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Growing evidence demonstrates the connection between gut microbiota,

neurodevelopment, and adult brain function. Microbial colonization occurs

before the maturation of neural systems and its association with brain

development. The early microbiome interactions with the gut-brain axis evolved

to stimulate cognitive activities. Gut dysbiosis can lead to impaired brain

development, growth, and function. Docosahexaenoic acid (DHA) is critically

required for brain structure and function, modulates gut microbiota, and

impacts brain activity. This review explores how gut microbiota influences

early brain development and adult functions, encompassing the modulation of

neurotransmitter activity, neuroinflammation, and blood-brain barrier integrity.

In addition, it highlights processes of how the gut microbiome affects fetal

neurodevelopment and discusses adult brain disorders.

KEYWORDS

gut microbiota, brain development, brain function, dysbiosis, drugs, DHA, antibiotics,
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Introduction

The adult gut microbiota is enriched with Firmicutes, Bacteroidetes, and Actinobacteria.
Bifidobacterium and Firmicutes levels tend to decline in the elderly, with increased
levels of Bacteroidetes and Proteobacterium (Sirisinha, 2016). Lactobacilli, Veillonella, and
Helicobacter are the most common bacteria in the gut, while Bacilli, Streptococcaceae,
Actinomycinaeae, and Corynebacteriaceae reside in the duodenum, jejunum, and ileum.
The composition of the intestinal flora in the life course is affected by various factors,
including anatomy, gestational age, mode of delivery, breastfeeding, age, antibiotic usage,
diet, ethnicity, lifestyle, and environmental exposure (Van Ameringen et al., 2019). The
gut microbiome impacts human physiology, including the nervous system (Sirisinha, 2016;
Tremlett et al., 2017; Duttaroy, 2021; Adhikary et al., 2024). The gut microbiome is
involved in neurogenesis, myelination, microglial maturation, blood-brain barrier (BBB)
integrity, and hypothalamic-pituitary-adrenal (HPA)-axis development (Jiang et al., 2017;
Basak et al., 2022).
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GRAPHICAL ABSTRACT

Dysbiosis of the gut microbiota is linked to various brain disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and
depression. Maintaining gut microbiota homeostasis may help prevent these conditions.

During fetal development, the microbiome’s initial colonization
coincides with the nervous system’s growth in a timely, coordinated
manner. The gut microbiome and its metabolites regulate early
processes of neurodevelopment (Rogers et al., 2016). With aging,
a person loses the ability to maintain brain homeostasis because
of gut dysbiosis and docosahexaenoic acid, 22:6n-3 (DHA)
deficiency (Rogers et al., 2016; Basak et al., 2022). DHA and
its metabolites are vital for functional brain development and
maintenance (Mallick et al., 2019). The signaling pathways of
DHA and its metabolites are involved in neurogenesis, anti-
nociceptive effects, anti-apoptotic effects, synaptic plasticity, Ca2+

homeostasis in brain diseases, and the functioning of nigrostriatal
activities. The evidence of age-associated dysbiosis of gut microbial
composition and its contribution to neurocognition disorders
is emerging (Dash et al., 2022; Garg and Mohajeri, 2024).
Despite these data, unraveling the intricate modulators of the
gut-brain axis in developing neurodegenerative diseases, disease
onset, and progression could be beneficial in discovering clinically
relevant biotherapies to combat the continuous rise in worldwide
neurodegenerative diseases. Although several reviews highlighted
the gut-brain axis, very few pointed to the impact of exposure to

Abbreviations: SCFA, short-chain fatty acid; CNS, central nervous system;
SCI, systemic chronic inflammation; NVU, neurovascular unit; MetS,
metabolic syndrome; NF&ND, neuroinflammation and neurodegenerative
disease; AD, Alzheimer’s disease; BEC, blood-brain barrier endothelial cell;
SHH, Sonic Hedgehog; GVU, gut vascular unit.

dietary risks and medicine (drug) on gut microbial balance and
neuroinflammation in modulating brain development and brain
degenerative diseases. This review summarizes recent evidence
on how the gut microbiome can influence early human brain
development and impaired brain disorders in age-associated
dysbiosis.

Gut microbiota, early brain
development and risks of brain
dysfunctions

The maternal oral and gut microbiome can influence
neurodevelopment during infancy, an essential and dynamic stage
of brain growth whose characteristics can predict risk or resilience
to neuropsychiatric disorders in childhood or later adulthood
(Gomez-Arango et al., 2017). In fact, the connection between
maternal gut microbial diversity, brain development, and its
function is emerging (Basak et al., 2024). The most direct route
of communication between the gut and the brain is the vagus
nerve (De la Fuente-Nunez et al., 2018). The CNS interacts with
the endocrine, immune, and enteric nervous systems (ENS) to
have this intricate regulation. ENS is involved in interconnectivity
via the gut-brain axis (GBA). The GBA communicates between
the gut microbiome, the gastrointestinal tract, and the nervous
system. The interplay between the brain and the gut is crucial

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1446700
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1446700 November 21, 2024 Time: 14:49 # 3

Mallick et al. 10.3389/fnins.2024.1446700

as the GBA can modify and regulate cognitive functions and
mood, and nutritional compounds transported by the gut that
can affect brain development (Sharon et al., 2016; Muhammad
et al., 2022). The gut microbiota produces hormones, metabolites,
and neurotransmitters, creating a connection between the gut and
the brain. Research indicates that diet-associated gut microbial
metabolites regulate the relationship between gut microbes and
CNS cells (Park and Kim, 2021; Basak et al., 2024). Therefore,
dietary strategies centered on signaling molecules associated with
gut-brain interaction, including supplementation of SCFAs and
tryptophan metabolites, are promising therapeutic options for
brain disorders (Gao et al., 2020; O’riordan et al., 2022). A more
comprehensive understanding is needed regarding which cells in
the brain are affected by gut microbial metabolites to enable the
development of more tailored treatments.

Critical temporal control of brain circuit formation, immune
cells, and hormone and neurotransmitter signaling pathways
regulate neurodevelopment (Kelly et al., 2017; Krol and Feng,
2018). Neurotransmitters stimulate the vagus nerve, microRNA
(miRNA), and small non-coding RNA (sncRNA), interacting with
the gut microbiota and the CNS. The BBB and intestinal wall
permeability regulate communication between the gut microbiota
and the CNS.

The germ-free (GF) mice develop abnormal brain functions
(Svensson et al., 2015; Tremlett et al., 2017). The colonization of
gut microbiota begins before the maturation of neural systems.
As a result, it impacts brain function in later life (Bauer et al.,
2016). The microbiota interactions along the GBA may modulate
brain development. The microbiota influences brain development
either prenatally via the mother’s microbiome or postnatally, where
factors such as delivery method, breastfeeding, and antibiotic
usage. These can alter the healthy gut microbial composition
and impact neurodevelopmental processes (Borre et al., 2014;
Sharon et al., 2016; Cowan and Cryan, 2021). Perturbation to
the mother’s microbiome can affect the development of the fetus
via several mechanisms, including metabolic dysregulation (Krol
and Feng, 2018; Muhammad et al., 2022). Antibiotic use in
pregnant rats resulted in increased anxiety behaviors and reduced
sociability in their offspring (Degroote et al., 2016; Tochitani et al.,
2016). An association between changes in the vaginal microbiota
and, consequently, metabolic processes was reported, a crucial
relationship required for proper neurodevelopment (Jasarevic et al.,
2015; Muhammad et al., 2022). Moreover, imbalanced microbial
colonization leads to metabolic changes and promotes the invasion
of opportunist pathogens. After birth, the infant microbiome is
enriched with Lactobacillus and Bifidobacterium contributed by the
mother. After weaning, foods change the infant’s gut’s microbial
composition. Firmicutes are highly abundant in carbohydrate-
rich foods, whereas Bacteroidetes are primarily present in foods
from animal sources. At one year, the gut microbiota has a high
quantity of Akkermansia, Veillonella, Bacteroides, and Clostridium.
The diversity of the gut microbiota enriches and stabilizes into
adulthood (Rinninella et al., 2019).

Table 1 describes the impacts of the microbiome on the
neurotransmitters. The gut microbiota can synthesize dopamine,
norepinephrine, gamma-aminobutyric acid (GABA), and
serotonin, all of which can modulate the CNS (Borre et al.,
2014; Socala et al., 2021; Liu et al., 2022). However, it is unclear
if these compounds can cross the BBB and directly affect the

TABLE 1 Microbiome effects on neurotransmitters (Warren et al., 2024).

Microbiome Effects on neurotransmitters

Bifidobacterium Acetylcholine production ↑
GABA production ↑.

Enterococcus

Lactobacillus

Streptococcus

Lactobacillus spp. Intermediates of GABA/glutamate metabolism
↑

Bifidobacterium spp.

Bifidobacterium Serotonin production ↑.

Lactobacillus

Streptococcus

Enterococcus Serotonin production ↓.

brain; nevertheless, they can impact the local gut area by reducing
proinflammatory cytokines and regulating gut motility, among
others (Krol and Feng, 2018). Other metabolites synthesized by
the microbiota are the SCFAs produced by the fermentation of
dietary fibers (Dalile et al., 2019; Silva et al., 2020; Muhammad
et al., 2022). SCFAs modulate the gut by maintaining the integrity
of the intestinal barrier, and they can also affect brain development
by modifying the BBB permeability via microglia activation
and neuroinflammation regulation. Altered gut microbiota with
impaired cognitive activity were associated with developmental
disorders. For example, impaired rhythmic processing is associated
with altered gut microbiota, which was observed in autism
spectrum disorder (Lense et al., 2021; Dash et al., 2022).

Microbial metabolites such as SCFAs (butyric acid, propionic
acid, and acetic acid) determine the neuronal, intestinal, and
pancreatic differentiation via embryonic sensing mediated by
G protein-coupled receptors, GPR43 and GPR41 (Kimura
et al., 2020). The location-based alteration of neurotransmitter
systems was reported in the brain of GF mice. Increased
5-hydroxytryptamine (5-HT) levels in the hippocampus were
reported in the GF mice (Clarke et al., 2013). Upregulated
expression of genes involved with brain plasticity and metabolism,
including long-term synaptic potentiation and cyclic adenosine
monophosphate (cAMP)-mediated signaling system in these
mice, were observed (Diaz Heijtz et al., 2011). The microbiome
modulates the serotonergic system in early life. There was a
decreased hippocampal expression of the 5-HT1A receptor gene
in the dentate gyrus of female GF animals (Neufeld et al., 2011).
Expression of the brain-derived neurotrophic factor (BDNF)
gene was reduced in the cortex and amygdala in GF mice (Diaz
Heijtz et al., 2011). However, the expression of BDNF levels in the
hippocampus was inconsistent in GF mice (Clarke et al., 2013).
The gut microbiome regulated post-natal neurogenesis in GF mice
(Ogbonnaya et al., 2015). However, post-weaning microbiome
colonization could not be reversed in these mice. The effect of
maternal gut microbiota on embryonic development highlighted
its role in shaping the neurometabolic system of the offspring.

The gut microbiome does not only affect brain development per
se but also alters hippocampus and amygdala function as well. The
amygdala is a critical brain region, a key node for gating anxiety,
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fear-related responses, and social behavior (Ledoux, 2007). GF mice
brain shows increased amygdala volume and dendritic hypertrophy
in the basolateral amygdala (BLA). The structural and functional
alterations of the amygdala are associated with neuropsychiatric
and developmental disorders ranging from anxiety (Janak and
Tye, 2015) to autism spectrum disorder (Schumann and Amaral,
2006). GF mice endowed with normal microbiota had pyramidal
BLA neurons characterized by stubby, thin, and mushroom spines
(Janak and Tye, 2015). The amygdala of GF mice had differentially
expressed genes, exon utilization, and RNA edits. Early response
genes such as FosB (proto-oncogene), Fos, and early growth
response 2 (Egr2) were increased in the amygdala with concomitant
increased signaling of the transcription factor cAMP response
element-binding protein (CREB) in the GF mice (Luczynski et al.,
2016b). In GF mice, reduced expression of immune system genes
was reported (Luczynski et al., 2016b). These findings indicate
the presence of underdeveloped immune system and immature
microglia in GF mice (Erny et al., 2015). Since the immune system
plays a crucial role in mediating the microbiota’s effects on brain
function, the immature immune system in GF may impact brain
development.

The gut microbiome also critically regulates pre-frontal cortical
myelination. GF mice had hypermyelination and upregulated
expression of genes involved in myelination and myelin plasticity
events in the pre-frontal cortex (Hoban et al., 2016). The
administration of antibiotics during early development in rats did
not affect cognitive function, immune or stress-related responses,
or anxiety, but visceral hypersensitivity was observed in their
later life (O’mahony et al., 2014). The latter was associated
with changes in the spinal expression of pain-associated genes.
The post-weaning depletion of the gut microbiota by antibiotics
showed a relative change in anxiety and cognitive deficits, as
observed in GF mice (Desbonnet et al., 2015). Moreover, the
depletion reduced anxiety, induced cognitive deficits, changed
tryptophan metabolic dynamics, and decreased BDNF, vasopressin,
and oxytocin expression in the adult brain. The gut microbiota
contributes to obesity as the specific bacteria can extract excessive
energy and store it from the ingested nutrients (Turnbaugh et al.,
2006; Gohir et al., 2015). In addition, gut microbiota modulates
host lipid metabolism (Harris et al., 2012) and immunity (Myles
et al., 2013) and thus may promote an aberrant and chronic low-
grade inflammation, as observed in obesity .

The maternal gut microbiome promotes fetal thalamocortical
axonogenesis by signaling microbe-modulating metabolites to
develop neurons in the brain (Vuong et al., 2020). The gut
microbiome mediates adverse effects of maternal environments,
such as high-fat diet, obesity, dysregulated immune activation,
and stress, on the brain development of offspring. Dysbiosis
of the maternal gut microbiota, in response to a high-fat diet
(Buffington et al., 2016), stress (Jasarevic et al., 2018), and
infection (Kim et al., 2017) during pregnancy, is associated
with abnormal brain function and behavior in the offspring
(Vuong et al., 2017). Manipulating the maternal microbiome
and its metabolites during pregnancy produces offspring with
altered tactile sensitivity in two aversive somatosensory behavioral
tasks, with no overt differences in many other sensorimotor
behaviors. The gut microbiota modulates numerous bioactive
compounds impacting the intestine, blood, and other organs
(Vernocchi et al., 2016). The maternal gut microbiota-regulated

fetal brain metabolites can modulate axon outgrowth in thalamic
explants of mice and promote fetal thalamocortical axonogenesis
in offspring. Microbiome metabolites such as trimethylamine-N-
oxide, imidazole propionate, N, N, N-trimethyl-5-aminovalerate,
3-indoxyl sulfate, and hippurate modulate the neurological status
and neurite outgrowth (Vuong et al., 2020). However, the
molecular mechanisms of these microbial metabolites’ actions are
still unknown. A poorly developed maternal microbiome was
associated with decreased brain white matter in the offspring
(Keunen et al., 2015; Indrio et al., 2017; Lu et al., 2018).
Inflammation-induced changes in the maternal gut microbiome
disrupted somatosensory cortical architecture in adult mouse
offspring (Shin Yim et al., 2017). The maternal gut microbiome
modulates host responses to acute insults in the brain, but whether
it impacts offspring brain development is unknown.

The microbiomes in malnourished children showed
dysregulated expression of axonogenesis proteins, which were
alleviated by treatment with microbiota-enriched diets (Gehrig
et al., 2019). Epidemiological studies suggested an association
between maternal infection and antibiotic use with a greater risk
for neurodevelopmental complications in the offspring (Atladottir
et al., 2012; Hamad et al., 2019). The interactions between
the gut microbiome and fetal nervous system begin prenatally
through influences of the maternal gut microbiota on fetal brain
metabolomic profiles and gene expression. However, whether early
to mid-gestation is a critical period during which the maternal
microbiome promotes fetal neurodevelopment is unknown. The
entero-mammary axis enables mothers to transfer microbes from
the gut to the mammary gland. While breastmilk influences gut
microbiota, gut mucosal immunity, and adipose development (Van
Den Elsen and Verhasselt, 2021), no fetal brain development data
is known.

Gut microbiota and brain health

The microbiome is an essential functional modulator of the
brain and behavior (Vuong et al., 2017). Microbial colonization
of the gastrointestinal (GI) tract starts early in birth and matures
toward adult composition in three years, closely parallel with brain
development. Major depressive disorder is thought to result from
the complex interplay of multiple inherited genetic factors and
subsequent exposure to a wide range of environmental variables
throughout life (Aan Het Rot et al., 2009). There are several
different reasons for developing depression; however, studying
these ecological variables may be crucial for the prevention and
treatment of depressive disorders. The connection between the
gut and the brain has, for a long time, been postulated to
influence mental health. The connection, the gut-brain axis, is a
bidirectional network that links the enteric and central nervous
systems (Appleton, 2018). There are now established pathways
of the gut-brain axis: neurological, endocrine, humoral/metabolic,
and immune. The neurological pathway includes nerves, the enteric
nerve system, and neurotransmitters. The endocrine pathway
consists of releasing active peptides or stimulating cortisol or
norepinephrine, influenced by nutrient availability in the gut.
Figure 1 describes the modulation of neuroinflammation and
neurodegenerative diseases by gut microbiota.
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FIGURE 1

Modulation of neuroinflammation and neurodegenerative diseases by gut microbiota. (A) Overconsumption of sugar, saturated fat, protein,
medication, and the aging process can disrupt the balance of gut microbes. Still, probiotics and dietary fiber are crucial in maintaining this balance.
Dysbiosis in the gut microbiota triggers inflammation in the gut lining, breakdown of tight junctions between cells, and cell death. This leads to
migrating pro-inflammatory substances and primed immune cells from the gut into the bloodstream. This process can be reversed by swiftly
restoring gut microbiota balance. Prolonged systemic inflammation alters the architecture of the BBB, increasing its permeability and causing
collapse. This allows immune cells and pro-inflammatory substances to enter the brain, activating microglia and promoting neuroinflammation and
neurodegeneration. (B) The microbiota, modulated by environmental signals and diet, plays a pivotal role in shaping the communication between
the gut and the brain via its secretions, which include microorganism-associated molecular patterns and microbial metabolites. These molecules
contribute to various pathways of gut-brain signaling, including immune modulation, endocrine signaling, neural signaling, and neuroendocrine
signaling. Certain substances, such as gamma-aminobutyric acid, act like neurotransmitters, directly impacting the central nervous system through
nerve pathways. Additionally, other gut-derived substances like microorganism-associated molecular patterns and short-chain fatty acids can
influence the CNS by reducing the permeability of the BBB. Moreover, these microbial molecules can activate resident immune cells or neurons,
thereby accelerating the pathophysiology of neurodegenerative diseases through oxidative stress.

The immune pathway is related to inflammation and cytokine
release from the gut. The metabolic pathway consists of the
bacterial metabolites, most notably SCFAs. Therefore, the gut-
brain axis and its pathways demonstrate how the intestinal
environment can influence brain activity. The gut environment is
highly influenced by its microbiota, inducing both beneficial and
disadvantageous effects. A balanced microbiota is associated
with healthy state and maintenance (Bhattacharjee et al.,
2022). Simultaneously with this argument, an unbalanced
microbiota can give rise to disease and unhealthy precursors.

There are many mechanisms behind probiotics’ beneficial
effects, and several suggested theories exist. In the context
of the gut-brain axis, one can observe a connection between
probiotics and the neurological pathway. Tryptophan is a
substrate for different neuroactive metabolites, and one of the
main pathways for tryptophan catabolizing is the kynurenine
pathway. Some probiotics can indirectly affect the tryptophan
availability for serotonin synthesis by reducing the activity
of enzymes in the kynurenine pathway located in the gut
(Dantzer et al., 2011).

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1446700
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1446700 November 21, 2024 Time: 14:49 # 6

Mallick et al. 10.3389/fnins.2024.1446700

The gut microbiota affects brain function by producing
compounds such as cytokines and other inflammatory mediators
that target the CNS and ENS (Wood and Galligan, 2004). These
ENS maintain intestinal activities. The ENS mediates the enteric
neurons and connections to the CNS (Rao and Gershon, 2018).
Studies on the gut-brain connection demonstrated a complex
communication pathway maintaining the gastrointestinal system.
It has various consequences on brain function, including higher
cognitive function and motivation (Rhee et al., 2009). The GBA,
which is a sophisticated bidirectional communication network
between the intestine and the CNS, is where communication
occurs between the CNS and intestine (Sudo et al., 2004;
Skonieczna Zydecka et al., 2018). Communication routes involve
the autonomic nervous system, the neuroendocrine system,
the HPA axis, the immune system, and metabolic pathways
(Duvallet et al., 2017; Blacher et al., 2019; Burberry et al., 2020).
Several neurotransmitters (Yano et al., 2015; O’Keefe, 2016) and
metabolites, including SCFAs, secondary bile acids, vitamins, and
amino acids (Ellwardt et al., 2016; Engelhardt et al., 2016; Mittal
et al., 2017), modulate many immunological pathways (Baj et al.,
2019; Dalile et al., 2019), which in turn affect cognition, behavior,
and learning, movement (Jenkins et al., 2016; Kennedy et al., 2017;
Feng et al., 2021). The GBA regulates the immune system, digestive
tract, behavior, stress response, and CNS activity (Savignac et al.,
2011; Collins et al., 2012; De Palma et al., 2014; Fond et al., 2015;
Pirbaglou et al., 2016; Rincel and Darnaudery, 2020). Notably,
advancements in gut microbiota sequencing have revealed a strong
relationship between the complex ecosystem and the CNS (Knight
et al., 2018). In recent years, there has been increasing interest in
studying interactions between the brain and gut microbiota and
their bidirectional relationship. In addition, a sedentary lifestyle,
obesity, stress, and smoking also lower the beneficial gut microbiota
(Benjamin et al., 2012). Dietary composition significantly impacts
gut complexity and diversity (Machate et al., 2020). For example,
high-fat diets are linked to lower numbers of gram-negative and
gram-positive bacteria in the intestine, including Bifidobacteria.

Docosahexaenoic acid, 22:6n-3 and
gut microbiota: impacts on brain
development and function

Dietary supplementation with DHA may have beneficial effects
on behavioral and neurophysiological disorders not only via direct
action on the brain structure and function but also due to the
alteration of the microbial composition of the gut and an indirect
action via the blood-gut axis (Jin et al., 2020). The maternal gut
microbiota changes fetal brain metabolites and thus affects the
brain development and function of the offspring. The critical role of
DHA and the maternal microbiome in offspring neurodevelopment
is increasingly appreciated. Higher circulating levels of DHA
correlate with optimum microbiota diversity (Jin et al., 2020).

DHA is critically required for the structure and function of
the brain (Mallick et al., 2019; Basak et al., 2021; Basak and
Duttaroy, 2022). DHA is essential in fetal neurodevelopmental
processes, including neuronal differentiation (Katakura et al.,
2009), neuritogenesis (Dagai et al., 2009), synaptogenesis (Cao
et al., 2009), neurite outgrowth (Calderon and Kim, 2004), and

synthesis of neuroprotective metabolites (Kim and Spector, 2018).
In utero, n-3 fatty acid deficiency alters fetal brain growth
and maturation, reducing neuronal and behavioral plasticity in
adulthood (Bhatia et al., 2011; Duttaroy and Basak, 2020; Basak and
Duttaroy, 2022). A deficiency of DHA during brain development in
the third trimester affects the maturation and plasticity of the brain
and its functioning during adult life (Duttaroy, 2004; Mallick et al.,
2019).

n-3 PUFA (polyunsaturated fatty acid) deficiency also increases
tumor necrosis factor-alpha (TNF-α) and lowers glutamate
receptors in the CNS (Kitajka et al., 2004). Moreover, low DHA
levels and reduced telencephalon structure were observed in
the hippocampus of n-3 PUFA-depleted mice (Coti Bertrand
et al., 2006). Brain activities such as learning, motor skills,
and monoamine transmission were affected during n-3 PUFA
deficiency (Carrie et al., 2000). Maternal DHA deficiency may
result in gender-specific offspring’s brain development since the
efficiency of endogenous DHA conversion enzymes differs in males
from females. Maternal DHA deficiency affects the offspring’s stress
response, anxiety (Bondi et al., 2014), hippocampal neurogenesis
(Srinivas et al., 2023) and brain reward activities (Auguste et al.,
2018). The deficiency of the n-3 PUFAs induces hypomyelination in
the developing brain, predisposing the offspring to acquire anxiety-
related disorders (Bernardi et al., 2013; Bondi et al., 2014; Auguste
et al., 2018).

Consequently, the placental and brain transport of LCPUFAs
for fetal brain development during the last trimester is
critical (Duttaroy, 2004; Duttaroy and Basak, 2021). The
uptake of maternal fatty acids is mediated by intracellular
and transmembrane proteins such as fatty acid translocase
(FAT/CD36), fatty acid-transport proteins (FATPs), plasma
membrane fatty acid-binding proteins (FABPpm), and cytoplasmic
fatty acid-binding proteins (FABPs) in the placenta (Campbell
et al., 1998; Crabtree et al., 1998; Dutta-Roy, 2000; Johnsen et al.,
2009). These proteins are also involved in DHA uptake in the brain
(Crabtree et al., 1998; Duttaroy, 2009). MFSD2a (major facilitator
superfamily domain-containing protein 2a) a specific protein, can
transport plasma lysophosphatidylcholine (LPC)-DHA, but not
other DHA forms, across the BBB to the neuron (Basak et al.,
2021; Duttaroy and Basak, 2021). Dysregulated placental fatty acid
transport carries increased risks of impaired neurodevelopment
(Sánchez-Campillo et al., 2020; Basak and Duttaroy, 2022) and
cardiometabolic risks (Gómez-Vilarrubla et al., 2021) in the
offspring.

DHA-fed rats showed increased BDNF, glutamate ionotropic
receptor (GluR2), N-methyl D-aspartate receptor subtype 2B
(NR2B), and Tropomyosin receptor kinase B (TrkB) expression in
rat brains might promote enhanced memory in rats (Dyall et al.,
2007; Bhatia et al., 2011). Collectively, evidence suggests DHA
stimulates gene expression directly or by modulating transcription
factors of several membrane-associated mediators in brains that
may regulate learning and memory functions. In addition, the
deficiency of n-3 PUFA resulted in altered dopamine transmission
in the brain, probably deranged neurogenesis (Tang et al., 2018).
The complex interaction between several brain disorders and
intestinal microflora and emotional disorders such as depression,
anxiety, and stress in n-3 PUFA deficiency has been demonstrated
a relation with gut microbiota alterations (Yang et al., 2021).
Bacterial colonization of different species can potentially alter brain
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functions, and in turn, the central nervous system is speculated
to influence the gut microbial composition indirectly (Taylor and
Holscher, 2020). Interestingly, the differences in prevalence of
some mental disorders between the sexes may also be linked to
differences in the microbiota. Studies in mice, for example, show
that DHA can lead to reductions in symptoms of anxiety and
depression in socially isolated males but not in females, and this
is linked to the microbiome (Menni et al., 2017).

Chronic inflammation, aging and
brain dysfunctions

The gut microbiota plays a crucial role in human aging,
influencing neuroinflammation immune function, and
neurodegenerative diseases (Thevaranjan et al., 2017). Chronic
inflammation, marked by proinflammatory biomarkers, is linked
to various diseases and aging (Furman et al., 2019), often associated
with systemic chronic inflammation (SCI) and inflammaging.
SCI is sustained by immune activation associated with chronic
diseases, while inflammaging refers to low-grade inflammation
in aging (Mou et al., 2022). Both processes involve changes in
immune cells and the release of proinflammatory molecules.
Recognizing SCI early may help delay aging-related health issues.
The BBB and neurovascular unit (NVU) are crucial for brain
health and disease (Mark and Miller, 1999). Chronic inflammation
compromises BBB integrity, contributing to cerebrovascular
disorders. Inflammatory cytokines disrupt endothelial junctions,
increasing BBB permeability (Mark and Miller, 1999; Blecharz-
Lang et al., 2018). Immune cell migration exacerbates BBB damage,
facilitated by cytokines and matrix metalloproteinases. Maintaining
BBB integrity involves various factors, including cytokines, vascular
endothelial growth factor (VEGF), and reactive oxygen species
(ROS). Chronic inflammation, driven by environmental or lifestyle
factors, plays also a pivotal role in brain diseases. Strengthening
BBB integrity may mitigate neurodegenerative disease progression
(Huppert et al., 2010; Blecharz-Lang et al., 2018).

Immune surveillance in the brain parenchyma maintains
neuronal homeostasis, with the deep cervical lymph nodes playing
a role in priming adaptive immune responses against CNS antigens.
The BBB regulates inflammation, and changes in BBB permeability
contribute to neuroinflammatory diseases. Chemokines are crucial
in BBB integrity and immune cell migration into the CNS. Pro-
inflammatory cytokines are elevated in metabolic syndrome and
other diseases, impacting BBB integrity and neuroinflammation.
Microglia activation is a hallmark of neuroinflammation and can
lead to BBB dysfunction. Multiple sclerosis (MS) exemplifies how
chronic systemic inflammation affects neuroinflammation via BBB
dysregulation. Th17 cells and IL-17 are implicated in multiple
sclerosis pathogenesis (Huppert et al., 2010; Surendar et al., 2011;
Ohman et al., 2013; Waisman et al., 2015). Understanding immune
cell trafficking across the BBB could offer diagnostic insights into
neuroinflammatory diseases.

Brain aging, a key indicator of cognitive decline, adds
complexity to the pathogenesis of neuroinflammation and
neurodegenerative disease (NF&ND) (Cornejo and Von Bernhardi,
2016; Senatorov et al., 2019). Aging and inflammaging negatively
affect brain function, with accelerated NF&ND accompanying

brain aging. Dysfunctional microglia contribute to chronic
neurodegeneration, characterized by hyperactivated transforming
growth factor beta (TGFβ) signaling in astrocytes. Microglia
activation is a hallmark of NF&ND and aging, with aged microglia
showing compromised migration, heightened proinflammatory
responses, and altered sensing abilities (Cornejo and Von
Bernhardi, 2016). Peripheral T-helper 17 (Th17) lymphocytes
play a role in inflammatory disease pathogenesis and can
transmigrate across the BBB, contributing to CNS inflammation.
BBB dysfunction and energy metabolism disturbances may initiate
NF&ND, suggesting potential targets for prevention.

The breakdown of the BBB occurs in aging humans and
rodents, starting in middle age and progressing throughout
life (Montagne et al., 2019). BBB dysfunction is considered a
hallmark of neurological diseases and an early biomarker of
cognitive dysfunction. Preclinical studies suggest BBB disruption
precedes neurodegeneration in Alzheimer’s disease (AD) (Lin
et al., 2021). Changes in BBB permeability, even to small
molecules, are associated with mild cognitive impairment.
Advanced imaging techniques aid in detecting BBB permeability
changes in neurodegenerative diseases. Microglia play a central
role in neuroinflammation and BBB integrity (Lin et al.,
2021). Dysregulation of microglial function and abnormal brain
oxygen supply may contribute to BBB disruption and cognitive
decline. BBB disruption is a hallmark of neuroinflammatory
and neurodegenerative diseases, but establishing clinical criteria
remains challenging.

The glycocalyx on BBB endothelial cells (BECs) prevents
macromolecule extravasation and leukocyte adhesion. Chronic
inflammation disrupts the glycocalyx, potentially contributing to
neuroinflammation and brain aging (Sampei et al., 2021). Lower
expression of pattern recognition and chemokine receptors in
BECs helps mitigate neuroinflammation. Inflammasome activation
in BECs responds to circulating cytokines, potentially influencing
neuroinflammation. Inflammasome mechanisms exist in other
neurovascular unit members, such as pericytes and astrocytes,
suggesting a complex interplay in neuroinflammatory responses
(Sampei et al., 2021; Mou et al., 2022). The NVU involves
interactions among BECs, pericytes, astrocytes, microglia, and
neurons to maintain brain homeostasis. These interactions are
crucial for NVU stability, with cytokine crosstalk influencing
NVU integrity (Nagyoszi et al., 2010; Haarmann et al., 2019).
BECs, frontline defenders against neurotoxicants, interact with
pericytes and astrocytes to maintain a low proinflammatory
profile. Astrocytes actively contribute to BBB fortification through
Sonic Hedgehog (SHH) secretion, regulating BECs and pericytes.
Pericytes also play a central role in BBB maintenance and response
to inflammation, potentially influencing neuroinflammatory
diseases (Mou et al., 2022).

Chronic inflammation disrupts the NVU through various
factors, including cytokines, gut microbiota metabolites, and
immune cells, impacting BBB integrity. Cytokines like interleukin-
1β (IL-1β) and TNF-α influence BBB permeability, while
chemokines prime endothelial cells for leukocyte trafficking.
Astrocytes and pericytes also respond to inflammation, affecting
BBB stability (Nagyoszi et al., 2010). Additionally, aging exacerbates
BBB changes, influencing brain microvessel permeability, and
astrocyte characteristics (Mou et al., 2022) . Chronic inflammation
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disrupts the NVU by affecting signaling pathways like Wnt/β-
catenin and Sonic Hedgehog (SHH). Inflammatory factors
disturb BBB integrity by interfering with Wnt signaling, leading
to increased immune cell transmigration. Similarly, IL-1β

inhibits astrocyte SHH signaling, promoting BBB disruption and
neuroinflammation. The interaction between inflammation and
these pathways remains complex and requires further investigation.

Chronic brain diseases and gut
dysbiosis

The human gut microbiota, a complex ecosystem of bacteria
that live in the gastrointestinal tract, has received considerable
interest for its role in many physiological activities, such as
metabolism, immunology, and neurological health. Emerging
evidence points to a bidirectional link between the gut microbiota
and the CNS, influencing the etiology and progression of chronic
brain diseases (Cryan and Dinan, 2015; Sharon et al., 2016). Due
to disruption of the gut vascular barrier, inflammation can spread
through lymphatic drainage and systemic circulation. Lymphatic
fluid carries primed immune cells from the intestine to distant
sites, including the brain (Thielke et al., 2003; Shale et al., 2013).
The gut vascular unit function resembles the BBB, balancing
nutrient absorption and barrier function. Disruption of the gut
vascular barrier allows pathogens to enter circulation, contributing
to systemic inflammation and the gut-liver-brain axis (Mou et al.,
2022). The interaction between gut microbiota and immunity
impacts inflammation spread. Dysbiosis can disrupt the intestinal
barrier, intensifying inflammation locally and systemically (Chung
et al., 2012; Mayassi et al., 2019; Al Bander et al., 2020).
Gut virome alterations, dietary habits, and microbial metabolites
further influence inflammation. Gut microbiota induces systemic
inflammation and releases neurotoxic metabolites, affecting
conditions like multiple sclerosis (Mou et al., 2022). Numerous
studies have implicated alterations in gut microbiota composition,
termed dysbiosis, in the pathophysiology of chronic brain disorders
such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
and mood disorders (Jiang et al., 2017). Dysbiosis is characterized
by microbial diversity, abundance, and metabolic activity changes,
leading to systemic inflammation, immune dysregulation, and
neurotransmitter imbalances (Rogers et al., 2016). For instance,
dysbiosis-induced inflammation and disruption of the gut-brain
axis have been linked to neuroinflammation, neurodegeneration,
and cognitive decline in Alzheimer’s disease and Parkinson’s disease
(Sampson et al., 2016). Upon cell activation triggered by exposure
to microbes, danger signals, or stress, the inflammasome complex
assembles, producing pro-inflammatory cytokines (such as IL-
1β and IL-18) and pyroptosis. Evidence indicates a reciprocal
relationship between microbiota and inflammasome activation in
the brain (Rutsch et al., 2020).

The gut microbiota and its metabolites play a significant
role in neuroinflammatory and neurodegenerative diseases (Zhang
et al., 2022). Various studies link gut microbiota alterations to
the onset and progression of such diseases (Yacyshyn et al.,
1996; Buscarinu et al., 2018). Dysbiosis, gut virome changes,
dietary habits, and microbial metabolites influence inflammation
and disease progression. Although the exact mechanisms remain

unclear, interactions between gut microbiota and immune
responses in the gut and brain are central to understanding
the diseases pathogenesis. Studies show that disturbances in gut
microbiota composition contribute to inflammaging, characterized
by chronic low-grade inflammation. Centenarians exhibit a
distinct gut microbiota associated with reduced inflammation and
cognitive decline, while gut microbiota transplantation from elderly
individuals exacerbates inflammation and cognitive dysfunction
in animal models (Holzer et al., 2017; Thevaranjan et al., 2017).
Gut microbiota-induced brain aging is linked to gut dysfunction
and systemic inflammation, highlighting the GBA in aging and
neurodegeneration (Kim and Jazwinski, 2018; Garcia-Duran et al.,
2021). Aging-related changes in circulating immune cells further
underscore the role of gut-immune interactions in brain aging
(Mou et al., 2022). The bidirectional communication between
the gut microbiota and the CNS occurs via various pathways,
including the vagus nerve, immune signaling molecules, microbial
metabolites, and the enteric nervous system (Sharon et al., 2016).

Preliminary evidence suggests that vagus nerve stimulation
holds promise as an adjunctive therapy for treatment-resistant
depression, post-traumatic stress disorder, and inflammatory bowel
disease. Treatments targeting the vagus nerve elevate the vagal
tone and suppress cytokine production, both crucial mechanisms
for resilience. Stimulation of vagal afferent fibers in the gut affects
monoaminergic brain systems in the brainstem, which are pivotal
in mood and anxiety disorders. Additionally, initial evidence
indicates that gut bacteria may positively impact mood and anxiety,
partly by modulating vagus nerve activity. Given that vagal tone
correlates with the ability to regulate stress responses and can be
influenced by breathing, its enhancement through practices like
meditation and yoga likely contributes to resilience and alleviates
mood and anxiety symptoms (Breit et al., 2018). Metabolites
such SCFAs, neurotransmitters (e.g., serotonin, dopamine), and
neuroactive compounds (e.g., lipopolysaccharides) those are made
by gut microbiota, can modulate neuronal activity, synaptic
plasticity, and neuroinflammatory responses, thereby influencing
brain function and behavior (Cryan and Dinan, 2012).

The bidirectional relationship between chronic brain disorders
and gut microbiota dysbiosis underscores the importance of
considering the gut-brain axis in the pathogenesis and management
of neurological and psychiatric conditions. Disturbances in the
simultaneous coordinated process of neuronal as well as gut-
microbiome development due to overdoses of antibiotics in infants
can lead to an inflammatory state at this critical phase of brain
development (Neuman et al., 2018). Compositional alterations
in the gut microbiome can result in systemic inflammation and
neuroinflammation (Belkaid and Hand, 2014). Moreover, the
microbiome also plays an essential role in microglial maturation. It
can modulate glial activation in the CNS, which is also considered
a regulating factor of neuroinflammation in the CNS (Abdel-Haq
et al., 2019). All these events during the developmental process
established a foundation for the onset of several brain disorders.
Investigating intricate pathways of the microbiome-gut-brain-
immune axis in developing neurodegenerative diseases, disease
onset, and progression will be beneficial in discovering clinically
relevant targeted biotherapies to combat the continuous rise in
worldwide neurodegenerative diseases. Further studies are required
to elucidate specific molecular signaling pathways that underlie
neuronal development, this knowledge is essential for developing
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personalized microbiome therapeutics. Future investigations into
the intricate interplay between the gut microbiota and the CNS not
only promise to advance our understanding of disease mechanisms
but also hold the potential to revolutionize patient care through
innovative therapeutic strategies.

Effects of antibiotic or drugs on
gut-microbiota-brain axis: impact
on brain structure and function

Antibiotics impact on gut microbiota composition and
diversity. Depending on their structure, dose, and exposure
time, antibiotics reduce the diversity and abundance of the gut
microbiome. The use of antibiotics in intrapartum increases
the number of Bacteroides and Enterobacteria while decreasing
Bacteroidetes in the newborn gut microbiota (Sanchorawala
et al., 2017). Antibiotic-induced dysbiosis disturbs gut-brain
communication and influences behavior in mice, demonstrating
the influence of gut microbiota on brain function (Dahiya and
Nigam, 2023; Wan et al., 2023). The antibiotic-induced dysbiosis
and GF animals established the GBA’s relation with brain function.
Antibiotics deplete the gut microbiota, resulting in decreased
neurogenesis in adult animals. The antibiotic effect was reversed
by physical activity and or consumption of a probiotic cocktail
(Ogbonnaya et al., 2015). The use of antibiotics is negatively
associated with the expression of hippocampal BDNF and the
recognition memory of mice, as antibiotic use decreased the gut
microbial diversity and population in infants (Fröhlich et al., 2016).
The cognitive deficit was associated with reduced bacteria-derived
metabolites in the colon, altered lipid composition, and changing
the expression of neuronal signaling receptors such as N-methyl-D-
aspartate (NMDA) 2B, tight junction protein, etc. Table 2 describes
the impacts of antibiotics on the gut microbiota. GF mice studies
highlighted the critical role of the gut microbiota in early brain
development (Sampson and Mazmanian, 2015; Luczynski et al.,
2016a).

Drug-induced gut dysbiosis can influence brain activity
through the microorganisms present in the gut and their
metabolites (Garg and Mohajeri, 2024). Almost 15,000 drugs are
used for the treatment of various diseases worldwide. Many drugs
may induce dysbiosis in addition to their intended pharmacological
effects. However, one significant side effect of antibiotics is
a severe alteration of gut microbial compositions. Therefore,
in addition to their intended effect, these drugs have other
effects via altered gut microbiota. Dysbiosis is observed in many
different diseases, suggesting a link between the alteration of the
microbiome with the disease and its treatments. Thus, drug-
induced gut microbiota alterations could influence brain-related
diseases. Table 3 shows the drug-induced dysbiosis and brain-
disorder-related dysbiosis. Numerous studies showed a strong
relationship between antibiotic-induced dysbiosis and impacting
GBA. Many drugs, such as antidepressants, statins, and non-
steroidal anti-inflammatory drugs etc., have gut-microbiome-
altering effects (Lagadinou et al., 2020; Essmat et al., 2023; Zadori
et al., 2023; Garg and Mohajeri, 2024). Therefore, there is a
connection between the agents with “newly found” antimicrobial

properties and their mechanisms of affecting the microbiota-gut-
brain axis. Only a few studies exist combining non-antibiotic
drug-induced alterations to the microbiota-gut-brain axis. Taking
into account all relevant human data and supporting mechanistic
data published in preclinical studies showed that metformin,
statins, proton-pump inhibitors (PPIs), and nonsteroidal anti-
inflammatory drugs (NSAIDs) may alter microbiota-gut-brain-
axis and cause depression, multiple sclerosis, Parkinson’s, and
Alzheimer’s as examples of neuronal diseases.

Ruminococcus spp., an advantageous SCFA producer,
is elevated in all the drug users and diseases mentioned
above. Prevotella and Akkermansia muciniphila all have
lipopolysaccharides (LPS) in their cell walls and produce beneficial
SCFAs. Escherichia, also an LPS carrier, can metabolize 5-HT as a
precursor for extracellular amyloids (Essmat et al., 2023; Garg and
Mohajeri, 2024). Genus Clostridia has toxicogenic species such as
Clostridium difficile and also SCFA-producer species. Depression
has depleted levels of SCFAs and GABA. However, Bacteroides
spp. are increased. They would be in abundance if the disease is
correlated with the use of statins and NSAIDs. Bacteroides are
GABA and SCFA producer and have LPS in their cell walls. These
examples suggest that the relative abundances of the bacterial
populations to each other and their interplay would influence
the microbiota-gut-brain axis and not specific bacterial strains.
In addition, the drugs discussed are frequently taken together
in comorbid patients (Zadori et al., 2023). Thus, their effects
may counteract each other or intensify the respective changes in
bacterial populations and associate positively or negatively with
dysbiosis in neurological diseases. Depending upon the study, the
bacterial specimens were either from the upper, middle, or lower
gastrointestinal tract or stool samples.

In addition, the fecal bacterial samples from humans in
antibiotic-treated mice were transplanted to support their clinical
studies’ results further. There was a link between using medicines
and microbiota-gut-brain-axis and between microbiota-gut-brain-
axis and neuronal diseases, respectively (Carabotti et al., 2015).
Future studies could focus on the implications of medicinal drugs
used to treat somatic diseases and their gut-altering effects on the
microbiota-gut-brain axis influencing the onset or progression of
brain-related disorders. Since the gut microbiome changes various
environmental and lifestyle factors, comorbid elderly people should
also be considered in such studies. While taking more than one
medication and having a poor diet due to a lack of appetite,
one might expect different changes in the gut microbiota of
older people. However, the search for the correlation between
daily prescribed drugs-induced dysbiosis and their implications
on brain-related disorders via the microbiota-gut-brain axis is
still a new topic (Loh et al., 2024). Enough data on these
correlations does not exist to derive any definitive conclusions.
Closing this knowledge gap may result in new critical perspectives
for better understanding the bidirectional communication of the
microbiota-gut-brain axis and treating patients with the respective
individualized treatment with novel therapies.

Consuming pharmaceuticals affects the GBA. Moreover, proton
pump inhibitors (PPIs) have been linked to changes in gut
microbiota composition. PPI use was associated with changes in
gut microbial diversity and increased abundance of potentially
dangerous bacteria, indicating a possible mechanism by which
PPIs may alter gut-brain communication (Jackson et al., 2016).
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TABLE 2 Antibiotics-induced gut microbiota alteration.

Antibiotics Classes of antibiotics Effects on gut microbiota References

Amoxicillin Bacterial cell-wall disrupting
antibiotics

Beta-lactam and glycopeptide antibiotics
demonstrated the ability to cause dysbiosis in the
gut

Li et al., 2014; Pauwels et al., 2021

Ceftazidime

Ceftriaxone

Cloxacillin

Nitroimidazole-
Quinolone

Multi-class antibiotic therapy • Beta-lactam and glycopeptide antibiotics
demonstrated the ability to cause dysbiosis in the
gut
• In both the vaginal and urine microbiomes,

Lactobacillus iners increased in abundance while
total diversity decreased
• Antibiotics-induced microbiome depletion have

anti-inflammatory effects in several animal models,
suggesting a role for the
gut-microbiota-spleen-brain axis in modulating
inflammation

Li et al., 2014; Pauwels et al., 2021;
Jakobsson and Forsum, 2007; Chee
et al., 2020; Wan et al., 2023

Macrolide

Metronidazole

Nitrofuran

Nitroimidazole

Nitroimidazole DNA replication blocking antibiotics Treatment constantly altered the microbial
community compositions in the gut

Horn and Robson, 2001; Sokol et al.,
2008; Sokol et al., 2009

Nitrofuran

Quinolone

Aminoglycoside Transcription and protein synthesis
inhibiting antibiotics

Alterations in the microbiome could exacerbate
disruption within the gut microbiome network;
Because of the non-antimicrobial properties of
macrolides, modifications may involve changes in
mucus secretion, ion transport, and inflammatory
responses

Xu and Li, 2019; Roubaud-Baudron
et al., 2019; Kanoh and Rubin, 2010

Lincosamide

Macrolides

Rifamycin

Tetracycline

Nonsteroidal anti-inflammatory medicines (NSAIDs) are also
linked to gut microbiome dysbiosis. NSAID use was associated
with changes in gut microbial composition and increased intestinal
permeability in mice, indicating a possible relationship between
NSAIDs, gut barrier function, and brain health (Maseda et al.,
2019). These findings highlight the complex link between drug-
induced alterations in gut microbiota and their potential effects on
the gut-brain axis. Understanding these interactions is critical for
creating strategies to reduce medicines’ adverse effects on gut and
brain health and improve therapeutic outcomes.

Probiotics and brain health: human
trials

The association between gut microbiota and brain functions
and behavior has emerged as an important research area. The

gut microbiota and its metabolites may impact the immune and
CNS via substances such as SCFAs, serotonin, and GABA (Huang
et al., 2016; Kelly et al., 2016; Mu et al., 2016). Correlations
between human fecal microbiota and depression were reported
(Naseribafrouei et al., 2014). An increased fecal bacterium was
observed in the depressed compared with the control group (Jiang
et al., 2015). The elevated HPA axis responses and depression
were reversed in the rat model by administering Bifidobacterium
infantis (Desbonnet et al., 2010). The Beck Depression Inventory
(BDI) and State-Trait Anxiety Inventor (STAI) trait scores were
significantly decreased in the probiotic group (Kazemi et al., 2019).
However, the co-supplementation showed a significant decrease
in BDI, STAI-trait, and STAI-state scores compared with placebo
(Moludi et al., 2022). After adjusting for baseline levels and
confounding factors, secondary outcomes showed a substantial
reduction in inflammatory markers such as LPS and TNF-α levels
in the probiotic group.
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TABLE 3 Effects of daily prescribed drugs on gut microbiota contributing to brain disorders.

Name of drugs Effects on gut microbiota Brain disorders References

Metformin ↓ Alistipes Depression ↑ Bryrup et al., 2019; Tong et al., 2018; Garg and
Mohajeri, 2024

↓ Bacteroides

↓ Clostridium

↑ Escherichia/Shigella Depression ↓ Bryrup et al., 2019; Garg and Mohajeri, 2024

↑ Lactobacillus

↓ Roseburia

↑ Akkermansia muciniphila Multiple sclerosis ↑ Tong et al., 2018; Bryrup et al., 2019; Mueller et al.,
2021; Garg and Mohajeri, 2024

↑ Bifidobacterium

↑ Bilophila wadsworthia

↑ Blautia

↑ Ruminococcus torques

↓ Bacteroides Multiple sclerosis ↓ Wu et al., 2017; Tong et al., 2018; Garg and Mohajeri,
2024

↓ Lactobacillus

↑ Akkermansia muciniphila Parkinson’s disease ↑ Forslund et al., 2015; Wu et al., 2017; Tong et al., 2018;
Bryrup et al., 2019; Garg and Mohajeri, 2024

↓ Alistipes

↑ Bifidobacterium

↑ Bifidobacterium adolescentis

↑ Escherichia

↑ Lactobacillus

↓ Roseburia Parkinson’s disease ↓ Garg and Mohajeri, 2024; Mueller et al., 2021

↑ Escherichia/Shigella Alzheimer’s disease ↑ Wu et al., 2017; Bryrup et al., 2019; Mueller et al., 2021;
Garg and Mohajeri, 2024

↑ Bifidobacterium Alzheimer’s disease ↓ Wu et al., 2017; Garg and Mohajeri, 2024

Statins ↑ Bacteroides Depression ↑Click or tap here to enter
text.

Garg and Mohajeri, 2024; Khan et al., 2018; Vieira-
Silva et al., 2020

↓ Desulfovibrio

↓ Faecalibacterium Depression ↓Click or tap here to enter
text.

Khan et al., 2018; Garg and Mohajeri, 2024

↑ Ruminococcus

↑ Akkermansia/muciniphila Multiple sclerosis ↑ Khan et al., 2018; Garg and Mohajeri, 2024

↓ Bilophila wadsworthia

↑ Ruminococcus

↑ Bacteroides Multiple sclerosis ↓ Khan et al., 2018; Garg and Mohajeri, 2024

↓ Collinsella

↑ Streptococcus

↓ Desulfovibrio Parkinson’s disease ↑ Khan et al., 2018; Garg and Mohajeri, 2024

↑ Ruminococcaceae

↓ Streptococcus

↑ Verrucomicrobiaceae

↓ Faecalibacterium Parkinson’s disease ↓ Khan et al., 2018; Vieira- Silva et al., 2020; Garg and
Mohajeri, 2024

(Continued)
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TABLE 3 (Continued)

Name of drugs Effects on gut microbiota Brain disorders References

↑ Faecalibacterium prausnitzii

↑ Ruminococcaceae Alzheimer’s disease ↑ Khan et al., 2018; Garg and Mohajeri, 2024

↓ Streptococcus

↑ Faecalibacterium prausnitzii Alzheimer’s disease ↓ Khan et al., 2018; Garg and Mohajeri, 2024

Proton pump inhibitors ↓Clostridium Depression ↑ Garg and Mohajeri, 2024; Naito et al., 2018; Wauters
et al., 2021

↑ Holdemania

↓ Selenomonas

↑ Streptococcaceae

↑ Streptococcus

↓ Turicibacter

↑ Bacteroidaceae Depression ↓ Naito et al., 2018; Garg and Mohajeri, 2024

↓ Faecalibacterium

↑ Lactobacillus

↑ Ruminococcus

↓ Actinomyces Multiple sclerosis ↑ Wauters et al., 2021; Clooney et al., 2016; Naito et al.,
2018; Garg and Mohajeri, 2024

↑ Blautia

↑ Dorea

↓ Haemophilus

↓Megasphaera

↓ Pseudoflavonifractor capillosus

↑ Ruminococcus

↑ Streptococcus

↓ Prevotella Multiple sclerosis ↓ Clooney et al., 2016; Naito et al., 2018; Wauters et al.,
2021; Garg and Mohajeri, 2024

↑Megasphaera Parkinson’s disease ↑ Naito et al., 2018; Garg and Mohajeri, 2024

↓ Porphyromonas

↑ Streptococcus

↑ Dorea Parkinson’s disease ↓ Naito et al., 2018; Garg and Mohajeri, 2024

↓ Faecalibacterium

↑ Veillonella parvula

↑ Streptococcus Alzheimer’s disease ↑ Naito et al., 2018; Garg and Mohajeri, 2024

↓ Faecalibaeterium Alzheimer’s disease ↓ Naito et al., 2018; Garg and Mohajeri, 2024

Non-steroidal
anti-inflammatory drugs

↑ Bacteroides Depression ↑ Rogers and Aronoff, 2016; Maseda and Ricciotti, 2020;
Garg and Mohajeri, 2024

↑Barnesiella

↑ Enterobacteriaceae

↑ Bacteroides Multiple sclerosis ↓ Maseda and Ricciotti, 2020; Garg and Mohajeri, 2024

↑ Prevotella

↑ Enterobacteriaceae Parkinson’s disease ↑ Rogers and Aronoff, 2016; Garg and Mohajeri, 2024

↑ Ruminococcaceae

↑ Bacteroides Parkinson’s disease ↓ Maseda and Ricciotti, 2020; Garg and Mohajeri, 2024

↑ Prevotella

↑ Bacteroidetes Alzheimer’s disease ↑ Rogers and Aronoff, 2016; Maseda and Ricciotti, 2020;
Garg and Mohajeri, 2024

↑ Prevotellaceae

↑ Ruminococcaceae
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Supplementation containing Lactobacillus acidophilus,
Lactobacillus casei, Bifidobacterium bifidum, and inulin
significantly decreased anxiety, depression, and stress scores
(Depression Anxiety Stress Scale-21) (Hadi et al., 2019). In another
study compared with the probiotic group received Lactobacillus
acidophilus, Bifidobacterium bifidum, Bifidobacterium lactis and
Bifidobacterium longum, the synbiotic group [received the same
strains with fructooligosaccharide (FOS), galactooligosaccharides
(GOS), and inulin] had a significant decrease in Hospital Anxiety
and Depression Scale (Haghighat et al., 2021). Venkataraman
et al. (2021) investigated the effects of Bacillus coagulants,
Lactobacillus rhamnosus, Bifidobacterium lactis, Lactobacillus
Plantarum, Bifidobacterium breve, and Bifidobacterium infantis
among students. There was a significant reduction in BDI
and STAI scores in the probiotic group. Secondary outcomes
included a decrease in the morning serum cortisol levels. The
impact of probiotics on the HPA and mental health involving
75 participants was investigated (Mohammadi et al., 2016). The
probiotic group received a daily yogurt containing strains from
Lactobacillus acidophilus and Bifidobacterium lactis. In contrast, the
probiotic capsule group received a daily capsule containing strains
from Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus
rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve,
Bifidobacterium longum, Streptococcus thermophilus in addition to
a daily conventional yogurt. General health questionnaires (GHQ)
and depression anxiety, and stress scores (DASS) significantly
improved in both the probiotic yogurt and probiotic capsule
groups. There were no significant improvements in kynurenine
and kynurenine/tryptophan ratio in the probiotic yogurt or capsule
groups. No effect was observed on the HPA, but a substantial
improvement in mental health with probiotic supplementation
was reported. The probiotic effect of vitamin D for 12 weeks
was investigated on mental health in 60 type 2 diabetic patients
with coronary heart disease (Raygan et al., 2018). The probiotic
strains from Lactobacillus acidophilus, Bifidobacterium bifidum,
Lactobacillus reuteri, and Lactobacillus fermentum, plus vitamin
D, showed a significant improvement in BDI total score, Beck
anxiety Inventory (BAI) score and GHQ compared with the placebo
group. The serum hs-C-Reactive Protein (CRP) level was reduced
in the probiotic group compared with the placebo. There was a
significant decrease in the probiotic group’s mean break division
inventory score. The study was conducted for 8 weeks in 40
patients with major depressive disorder who received one daily
capsule containing Lactobacillus acidophilus, Lactobacillus casei,
and Bifidobacterium bifidum (Akkasheh et al., 2016).

Conclusion

The gut microbiota-brain axis (GBA) communicates between
the gut microbiome, the gastrointestinal tract, and the nervous
system. The earliest data from germ-free models suggested
the critical role of the gut microbiota in deciding early brain
development. The influence of maternal gut microbiota on
embryonic development suggested its role in shaping the
neurometabolic axis and maturing the offspring’s immune system.
Gut microbiota, consisting of diverse microbial communities,
profoundly affects the CNS through the GBA. Maternal

composition of the intestinal flora is affected by multiple factors,
including gestational age, mode of delivery, breastfeeding, age,
antibiotic usage, ethnicity, lifestyle, environment, and others.
The maternal gut microbiome can modulate host responses
differentially to acute insults, including malnourishment during
in-utero brain development, which can result in a mark for
altered brain performance and functions. Such changes in the gut
microbiome can influence early human brain development and
carry a risk for brain disorders in age-associated dysbiosis. Thus, the
maternal microbiome can affect neurodevelopment during infancy,
residency for the initial brain growth spurt that can predict risk or
resilience to neuropsychiatric disorders later.

Dysbiosis increases susceptibility to brain disorders and
neurocognitive function. Understanding the role of gut
microbiota dysbiosis in chronic brain disorders holds therapeutic
promise for developing novel interventions targeting the gut
microbiome. Strategies in restoring microbial homeostasis, such
as dietary modifications, prebiotics, probiotics, fecal microbiota
transplantation, and microbial-based therapeutics, have shown
potential in preclinical and clinical studies for mitigating
neuroinflammation, improving cognitive function, and facilitating
psychiatric symptoms. However, limited clinical data is available
to elucidate the mechanisms underlying gut-brain interactions
and optimize the efficacy and safety of microbiota-targeted
interventions in diverse ethnicities and populations. Further
research is warranted on the causality and mechanisms involved
in tracing the gut-brain axis and how this connection can be used
in the treatment of mental health disorders such as depression,
anxiety, and stress.
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