 
variance, small area emphasis, and skewness). They provided a 
more comprehensive description of the aneurysm characteristics 
and were proven to be predictive markers of aSAH prognosis. The 
Maximum2D Diameter Column represents the aneurysm size. 
Although the influence of the aneurysm size on the prognosis of 
aSAH remains controversial (Russell et al., 2003; Liu et al., 2016; 
Roos et al., 2000), our results are consistent with those (Roos et al., 
2000) suggesting that the larger the aneurysm, the higher the risk 
of poor prognosis. This is because vascular damage is more severe 
when larger intracranial aneurysms rupture, and the volume of the 
subarachnoid hemorrhage increases. Both these factors result in 
poor prognosis. In addition, larger aneurysms adhere more easily 
to other tissues and blood vessels, and are very difficult to expose 

TABLE 1 Patients’ characteristics in the training and testing cohorts.

Variables Training cohort 
(n =  171)

Testing cohort (n =  81) p-value

Male, n (%) 76 (44.4%) 34 (42.0%) 0.816

Age, mean (SD) 57.74 (11.59) 56.42 (12.24) 0.409

Hypertension, n (%) 90 (52.6%) 37 (45.7%) 0.370

Coronary heart disease, n (%) 4 (2.3%) 0 (0.0%) 0.309

Diabetes, n (%) 8 (4.7%) 3 (3.7%) 0.981

Smoking history, n (%) 23 (13.5%) 8 (9.9%) 0.548

Drinking history, n (%) 19 (11.1%) 7 (8.6%) 0.568

Hunt–Hess score on admission, median (IQR) 2.00 (2.00, 2.50) 2.00 (2.00, 2.00) 0.832

Acute hydrocephalus, n (%) 7 (4.1%) 7 (8.6%) 0.239

Intracranial infection, n (%) 4 (2.3%) 2 (2.5%) >0.999

WBC count, mean (SD) 12.74 (4.31) 13.83 (6.08) 0.103

Neutrophil count, mean (SD) 11.20 (4.13) 13.19 (10.49) 0.032

Lymphocyte count, median (IQR) 0.86 (0.65, 1.12) 0.91 (0.68, 1.17) 0.600

NLR, mean (SD) 13.91 (7.43) 16.12 (16.39) 0.141

Hemoglobin count, mean (SD) 124.26 (20.98) 120.22 (29.21) 0.212

PLT count, mean (SD) 206.16 (61.10) 209.65 (56.64) 0.665

Midline shift, n (%) 6 (3.5%) 3 (3.7%) >0.999

Volume of SAH, median (IQR) 17.24 (8.20, 29.82) 17.96 (8.50, 27.48) 0.745

CT value of SAH, median (IQR) 57.00 (54.00, 60.00) 56.00 (54.00, 59.00) 0.494

ICH, n (%) 33 (19.3%) 22 (27.2%) 0.212

IVH, n (%) 83 (48.5%) 51 (63.0%) 0.045

R-score, mean (SD) 38.02 (6.96) 38.12 (9.72) 0.929

Poor prognosis, n (%) 66 (38.6%) 30 (37.0%) 0.812

PLT, platelet count; WBC, white blood cell count; NLR, neutrophil to lymphocyte ratio; aSAH, aneurysmal subarachnoid hemorrhage; R-score, radiomics score; ICH, intracerebral 
hemorrhage; IVH, intraventricular hemorrhage.
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and eliminate surgically. This is aslo likely to lead to a poor 
prognosis. Skewness describes the textural features of aneurysms 
from a microscopic perspective, and can better describe the shape 
of a ruptured IA. An irregular shape is a risk factor for SAH and 
results in increased subarachnoid blood loss and poor prognosis 
(Liu et al., 2016). Cluster shade, IDMN, inverse variance, and small 
area emphasis all reflecting the intensity level of voxel spatial 
distribution, were significantly different between good and 
poor outcomes.

In this study, the clinical model constructed using age, the volume 
of SAH, and ICH showed good predictive performance (AUC = 0.848) 
superior to that previously reported (Dengler et al., 2021) using Fisher 
Scale or modified Fisher Scale on admission (AUC = 0.55 and 
AUC = 0.65, respectively). This suggests that the use of quantitative 
data on admission can achieve a better predictive performance. With 
the inclusion of the R-score, age, the volume of SAH, and ICH, 
we develop our C-A combined model that demonstrated the best 
predictive power (AUC = 0.869). The accuracy and specificity of this 
model were higher than that of the clinical model, even if the DeLong 
test showed no statistical significance. In fact, in high-stakes situations, 
any incremental gain in predictive power could influence treatment 
strategies or patient management. Similarly, in a previous study 
(García-García et al., 2023), the limited improvement observed after 
the addition of clinical information suggested that many factors 
influencing patient outcomes are present in the early stages of the 
disease and could be identified from the initial CT scan. Therefore the 
C-A combined model featuring more independent predictors 
(especially the radiomics characteristics of the aneurysm itself) could 
improve forecasting performance. This type of prognostic models can 
provide help with clinical decisions at the initial stages and prevent the 
implementation of inadequate treatments, which is of utmost 
importance in emergency situations.

Finally, we developed a nomogram based on the C-A combined 
model that can be used to determine the total score according to the 

TABLE 3 Multivariate analysis of baseline characteristics in the training 
cohort.

Variables OR 95% CI p-value

Male 0.655 0.245–1.751 0.399

Age 1.061 1.01–1.115 0.018

Hunt–Hess score on admission 1.034 0.504–2.121 0.927

Hemoglobin count 0.984 0.961–1.008 0.192

The volume of SAH 1.032 1.003–1.063 0.031

R-score 1.21 1.107–1.322 <0.001

ICH 0.132 0.036–0.483 0.002

IVH 0.493 0.192–1.267 0.142

OR, odds ratio; CI, confidence interval; aSAH, aneurysmal subarachnoid hemorrhage; 
R-score, radiomics score; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage.

TABLE 2 Comparison of baseline characteristics of patients with aSAH in poor outcome group and favorable outcome group.

Variables Favorable outcome 
group (n =  105)

Poor outcome group 
(n =  66)

p-value

Male, n (%) 53 (50.5%) 23 (34.8%) 0.065

Age, mean (SD) 54.31 (9.79) 63.18 (12.19) <0.001

Hypertension, n (%) 52 (49.5%) 29 (43.9%) 0.579

Coronary heart disease, n (%) 1 (1.0%) 3 (4.5%) 0.300

Diabetes, n (%) 3 (2.9%) 5 (7.6%) 0.293

Smoking history, n (%) 15 (14.3%) 8 (12.1%) 0.862

Drinking history, n (%) 13 (12.4%) 6 (9.1%) 0.345

Hunt–Hess score on admission, median (IQR) 2.00 (2.00, 2.00) 2.00 (2.00, 3.00) 0.002

Acute hydrocephalus, n (%) 2 (1.9%) 5 (7.6%) 0.109

Intracranial infection, n (%) 1 (1%) 3 (4.5%) 0.300

WBC count, mean (SD) 12.55 (3.59) 13.05 (5.28) 0.464

Neutrophil count, mean (SD) 11.09 (3.55) 11.38 (4.94) 0.653

Lymphocyte count, median (IQR) 0.88 (0.65, 1.11) 0.84 (0.63, 1.14) 0.851

NLR, mean (SD) 13.93 (7.07) 13.87 (8.02) 0.955

Hemoglobin count, mean (SD) 128.88 (18.13) 116.90 (23.15) <0.001

PLT count, mean (SD) 204.79 (58.25) 208.35 (65.79) 0.712

Midline shift, n (%) 3 (2.9%) 3 (4.5%) 0.677

Volume of SAH, median (IQR) 12.50 (5.40, 24.60) 25.35 (16.69, 35.12) <0.001

CT value of SAH, median (IQR) 56.00 (53.00, 60.00) 57.00 (56.00, 60.00) 0.134

ICH, n (%) 5 (4.8%) 28 (42.4%) <0.001

IVH, n (%) 37 (35.2%) 46 (69.7%) <0.001

R-score, mean (SD) 35.50 (6.20%) 42.03 (6.23) <0.001

PLT, platelet count; WBC, white blood cell count; NLR, neutrophil to lymphocyte ratio; aSAH, aneurysmal subarachnoid hemorrhage; R-score, radiomics score; ICH, intracerebral 
hemorrhage; IVH, intraventricular hemorrhage.
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risk factors exhibited by patients on admission and thus obtain an 
early individualized assessment of the prognosis. In addition, the 
calibration curve of the C-A combined model showed a good 
calibration, indicating that the probability of poor outcome predicted 
by the model was in good agreement with the actual probability.

This study has nevertheless some limitations. First, our 
understanding of the mechanisms by which radiomic features 
influence prognosis is insufficient, and further studies are needed in 
the future. Second, the sample size was relatively small and this was a 
retrospective, cross-sectional study. In the future, we will strive to 

FIGURE 3

ROC curves of three models (aneurysm, clinical, and C-A combined model). (A) The ROC curves of three models for predicting the risk of poor 
prognosis of aSAH in the training cohort. (B) The ROC curves of three models for predicting the risk of poor prognosis of aSAH in the testing cohort.

FIGURE 2

Feature selection with LASSO regression. (A) Tuning parameter (lambda) selection in the LASSO regression using 10-fold cross-validation. (B) LASSO 
regression coefficient analysis of the 39 radiomics features. Each coloured line represents the coefficient of each feature. (C) The y-axis represents 
individual radiomics features, with their coefficients in the LASSO regression analysis are plotted on the x-axis.
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recruit more participants and conduct a longitudinal study to further 
optimize the prediction model. Third, although many variables were 
included in our study, not all the variables were covered. Therefore, 
further studies that consider a more comprehensive set of variables are 

warranted. Finally, to improve the applicability of our C-A combined 
model, a larger number of patients from multiple centers is needed.

In conclusion, age, total volume of SAH and ICH, and the R-score 
can predict the poor outcomes in patients affected by aSAH, and the 

FIGURE 4

A C-A nomogram for assessing the risk of poor prognosis of aSAH. The nomogram is used by first summing the points corresponding to all predictors 
and then find the corresponding risk of poor prognosis of aSAH.

FIGURE 5

Calibration curves of the C-A combined model. (A) The calibration curve of the C-A combined model for predicting the risk of poor prognosis of aSAH 
in the training cohort. (B) The calibration curve of the C-A combined model for predicting the risk of poor prognosis of aSAH in the testing cohort.

TABLE 4 The performance metrics of the three models in testing cohorts.

Models Sensitivity Specificity Positive 
predictive value

Negative 
predictive value

Accuracy

Clinical model 83.33 [65.3–94.4] 82.35 [69.1–91.6] 73.5 [60.6–83.7] 89.4 [78.9–95.0] 82.7 [72.9–89.5]

Aneurysm model 73.33 [54.1–87.7] 68.63 [54.1–80.9] 57.9 [46.5–68.5] 81.4 [70.1–89.1] 70.4 [59.7–79.3]

C-A combined model 70.00 [50.6–85.3] 92.16 [81.1–97.8] 84.0 [66.6–93.3] 83.9 [75.0–90.1] 84.0 [74.3–90.5]
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nomogram based on the C-A combined model that takes them into 
account has been shown to be  an accurate and practical tool for 
prediction. The model and the nomogram will hopefully help 
clinicians to identify patients at high risk of poor outcome on 
admission and optimize their treatment schedule.
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