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Neuronal activity in the highly organized networks of the central nervous

system is the vital basis for various functional processes, such as perception,

motor control, and cognition. Understanding interneuronal connectivity and

how activity is regulated in the neuronal circuits is crucial for interpreting

how the brain works. Multi-electrode arrays (MEAs) are particularly useful for

studying the dynamics of neuronal network activity and their development as

they allow for real-time, high-throughput measurements of neural activity. At

present, the key challenge in the utilization of MEA data is the sheer complexity

of the measured datasets. Available software o�ers semi-automated analysis

for a fixed set of parameters that allow for the definition of spikes, bursts

and network bursts. However, this analysis remains time-consuming, user-

biased, and limited by pre-defined parameters. Here, we present autoMEA,

software formachine learning-based automated burst detection inMEA datasets.

We exemplify autoMEA e�cacy on neuronal network activity of primary

hippocampal neurons from wild-type mice monitored using 24-well multi-

well MEA plates. To validate and benchmark the software, we showcase its

application using wild-type neuronal networks and two di�erent neuronal

networks modeling neurodevelopmental disorders to assess network phenotype

detection. Detection of network characteristics typically reported in literature,

such as synchronicity and rhythmicity, could be accurately detected compared

to manual analysis using the autoMEA software. Additionally, autoMEA could

detect reverberations, a more complex burst dynamic present in hippocampal

cultures. Furthermore, autoMEA burst detection was su�ciently sensitive to

detect changes in the synchronicity and rhythmicity of networks modeling

neurodevelopmental disorders as well as detecting changes in their network

burst dynamics. Thus, we show that autoMEA reliably analyses neural networks

measured with the multi-well MEA setup with the precision and accuracy

compared to that of a human expert.

KEYWORDS

multi-electrode array (MEA), automated analysis, machine learning, burst detection,

reverberations, neuronal network activity

1 Introduction

In the human brain, highly orchestrated activity of neuronal networks lie at the basis of

various functional neurological processes. In these networks, excitability is tightly regulated

through a complex interplay between glutamatergic, excitatory neurons, and GABAergic,

inhibitory neurons (Isaacson and Scanziani, 2011). In the search to better understand
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processes contributing to a balanced network, multi-electrode

arrays (MEAs) have provided a valuable tool to study the activity

of neuronal networks as a whole (Pasquale et al., 2008; Van Pelt

et al., 2004). MEA devices allow for non-invasive measurement

of electrical activity in neuronal cultures in vitro (Thomas et al.,

1972; Jones et al., 2011). Importantly, it allows one to follow the

development of network activity as the culture matures and record

responses of the network to compounds of interest (Chiappalone

et al., 2005; Martinoia et al., 2005). MEA has furthermore proven

to be a valuable tool to model neurological diseases in vitro

(Cerina et al., 2023). Many neurological diseases have been studied

using neuronal networks derived from rodent brain tissue, such

as Alzheimer’s disease, epilepsy, and various neurodevelopmental

disorders (NDDs) (Cerina et al., 2023). Since researchers are

able to develop human induced pluripotent stem cell models

of neurological diseases through differentiation into neuronal

networks, MEAs have gained even more interest.

MEA electrodes record fluctuations in the electric field around

them. When neurons on top of an electrode fire action potentials,

the fast flux of sodium and potassium ions across the membrane

generates a typical change in the extracellular potential surrounding

theMEA electrode, which is classified as a spike (Cerina et al., 2023;

Jones et al., 2011; Chiappalone et al., 2006). In typical MEA analysis

software, spikes can be detected using a threshold for a minimal

amplitude deviation from baseline noise (typically ± 5 standard

deviations) (Jones et al., 2011).While frequencies of spiking activity

can give information about the excitability of a network, this

parameter is prone to fluctuations by technical and batch-to-batch

variation (Mossink et al., 2021; Negri et al., 2020). More interesting

and robust outcome measures are parameters that describe the

activity of the network as a whole. During the initial phase of

network development in vitro, spikes can be detected mostly in

a random sequence. However, as the network starts to mature,

periods of high-frequency spike trains are interrupted by periods of

quiescence (Chiappalone et al., 2006). These high-frequency spike

trains are classified as bursts. Typically, these bursts are recorded

synchronously by multiple electrodes across the culture indicating

the formation of a functionally connected network, hence, these are

called network bursts (NB).Many parameters can be extracted from

this type of activity, such as the synchronicity of the network, the

rhythmicity of network activity, and characteristics such as network

burst duration and composition.

One major challenge faced when analyzing MEA data is the

definition of bursts, about which no consensus has been reached in

the research field (Cerina et al., 2023). Generally, bursts are defined

based on a MaxInterval method, which defines a maximum inter-

spike interval that is used as a threshold to classify a sequence

of spikes as a burst. More extensive methods also include a

maximum interval between bursts, the minimum duration of a

burst, and a minimum number of spikes fired within a burst

(Legendy and Salcman, 1985). These thresholds can be chosen

by an experimenter, or determined using adaptive burst detection

algorithms (Chiappalone et al., 2005; Selinger et al., 2007; Pasquale

et al., 2010). Electrophysiological mechanisms underlying burst

dynamics depend on multiple characteristics, such as neuronal

excitability, synaptic transmission, and network connectivity.

Hence, burst dynamics may differ between different types of

neuronal cultures and change throughout network development

(Charlesworth et al., 2015). For example, a study by Charlesworth

et al. (2015) identified a unique feature of hippocampal neuronal

cultures when compared to cortical cultures. From 11 days in

vitro (DIV), hippocampal bursting dynamics were characterized

by a theta rhythm, in which a single burst can be divided into

multiple reverberations, i.e., short sequences of high-frequency

spiking activity that closely follow each other, clustering into a

burst (Charlesworth et al., 2015). While these reverberations can

be detected using the same MaxInterval method, there is a higher

chance of interference by spiking noise, e.g., single spikes occurring

in between two reverberations thereby merging them together,

because the inter-spike intervals will remain below the threshold.

It is thus challenging to define a single set of parameters that can

reliably define bursts over different experiments and culture types,

and more complex burst dynamics may require more adaptive

detection methods.

Currently, analysis is often carried out in software provided

with the hardware (e.g., Multiwell Screen by Multi Channel

Systems). In this software, parameters are set by the experimenter,

based on visual inspection of the data, searching for the most ideal

parameters for a certain dataset or by thresholding using the log

inter-spike interval (ISI) (Legendy and Salcman, 1985; Chiappalone

et al., 2005; Pasquale et al., 2010). However, this default set of

parameters is often error-prone, especially when the data contains

more complex bursting dynamics such as the reverberations in

hippocampal cultures. For example, reverberations can also be

detected using the MaxInterval method, but may be merged due

to a single spike fired in between two reverberations. Current

detection methods can only ignore such spiking noise if settings

aremanually altered by the experimenter through visual inspection.

The visual inspection of the data to find the ideal set of parameters

and adjust within a parameter’s defined range if necessary, is a very

labor-intensive process, requiring file-by-file analysis of the data,

and creates a risk for experimenter bias and reduces the objectivity

of the analysis method. Therefore, often a default set is chosen

taking for granted that multiple reverberations may be merged

together in more noisy recordings.

Over the past years, several analysis packages for MEA data

have been published (Dastgheyb et al., 2020; Hu et al., 2022;

Bologna et al., 2010; Pastore et al., 2018). While these packages

provide more extensive and automated analysis options than

software provided with the recording system, the MaxInterval,

and logISI burst detection methods integrated into this software

generally use parameters that are not suitable for the detection of

reverberations within bursts (e.g., interburst interval of 100 ms).

These methods are thus limited to simpler bursting dynamics,

and not that of for example hippocampal bursts. Furthermore,

the MEA technique is currently well-adopted in the iPSC field

as a relevant technique for functional phenotyping of NDDs

(McCready et al., 2022; Mossink et al., 2021). Interestingly, recent

studies have started to identify reverberations in NDD models of

iPSC-derived neurons. For example, reverberating bursts emerged

in iPSC-derived neuronal cultures of Rett syndrome (Pradeepan

et al., 2024), Kabuki syndrome (Gabriele et al., 2021), Dravet

syndrome (Van Hugte et al., 2023) and Kleefstra syndrome patients

(Frega et al., 2019). This further implicates the usefulness of a
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detection model that can accurately detect these more complex

burst dynamics for the broad MEA community.

Machine learning (ML) models have become common

in various domains, demonstrating remarkable efficacy and

facilitating practical applications in everyday life. In scientific tasks,

ML has spread through nearly every field, offering a valuable

tool, particularly for tasks requiring automation, such as fine-

tuning intricate devices (Durrer et al., 2020; Koch et al., 2023)

or analyzing complex datasets (Manogaran and Lopez, 2017;

Kocheturov et al., 2019). For example, in MEA-data, machine

learning has been applied to more reliably detect spikes (Germer

et al., 2024), and outcome parameters have been used to predict

network maturity based on early network activity (Cabrera-Garcia

et al., 2021). In connection to the problem of burst detection

described above, ML emerges as a promising solution. Particularly,

in scenarios employing the MaxInterval method, human experts

must iteratively select parameters and inspect data quality until

convergence to an optimal parameter set is achieved. One can

exploit the optimal parameter determination process by selecting

a set of MEA-data and correspondent optimal MaxInterval

parameters and use it to effectively train a ML model to replicate

the decision-making of human experts in parameter selection.

Here, we have developed an automated analysis software tool,

including optimized burst detection using a machine learning

approach. We generated a sophisticated noise-resilient algorithm

that takes a MEA signal or a spike train as input, and outputs the

MaxInterval parameters that return reverberating bursts that would

have been manually detected by a human expert. This process

is fully automated and does not need any manual assistance by a

human operator. We present our algorithmic solution to the burst

determination challenge and provide its implementation as a ready-

to-use open-source package, autoMEA (Hernandes et al., 2024b,a),

that the neuronal network community can immediately use and

expand upon.We demonstrate that our approach works for a range

of different input data (raw measurements averaged in different

ways as well as binary spikes data) and we validate the model using

existing datasets of two neurodevelopmental disorders (NDDs)

across different time points in neuronal network development.

2 Results

2.1 Machine learning models

The autoMEA software detects bursts using two different

methods: (1) the default method, with which detection is done

using the same MaxInterval parameters as in the manual analysis

software, and (2) burst detection based on MaxInterval parameters

predicted by a machine learning model. In this case, the optimal

MaxInterval parameters used were parameters previously identified

to be most optimal for reverberating burst detection (Heuvelmans

et al., 2024). In this work three different models were generated and

implemented in the software. The three models are all built upon

1D-convolutional artificial neural networks, and have a different

architecture depending on the input data: spikes30 model uses a

5-s binary spike trace averaged by 30 time-steps; signal30 uses real-

valued signal averaged by 30 time-steps; and signal100 the real-

valued signal averaged by 100 time-steps. Schematic depiction of

our workflow is shown in Figure 1. The choice for a convolutional

neural network was taken because the architecture effectively

captures both spatial and temporal patterns in the input data,

which aligns well with our task. While recurrent neural networks

(RNNs) and other models like random forests, XGBoost, or

Gaussian processes could have been used, CNNs provide a good

balance between complexity and performance. Moreover, the CNN

approach offers scalability for future applications, allowing it to

generalize across different datasets and conditions. The detailed

information on the architecture and training of neural network

machine learning models spikes30, signal30, and signal100 is

available in Supplementary material. The averaging of the original

5-s data was performed to reduce input size, thereby significantly

reducing the computational power needed by the models. We

tested different averaging window sizes to make sure the model’s

performance was not compromised. All models’ output consist

of a three-dimensional array, corresponding to three out of the

five MaxInterval parameters. These predicted parameters are then

applied in the standardMaxInterval method to detect reverberating

bursts and network activity, of which an example is presented in

Figure 2.

To train the machine learning models, a relatively small

dataset comprising 797 burst samples was utilized. The dataset was

built by using a functionality of our package that plots windows

containing signal, spikes, reverberations and bursts detected using

specific MaxInterval parameters. This feature was used to perform

a standard post-processing analysis, where optimal MaxInterval

parameters for detecting bursts were selected by the experimenter,

and windows of 5-s duration containing signal/spikes/bursts and

their corresponding parameters were saved for each sample.

The training of all three types of artificial neural network

models (spikes30, signal30, and signal100) employed Mean

Squared Error (MSE) as a loss function to measure the

distance between the optimal human-selected parameters and

those predicted by the network. A thorough hyperparameter

tuning process was conducted by experimenting with different

layers sizes and activation functions, followed by selecting the

best overall hyperparameters for each model. To evaluate the

efficacy of the predicted parameters in producing optimal bursts,

simply relying on the loss function showing differences between

sets of MaxInterval parameters was insufficient since there are

multiple MaxInterval method parameter combinations that yield

low loss and none of these combinations are captured by

a single label consisting of experimenter’s parameter choice.

Hence, a custom accuracy metric was introduced: it compares

the bursts obtained obtained from parameters chosen by the

artificial neural network and those selected by the experimenter.

The learning curves showing the custom accuracy, for the

training and validation set, are shown in Figure 3. From the

learning curves, we observed that the spikes30 model gradually

learned to predictMaxInterval parameters throughout the training

process. The custom accuracy stayed very close to zero for

the first 15–25 epochs, and then increased until converging

to a value close to 0.86 (Figure 3A). In contrast, the signal30

and signal100 models, which use normalized signal as input,

achieved a high value of custom accuracy (∼0.86) already in

the first learning epoch, and the learning process was mostly

visible by a shortening of the shaded area (statistical variation
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FIGURE 1

Schematic depiction of our workflow. After collecting the raw MEA data, we feed them into three di�erent workflows: we post-process the data

either into the form of spikes or averaged signal (over 30 or 100 time bins). We follow by training the neural network specific to each of the inputs

(these models are referred to as spikes30, signal30, and signal100) to output key parameters for the MaxInterval method: maximum interval to start

and end the reverberations and minimal time between the reverberations. These parameters predicted by each machine learning model are then

used for MaxInterval method that predicts the reverberations that are combined into bursts. An example of the plate type from Multichannel

Systems, MCS GmbH, Reutlingen, Germany, used for experiments included in this study, is depicted in this figure.

of network’s predictions), signaling that the accuracy of the

signal30 and signal100 models was converging to a common value

(Figures 3B, C). The loss functions for each model are plotted in

Supplementary Figure 5.

2.2 Assessment of burst detection quality

Next, we assessed the accuracy of burst detection by the

machine learning model in comparison to using the default

MaxInterval parameter. We compared the default parameters and

machine learning model as follows: an experienced experimenter

was presented with one burst, the detection of its reverberations

was presented in two different ways: using the default parameters,

and the machine learning model’s predicted parameters. Being

blind to the detection type, the experimenter then scored the

detection as equal or gave a preference for one over the other

detected burst. The quantitative overview of this comparison

is shown in Figure 4. The experimenter scored 120 bursts for

each of the three neural network models: spikes30, signal30,

and signal100. The majority of bursts were detected equally

well by the default method and either of the model’s detection

as judged by the experimenter. For the spikes30 model, there

was an equal amount of bursts that were better detected by

the default or machine learning methods. For signal30 and

signal100 models, bursts detected using the machine-learning-

based parameter prediction were slightly more often the preferred

detection. Overall, the detection accuracy was not statistically

different between the three different models [χ2
(4)

= 5.814,

p = 0.2135].

2.3 Validation of parameter detection

2.3.1 Accuracy of spike and network dynamics
detection by the autoMEA software

Network bursts are typical electrical activity patterns

characterized by high-frequency spiking activity happening

simultaneously across multiple electrodes in the well. Similar to

the MCS Software, in the autoMEA software, spikes are used to

detect bursting activity in the network. Thus, for the model to

accurately detect network bursts, it was first of all important that

the spikes could be correctly detected with the reproduction of the

signal and threshold settings in autoMEA software. To this extent,

we correlated the MFR of all wells in our hippocampal datasets,

detected by manual analysis using the MSC software, to the MFR

detected by the autoMEA software. We found a near-perfect

correlation between the MFR detected by the manual analysis and

autoMEA software [r(79) = 0.9939, p < 0.0001, Figure 5].

Subsequently, we assessed the correlation between the manual

analysis and the different detection methods: using default

parameters, and either of the machine learning prediction models,

for a set of outcome measures that can be used to describe neuronal

network dynamics (Figure 6). We focused here on outcome para-
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FIGURE 2

Example of activity in primary hippocampal cultures. Top left: rasterplot with activity recorded on 12 electrodes with spikes indicated in black and

network reverberations indicated with gray shading. Parameters random spike, bursts, and network bursts, IBI (inter-burst interval) and NIBI (network

inter-burst interval) are indicated with boxes/lines in the raster. Bottom left: zoom in of the raw signal of a burst in one channel with spikes indicated

in black, and reverberations and burst indicated in orange at the bottom. Right: raw signal of activity during a network burst. Bursts and

reverberations detected on single channels are indicated in orange, overlaying light blue shade indicates detected network reverberations and the

surrounding blue dotted line indicates the detected network burst.

FIGURE 3

Custom accuracy for three machine learning models: (A) spikes30, (B) signal30, and (C) signal100. The black and orange lines are the median of all

custom accuracy values calculated for each epoch for the training and validation, respectively, and the shaded area is the range between the

minimum and maximum values of custom accuracy for each epoch.

meters related to network bursting activity as these have been

reported to be more robust than single channel bursting activity,

the latter being more sensitive to e.g., technical and batch-to-batch

variation (Mossink et al., 2021). Firstly, the % of random spikes

(%RS, i.e., spikes not being part of a network burst) and the network

burst rate (NBR) can together describe the level of synchronicity in

the network (Figures 6B1, B2). We found that the detection of these

parameters by any of the autoMEAmodels strongly correlated with

the manual analysis. For both parameters, all autoMEA models

showed correlations of r > 0.9 (statistics are presented in Table 1).

All autoMEA models slightly overestimated the %RS, while on

average fewer network bursts were detected (Figures 6B1, B2).
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FIGURE 4

Burst quality metric for the parameter prediction models. (A) Three examples of bursts as presented for scoring to an experimenter. Raw signal of a

burst with detected spikes indicated in black at the bottom and above the reverberations as detected by either the default method or one of the

detection models (spikes30, signal30, signal100). During scoring, the experimenter was blind to which color represented the default and

spikes30/signal30/signal100 detection, and color could switch with each presentation of a new burst. E.g., (A) (left) default in blue, spikes30 in

orange, (middle) default in blue, signal100 in orange, (right) default in orange, signal100 in blue. (B–D) Burst quality score with the % of bursts scored

as preferred with default method, with a predicted model, or equal for each method.

Secondly, the rhythmicity of network burst firing can be

described by the network inter-burst intervals (NIBI) and

more specifically, the coefficient of variance (CoV-NIBI) thereof.

These two parameters, determined by all autoMEA models,

also strongly correlated with the results of the manual analysis

(Figures 6C1, C2, statistics are presented in Table 1). Interestingly,

the outcome parameter NIBI showed a difference in the

directionality of the change for the different models. The

spikes30 model detected a slightly increased NIBI and showed

the least strong correlation to the manual analysis [r(74) =

0.8864, p > 0.0001]. The default, signal30 and signal100 results

showed strong correlations with manual analysis (r > 0.9). For

these approaches, the detection resulted in a reduced NIBI

compared to the manual analysis. Finally, network bursts can

be characterized by their duration and reverberations. We again

correlated the outcome of each autoMEA model to the manual

analysis and found a strong correlation between the Network

burst duration (NBD), Network burst composition (NBC i.e.,

network reverberations/network burst), and network reverberation

duration (Figures 6D1–D3, statistics are presented in Table 1).

Here, both network reverberation duration and NBC were lower

when detected using any autoMEA model, while NBD was

slightly higher.

Importantly, we observed that the difference between the

prediction models and the manual analysis was mostly driven

by the data processing method, as we observed that the default

method already introduced small differences in burst detection

compared to the manual analysis. The deviation between the

default method and the prediction models was very small, showing

the autoMEA models accurately reproduced the detection of

reverberating network bursts compared to detection by a default

parameter set. Only for the outcome parameter NIBI did the

spikes30 model deviate more from the default method and the

signal prediction models.
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FIGURE 5

Correlation of the mean firing rate between spikes detected with manual analysis in MCS and autoMEA software. (A) Example raster plot (left) of

spikes detected by MCS analysis with a zoom-in of the raster for a 5-s section above a 5-s section of the raw data (right). (B) Example raster plot (left)

of spikes detected by the autoMEA software with a zoom-in of the raster for a 5-s section above a 5-s section of the raw data. (C) Mean firing rate in

Hz, detected by manual analysis in MCS software on the x-axis, and autoMEA software on the y-axis. The correlation between the two detection

methods is near-perfect. The blue dot is the datapoint presented in (A, B). N = 81 wells.

Taken together, these results show that we can accurately detect

reverberating network bursts using the autoMEA software, in a way

that is at least as good as a default set chosen by an experimenter

through extensive visual inspection.

2.4 Validation of phenotype detection

2.4.1 Detection of neuronal network phenotypes
in genetic models of NDDs

To validate the sensitivity of the autoMEA software for

phenotype detection in disease models, we compared the analysis

of the autoMEA software with manual analysis performed by an

experienced researcher. Two different MEA datasets of NDDs were

used for this comparison: (1) The RHEB-p.P37L model (Reijnders

et al., 2017; Proietti Onori et al., 2021), representing a disorder

associated with severe refractory epilepsy due to hyperactivity

of the mTOR pathway. The RHEB-p.P37L model has been well

characterized on the MEA and showed increased spike and

network bursting activity, premature synchronization of network

activity, and loss of the reverberating burst pattern (Heuvelmans

et al., 2024). (2) The CAMK2g-p.R292P model (De Ligt et al.,

2012; Proietti Onori et al., 2018) for a neurodevelopmental

disorder associated with severe intellectual disability, autism, and

general developmental delay. This model has not previously been

characterized using multi-electrode arrays.

2.5 RHEB-p.P37L

In this validation experiment, we used a dataset of neuronal

network activity recordings of the RHEB-p.P37L model at

two recording days (days in vitro: DIV): DIV7 and DIV14.

The hippocampal cultures were transduced at DIV1 with

a virus inducing the expression of the patient-identified

pathogenic RHEB-p.P37L variant (Heuvelmans et al., 2024),

or a control virus.

First, we compared the network activity of control and RHEB-

p.P37L neuronal networks, with bursts detected using the manual

analysis to all autoMEA models at DIV14, a time-point at

which control hippocampal cultures show reverberating bursts

synchronized across the network and in a rhythmic pattern. The

averages of both genotypes were very similar, comparing the

different autoMEA approaches to the manual analysis (Figure 7,

for all outcome parameters, see Supplementary Figure 1). While

there are slight differences in the exact numbers detected by the

autoMEA software when compared to the manual analysis, these

differences have the same directionality for both genotypes tested,

e.g., the average network reverberation duration slightly reduces

for both the control and RHEB-p.P37L group. Furthermore,

performing statistics on the difference between the two groups

revealed that all methods accurately detected previously identified

phenotypes: a decrease in NBC (Figure 7B) and an increase in

network reverberation duration (Figure 7C). Parameters that did

not manifest a phenotype through manual analysis, similarly

remained non-significant when analyzed using the autoMEA

models (Supplementary Figure 1).

To assess whether the software can also accurately detect bursts

across the development of the culture, we included the analysis of

the RHEB-p.P37L dataset at DIV7. At this time point, hippocampal

cultures have not yet developed the reverberating network bursts

and show more random spiking activity (Charlesworth et al.,

2015). Similar to DIV14, we observed genotype averages very

similar to the manual analysis for each parameter, and again, the
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FIGURE 6

Validation of accurate parameter detection by the autoMEA models: (A) 1. examples of raster plots and 5-s sections of a single electrode as detected

by the Manual analysis in MCS (top) or signal30 autoMEA software (bottom). Black lines represent spikes, light gray bars overlaying raster plot

represent reverberations, dark gray bar at the bottom of the zoom section represents the network burst. 2. raw data example of a single channel

during a network burst with reverberation detection presented at the bottom of the graph by manual analysis MCS in orange (top) and signal30

autoMEA analysis in blue (middle) and spikes in black (bottom). (B) Correlation between outcome for network synchronicity 1. % random spikes, 2.

Network burst rate. (C) Correlation between outcome parameters for network rhythmicity 1. Network inter burst interval (NIBI), 2. Coe�cient of

variance of NIBI. (D) Correlation between outcome parameters for network burst characteristics 1. network burst composition, 2. network

reverberation duration, 3. network burst duration. N = 81 wells.

directionality of change was the same for both genotypes (Figure 8,

for all outcome parameters, see Supplementary Figure 2). Notably,

also network bursts in younger cultures, without reverberations

appear to be accurately detected by the autoMEA models, which

we trained to detect reverberating bursts. Furthermore, statistical

comparison of the groups showed that phenotypes were accurately

detected in DIV7 cultures (Figure 8, for all outcome parameters, see

Supplementary Figure 2).
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TABLE 1 Correlation statistics between manual and autoMEA output for all analyzed parameters.

Method %RS NBR NIBI CoV of
NIBI

NBD NBC Network
reverberation

duration

Default 0.9315 0.9720 0.9279 0.9239 0.9470 0.9911 0.9882

Spikes30 0.9331 0.9284 0.8864 0.9653 0.9446 0.0955 0.9842

Signal30 0.9333 0.9586 0.9228 0.9706 0.9499 0.9912 0.9880

Signal100 0.9340 0.9623 0.9184 0.9668 0.9512 0.9912 0.9867

%RS, % random spikes; NBR, network burst rate; NIBI, network inter-burst interval; CoV of NIBI, Coefficient of variance of NIBI; NBD, network burst duration; NBC, network burst

composition.

FIGURE 7

Validation of the detection of epilepsy-related phenotypes in a DIV14 set of the RHEB-p.P37L NDD model by the autoMEA software: (A) example

raster plots with a 5-s section of a single electrode of a control (black, left) and RHEB-p.P37L (orange, right) well from manual MCS analysis and the

spikes30 autoMEA model, and a raw data trace example of a single channel during a network burst for both genotypes at the bottom, black lines at

the bottom represent spikes, orange bars (top) represent reverberations as detected with manual MCS analysis and the blue bars (middle)

reverberations detected using the spikes30 autoMEA model. (B) Comparison of the network burst composition for control and RHEB-p.P37L

cultures detected using all di�erent burst detection methods. (C) Comparison of the network reverberation duration for control and RHEB-p.P37L

cultures detected using all di�erent burst detection methods. N = 11 wells/group. Student’s t-test: ∗∗∗p < 0.0001, ∗∗∗∗p < 0.00001.

2.6 CAMK2g-p.R292P

We included a second NDD model, that has not yet

been extensively characterized using MEA. Patients with this

mutation suffer from severe intellectual disability (ID), autism

spectrum disorder (ASD), and general developmental delay

(De Ligt et al., 2012; Proietti Onori et al., 2018). In this second

validation experiment, we used a set of neuronal network

activity recordings at DIV18, from primary hippocampal

neuronal networks transduced at DIV1 with a virus expressing

either CAMK2G wildtype (CAMK2G-WT), the previously

published pathogenic variant of CAMK2G, CAMK2G-p.R292P
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FIGURE 8

Validation of the detection of epilepsy-related phenotypes in a DIV7 set of the RHEB-p.P37L NDD model by the autoMEA software: (A) example

raster plots with a 5-s section of a single electrode of control (black, left) and RHEB-p.P37L (orange, right) well from manual MCS analysis and the

signal100 autoMEA model, and a raw data trace example of a single channel during a network burst for both genotypes at the bottom, black lines at

the bottom represent spikes, orange bars (top) represent reverberations as detected with manual MCS analysis and the blue bars (middle)

reverberations detected using the signal100 autoMEA model. (B) Comparison of the %RS for control and RHEB-p.P37L cultures detected using all

di�erent burst detection methods. (C) Comparison of the network burst rate for control and RHEB-p.P37L cultures detected using all di�erent burst

detection methods. (D) Comparison of the NIBI for control and RHEB-p.P37L cultures detected using all di�erent burst detection methods. (E)

Comparison of the network burst duration for control and RHEB-p.P37L cultures detected using all di�erent burst detection methods. N = 11

wells/group. Student’s t-test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 ∗∗∗p < 0.0001.

(Proietti Onori et al., 2018) or a control virus (Figure 9A). Manual

analysis of this novel dataset presented multiple phenotypes.

We observed a decrease in the firing rate in both CAMK2G-

WT and CAMK2G-p.R292P cultures compared to cultures

transduced with a control virus (Supplementary Figure 3A).

Furthermore, the expression of CAMK2G-p.R292P reduced

network synchronicity as there was an increased percentage of

random spikes (Supplementary Figures 3B, C). Interestingly,

we identified decreased rhythmicity of network bursts for

CAMK2G-WT, but not CAMK2G-p.R292P cultures, as shown

by the significant increase in the CoV-NIBI (Figure 9B). We

further observed apparent phenotypes in the network burst

characteristics, namely that the NBD significantly decreased in

CAMK2G-p.R292P cultures, while the network reverberation

duration increased (Figures 9C, E). CAMK2G-WT cultures

displayed the opposite effect, an increased NBD while network

reverberation duration significantly decreased. Finally, we

observed an increase in the NBC in the CAMK2G-WT cultures

while this was drastically decreased in the CAMK2G-p.R292P

cultures (Figure 9D). Also in this disease model, genotype averages

were comparable between the manual analysis and the different

autoMEA models and we could detect the same phenotypes in

a novel dataset using the autoMEA models compared to the

manual analysis.

In summary, the autoMEA model accurately detects

phenotypes in hippocampal cultures of two different NDD

models. Importantly, it detects phenotypes at multiple time points

in the development of the cultures. This data shows that the

autoMEA software is a reliable tool to analyze hippocampal MEA

datasets. We did not observe striking differences between the

performance of the different prediction models incorporated in the

autoMEA software in the detection of NDD-related phenotypes.

2.7 Cortical data

To investigate if the performance of the model is specific

to the hippocampal burst dynamics of the dataset that was

used to generate the model, or if it can accurately detect

bursts across datasets with different burst dynamics, we included

a set of recordings from a cortical dataset at DIV14. While

hippocampal cultures generate spontaneous reverberating network

bursts, cortical cultures do not present this reverberating pattern

(Figure 10). A cortical dataset of 18 wells was analyzed using the

manual settings used to analyze the hippocampal data and analyzed

using the autoMEA models. On top of that, the MaxInterval

method parameters in the manual detection analysis were adjusted

to more accurately detect bursts with cortical burst dynamics.
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FIGURE 9

Validation of the detection of phenotypes in a DIV18 set of the CAMK2G-p.R292P NDD model by the autoMEA software: (A) example raster plots with

a 5-s section of a single electrode of control (black, left) and CAMK2G-WT (dark blue, middle), and CAMK2G-p.R292P (light blue, right) well from

manual MCS analysis and the spikes30 autoMEA model, and a raw data trace example of a single channel during a network burst for all genotypes at

the bottom, black lines at the bottom represent spikes, orange bars (top) represent reverberations as detected with manual MCS analysis and the blue

bars (middle) reverberations detected using the spikes30 autoMEA model. (B) Comparison of the %RS for control, CAMK2G-WT, and

CAMK2G-p.R292P cultures detected using all di�erent burst detection methods. (C) Comparison of the network burst rate for control, CAMK2G-WT,

and CAMK2G-p.R292P cultures detected using all di�erent burst detection methods. (D) Comparison of the NIBI for control, CAMK2G-WT, and

CAMK2G-p.R292P cultures detected using all di�erent burst detection methods. (E) Comparison of the network burst duration for control,

CAMK2G-WT, and CAMK2G-p.R292P cultures detected using all di�erent burst detection methods. N(control) = 13 wells, N(CAMK2G-WT) = 12,

N(CAMK2G-p.R292P) = 12. One way ANOVA: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 ∗∗∗p < 0.0001, ∗∗∗∗p < 0.00001.
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FIGURE 10

Testing the performance of autoMEA burst detection on a cortical dataset. (A) Example raster plots with a 5-s section of a single electrode, analyzed

using manual MCS analysis and the signal30 autoMEA model, and a raw data trace example of a single channel during a network burst for all

genotypes at the bottom, black lines at the bottom represent spikes, orange bars (top) represent reverberations as detected with manual MCS

analysis, the blue bars (middle) reverberations detected using the signal30 autoMEA models and the pink (bottom) the manual detection in MSC

using ISI 100. (B) Comparison of the MFR, %RS, and NBR using all di�erent burst detection methods. (C) Comparison of the NIBI and CoV-NIBI using

all di�erent burst detection methods. (D) Comparison of the NBD and NBC and network reverberation duration using all di�erent burst detection

methods. N = 18 wells. One way ANOVA: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 ∗∗∗p < 0.0001, ∗∗∗∗p < 0.00001.
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To this extent, the maximum interspike intervals to start and

end a burst were set to 100 ms, and the minimum interval

between bursts was set to 200 ms, from here referred to as

ISI100 analysis. Similar to the hippocampal datasets, the detection

of bursts with all its analyzed characteristics was very similar

between the manual analysis and the autoMEA models for most

of the wells. The adaptation of the MaxInterval parameters

significantly affected the detection of the following parameters:

as expected when the threshold for the ISI increases, network

burst duration significantly increased, paired with a decrease

in the % RS, as more spikes were identified as part of the

network burst (Figure 10). The other parameters regarding network

burst frequency and rhythmicity were not significantly affected

by increasing the ISI threshold, and as such, the autoMEA

model accurately detected these outcome parameters in our

cortical cultures.

Interestingly, the dataset also presented a clear outlier

(Supplementary Figure 4), which appeared most obviously in

the read-out parameters %RS and CoV-NIBI. Inspection of this

well showed that some network bursts were not detected using

the detection models, and most network bursts were missed

when the spikes30 model was used. The amplitude of the

spikes within these bursts appeared lower, however this was

not quantified.

In summary, our findings demonstrate that our automated

quantitative machine-learning based analysis software tool,

autoMEA, is a reliable tool to analyze MEA datasets in a high-

throughput manner, presumably without inter-experimenter bias.

Moreover, the model’s detection proficiency extends to effectively

capture bursts with varying dynamics, showing its ability to

generalize across different datasets.

3 Discussion

In this project, we generated automated detection software that

can be used for the analysis of neuronal network activity recorded

using a multiwell MEA system. More specifically, our focus was on

creating a package with the capability to accurately identify intricate

burst dynamics inherent to hippocampal neuronal networks. With

this approach, we additionally aimed to reduce the manual aspect

of the analysis and improve the efficiency with which the data

can be analyzed. We showed that the different detection models

included in our autoMEA software can accurately detect network

burst activity from the MEA signal, comparable to a manual data

analysis, using a defined set of MaxInterval parameters , while not

taking much longer than using a default, fixed set of MaxInterval

parameters. The outcome from the autoMEA models showed very

strong correlations with the manual analysis. Additional scoring of

the model’s performances revealed that in most cases, the models

could predict network bursts as well as the default MaxInterval

parameters, in some cases performing even better than default as

judged by an experienced experimenter. More importantly, the

autoMEA models were able to identify the same phenotypes that

were identified using manual analysis in two separate datasets for

NDDs. Finally, the models could accurately detect bursts with

different dynamics that appear throughout the maturation of a

neuronal network, as was shown by the detection of bursts in a

dataset of DIV7 neuronal networks.

MEA is a valuable tool for investigating neuronal network

activity and is often used for disease modeling or toxicological

assessments. However, burst detection remains a challenge in the

field, as burst dynamics can vary depending on the type of cultures

that are recorded (Charlesworth et al., 2015; Wagenaar et al., 2006).

While previously, several MEA-analysis tools have been generated,

they focused on the analysis and visualization of bursts with simpler

network dynamics (Dastgheyb et al., 2020; Hu et al., 2022; Bologna

et al., 2010; Pastore et al., 2018). In these models, bursts are detected

based on the MaxInterval and/or logISI burst detection methods

that have not been optimized for the detection of reverberations.

Here, we presented a model that accurately detected reverberations

based on the MaxInterval method but using adaptive parameters

to optimize reverberation detection, a parameter that is sensitive to

spiking noise.

With autoMEA software, we also provide experimenters

with an open-source user-friendly software package. While the

software that is provided with the commercial hardware outputs

timestamp files that need to be post-processed to extract

relevant parameters, our model does not require any need for

coding expertise or manual data processing to post-process the

output into quantifiable outcome parameters that are relevant

to describe neuronal network dynamics. Besides outputting

timestamp files, it automatically generates an additional output

file with the network parameters describing network synchronicity,

rhythmicity, and burst characteristics. Furthermore, one can input

multiple recording files into the software, letting it analyze

multiple recordings at the same time. Additionally, manual analysis

requires the experimenter to actively adjust settings during the

analysis of each file, while with autoMEA software, the analysis is

performed completely autonomously without the experimenter’s

input. Running the software may take from minutes up to a

few hours, depending on the size of the dataset. Therefore,

autoMEA software enhances the throughput of MEA-data analysis.

For a demonstration of the user-friendliness of autoMEA, see

Supplementary material.

Our MEA package is an open source package that can be

completely adapted depending on the user’s needs. The key feature

is that the machine learning models can be fine-tuned or retrained

using new datasets. This may be preferred when datasets with

different burst dynamics than the murine hippocampal cultures

are analyzed. Researchers can build upon the current dataset,

which could enhance the accuracy of the model to detect bursts

with different burst dynamics, and importantly, can further

reduce any experimenter bias as the model is now trained based

on the analysis of an experienced researcher. By blinding the

experimenter to bursts presented during the training, we tried to

ensure the objectivity of the burst quality metric introduced in

this study.

In this study, the machine learning model was generated to

specifically detect the more complex burst dynamics observed

in hippocampal neuronal networks, in which bursts generally

consist of multiple reverberations. To broaden the usefulness of

the autoMEA software, we showed that our package could also

accurately detect many of the outcome parameters in a cortical
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dataset. However, as burst dynamics are different in cortical

cultures, the MaxInterval parameter threshold for the ISI with

which this type of data is analyzed is typically higher (Chiappalone

et al., 2005), which affected significantly the outcome parameters

%RS and the duration of network bursts and reverberations.

For different types of data, it may be necessary to retrain the

models with a specific dataset, however, the autoMEA software

could still be used without retraining if a predetermined set of

MaxInterval parameters is known. In this case, the software can

be run using the default method, similar as to what was done

using the manual MCS analysis settings in the default method

of the autoMEA software in this paper. We did not observe

obvious differences between the performance of the different

prediction models (spikes30, signal30, signal100). Both using

binary spike input and real-valued signal, the machine learning

approach was trained to accurately detect parameters describing

network dynamics. The only small difference was identified in

the detection of the NIBI, wherein the NIBI was increased using

the spikes30 model compared to default, while it was reduced

in the signal models. However, these deviations were small and

did not affect the detection of phenotypes in our NDD models.

Therefore, we consider all autoMEAmodels suitable for the analysis

of MEA-data.

The autoMEA machine learning approach for detecting

bursts from signal or spikes demonstrated robust generalization

across diverse datasets. We introduced a customized accuracy

metric that evaluates the difference between bursts detected

by manually set MaxInterval Parameters and those predicted

by our machine learning models, enabling precise performance

assessment. Despite being trained on a modest dataset derived

from a limited set of recordings, these models accurately

replicate the experimenter’s MaxInterval Parameter selections for

analysis. It’s noteworthy that all the machine learning models

examined in this study are based on simple convolutional

neural networks that are well established in the machine

learning community and straightforward to implement. Despite

their simplicity, all the machine learning models assessed

in this study have shown impressive accuracy. Notably, the

autoMEA package facilitates easy fine-tuning of the used machine

learning models with additional data or their substitution with

more advanced architectures, ensuring adaptability to evolving

research needs.

With recent technological advancements that allow the

development of neuronal networks derived from iPSCs, the MEA

system has become more popular as a functional readout in disease

modeling studies using stem cell methods (McCready et al., 2022;

Cerina et al., 2023). Important to note is that MEA-data has a

highly variable nature, which was shown for both cortical cultures

from primary rodent neurons (Negri et al., 2020) and human

iPSC-derived neuronal networks (Mossink et al., 2021). Therefore,

careful consideration of study design during data collection, data

processing, and statistical handling of the data is essential to ensure

reliable outcomes of studies (McCready et al., 2022). Interestingly,

in multiple disorders, the appearance of reverberations, otherwise

referred to as fragmented bursts or super bursts, was identified as

a phenotype (Pradeepan et al., 2024; Doorn et al., 2024; Gabriele

et al., 2021; Frega et al., 2019). Therefore, we believe that our

software can be of interest to a broader audience. The flexibility

of our software allows users to use the models trained with the

datasets presented in this paper, but also retrain it using their

own dataset to optimize detection in datasets with different burst

dynamics. Additionally, adding training data onto the current

dataset may increase the ability of the software to analyze more

complex or diverse datasets, and may result in better convergence

of the model onto a dataset with varying burst dynamics. Thus,

we provided here an effective software tool for multi-well MEA

analysis that is user-friendly, high-throughput, and adaptable to the

researcher’s preferences.

4 Methods

4.1 MEA data collection

4.1.1 MEA recordings of primary hippocampal
neurons

Primary hippocampal and cortical neuronal cultures were

prepared from embryonic day (E) 16.5 FvB/NHsD wild-type mice

according to the procedure previously described (Proietti Onori

et al., 2021; Banker and Goslin, 1988). Neurons were plated in a

multiwell multi-electrode array (MEA) plate with an epoxy base

(Multichannel Systems, MCS GmbH, Reutlingen, Germany) in

a density of 35,000 neurons/well. Cultures were maintained in

neurobasal medium (NB, GIBCO) supplemented with 2% B27, 1%

penicillin/streptomycin and 1% glutamax (NB+++) and placed in

an incubator at 37◦C with 5% CO2. Each MEA well is embedded

with 12 PEDOT-coated gold electrodes of 100 µm in diameter

and 1 reference electrode. Recording electrodes are arranged in a

4 × 4 grid, spaced 700 µm apart. Twice weekly, neuronal network

activity of the cultures was recorded after which one-third of the

medium in each well was replaced with fresh NB+++. MEA plates

were recorded using the Multiwell-MEA headstage in a recording

chamber at 37◦C with 5% CO2. Recordings were started after 10

min of acclimatization in the MEA set-up. Channels with excessive

noise (above±15µV) were excluded from the recording. Neuronal

activity was recorded for 10 min at a sampling rate of 10 kHz

and the signal was filtered with a 4th order low-pass filter at 3.5

kHz and 2nd order high-pass filter at 100 Hz (Heuvelmans et al.,

2024).

4.1.2 Manual MEA data analysis using the MCS
software

MEA data was manually analyzed using the MultiChannel

System software package. Analysis was performed on the full 10-

min recording period. Baseline noise was calculated as the average

of 2 × 200 ms segments without activity at the start of the

analysis period, and a threshold of ±5 SD from baseline was

used to detect spikes. Reverberations were detected using the

MaxInterval method that is incorporated into the MCS software.

For the dataset used in this study, the most ideal parameters for

reverberation detection were previously identified (Heuvelmans

et al., 2024) as:

Max. interval to start = 15 ms

Max. interval to end = 20 ms

Min. interval between = 25 ms
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Min. duration = 20 ms

Min. number of spikes = 5

For the cortical dataset, manual analysis of the same wells

was run with the settings adapted to Max. interval to start and

end a burst = 100 ms and Min. interval between bursts at 200

ms. Whenever at least two-thirds of the active channels in a well

participated in synchronized activity, of which at least half were

simultaneously active, it was classified as a network reverberation.

Output from the MCS Software was then further processed using

a custom-written script in MATLAB R2021a. Reverberations were

combined into bursts when the interval to the next reverberation

was <300ms, and similarly, network reverberations were combined

into network bursts when the interval to the next network

reverberation was <300 ms.

Using the custom-written processing script in MATLAB,

multiple outcome parameters were extracted from the data that can

describe the network development and dynamics in the culture.We

calculated 8 different outcome parameters that could be classified

into 4 categories: (1) Spiking activity described by the mean firing

rate (MFR), (2) Network synchronicity, described by network burst

rate (NBR), and the % random spikes, i.e., spikes that are not part

of a network burst (%RS). (3) Network rhythmicity, described

by the network interburst interval (NIBI) and more specifically

the coefficient of variance thereof (CoV-NIBI). (4) Network

burst characteristics, to which the network burst duration (NBD),

network reverberation duration, and network burst composition

(NBC: network reverberations/network burst) are descriptive.

4.2 Machine-learning automation

The ultimate goal of MEA data analysis is to quickly and

robustly detect bursts for large amounts of measured data. While

the ideal MaxInterval parameters are hard to unify across the

dataset, due to the spiking noise, it is still possible to adapt them

manually to the different levels of noise. These manual adjustments

can be automatized if one is able to develop an algorithmic

mapping from MEA signal (or spikes) to the parameters during

the processing of the dataset. Machine learning is a powerful tool

that is able to approximate complex multivariable functions as

well as to generalize well under the influence of noise. In our

approach, we chose to use MEA data, such as processed signals and

spikes, as input to a supervised neural network, trained to output

optimal MaxInterval parameters for each data sample. This way,

we allow for the parameters to be continuously adapted without

the constant attention of a human operator. In this approach,

the model developed closely mimics what an experimenter does

when analyzing MEA data: it finds the parameters that help extract

the best burst configuration from the dataset. More specifically,

the parameters predicted by the model are used as input for the

MaxInterval method to detect reverberations, which are then used

as input to precited bursts, network reverberations, and network

bursts, using fixed (user-defined) parameters.

Below we describe how we generated a dataset to be used to

train and test the models developed, and details about the methods

implemented.

TABLE 2 Relation of input, output, and name of every model developed in

this work.

Approach Input (length) Output
(length)

Name

Parameter

prediction

Binary spike array

(1667)

Float

parameter

array (3)

Spikes30

Float signal array (1667) Signal30

Float signal array (500) Signal100

4.2.1 Dataset generation
In order to train and test the models in this work, we generated

a dataset in which we selected 5-s windows of MEA activity, during

which bursts occur, and together with the experimenter expert,

the values of the first three MaxInterval parameters (Max. interval

to start, Max. interval to end, and Min. interval between bursts)

are adjusted until an optimal burst detection set is obtained. This

process is repeated multiple times, adding at each iteration one

sample to the dataset - for this work, a total of 797 samples

were generated, using recordings for different systems at different

DIVs. For each selected window, all the data useful to train and

evaluate the developed models is saved. For the sampling rate

considered, 10 kHz, a 5-s window corresponds to 50 thousand

timestamps, which is why most of the data is saved as arrays with

lengths equal to 50 thousand. Specifically, MEA signal is saved

as a float array, while spikes and bursts as binary arrays, with

an element equal to zero in case there is no spike/bursts activity

occurring at the correspondent timestamp, and equal to one in

case there is activity. Finally, the MaxInterval parameters are saved

as an integer array with length equal to three - since we are just

interested in the first three parameters. Afterwards, part of the

original dataset was post-processed, to get variables in the form of

input/output used by the different models developed, and divided

into Training/Validation/Test sets. In details, the signal arrays were

normalized between 0 and 1, and all temporal arrays (signal, spikes

and bursts) were averaged by either 30 or 100 timestamps. In the

end, we have three different inputs for each approach considered.

In Table 2 we show the various inputs and outputs used for each

model developed, assigning a name for each specific model.

4.2.2 Prediction of MaxInterval parameters
The models implemented consist of convolutional neural

networks that receive as input MEA data, and map it into

three of the five MaxInterval parameters. Different models were

developed based on the different input choices, as described in

the Dataset Generation section. All models were developed using

the Tensorflow/Keras framework. The models were trained in a

supervised learning regime, where a loss function—Mean Square

Error in this case—is defined to calculate an error between the

convolutional networks’ predicted output and the target output—

the manually selected MaxInterval parameters. This error is then

used to update the internal parameters of the model until the

predicted output converges to the target. This iterative procedure

used to optimize the model parameters is called training. During

training, the model calculates different loss values for the samples
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taken from the Training Set and the Validation Set, with the

main difference being that the model parameters are just updated

based on the loss retrieved from the Training Set only. Moreover,

the iterative training process is divided into epochs, where one

epoch is an instance for which the model used the totality of the

Training/Validation Set.

While designing a convolutional neural network many

hyperparameters have to be defined, such as the architecture of the

network, which optimizer is used to change the internal parameters,

and howmany samples are used before updating the parameters. In

order to find the best hyperameter for each model implemented—

depending on the input type, we used a package called hyperas,

which works within the keras framework and makes it possible

to define a set of values for each hyperparameter, and scan which

combination of these values return the best models, based on the

final loss value. Then, using hyperas, we trained each of the three

models one hundred times using different hyperameters values, and

post-selected three best cases for each one, based on the behavior of

the training and validation loss.

The three best cases for each model were trained again, now

calculating a new metric to characterize the accuracy of the

model. Accuracy is a metric used to quantify the performance of

a machine learning model, however, it is just meaningful when

it is used for classification, when the output is a discrete value

correspondent to a class, and the objective is to distinguish between

different classes. In the Parameter Prediction approach, the models

developed are performing what is called regression, when the

output is a real value, used to estimate the value of a variable.

However, the error that defines a distance between the predicted

MaxInterval parameters and the target values is not enough by

itself to define how the models are performing. The final goal of

the automation developed in this work is to obtain optimal bursts,

independently by the combination of MaxInterval parameters used

to detect these bursts. We defined a custom accuracy metric,

which compares the predicted bursts—in this case, the bursts

detected using the predicted MaxInterval parameters, and the

target bursts—the bursts detected using the target MaxInterval

parameters. Considering the binary representation of the burst

arrays, the custom accuracy is defined as

A =

∑
i |bp[i]− bt[i]|

∑
i bt[i]

, (1)

where bp[i] is the binary burst array, obtained using the predicted

parameters, at index i, and bt[i] is the binary burst array obtained

using the target parameters, at index i. This metric quantifies how

many timestamps the bursting state differs between the bursts

detected using predicted and target parameters, normalized by the

number of timestamps in which the target bursts are active (equal

to one). The normalization is necessary, given the sparse nature of

the binary burst arrays, to avoid high accuracy values in cases where

the predicted bursts are a full-zero array (no burst activity).

Calculation of the custom accuracy while training a model

takes a considerable amount of time, since for each sample used

a burst has to be detected and compared to the target one. That

is why we just perform the custom accuracy calculation for the

three best-performing cases for each model. Then, from the new

training procedure, one best model for each input type is chosen,

based on both the loss and the custom accuracy, and is trained

five more times to obtain averaged values of loss/accuracy and test

its consistency.

To further quantify the model performance, we defined a new

metric, called Burst Quality, using the test set (never seen by the

model), in which we detect bursts using both the MaxInterval

parameters predicted by the ML-model, and those used as default

by the experimenter expert. Both sets of bursts are shown to

the expert together with the correspondent signal and spikes,

and the expert votes on which burst detection better represents

that in the specific time trace. For this we built a GUI that

shows difference signals/spikes figures, randomly shuffling the

position/color with which bursts detected using predicted/default

parameters are plotted.

4.3 Model validation

To assess whether the model could accurately detect

phenotypes in models for NDDs that were identified using

the manual analysis in the MCS software, datasets of two different

NDD models were used: RHEB-p.P37L and CAMK2G-p.R292P.

The RHEB-p.P37L pathogenic variant has previously been

identified in focal cortical dysplasia type 2 and is associated

with severe epilepsy (Reijnders et al., 2017; Proietti Onori et al.,

2021), and has been extensively characterized using the Multi-

electrode array (Heuvelmans et al., 2024). The CAMK2G-p.R292P

pathogenic variant has been identified in patients with severe

intellectual disability (De Ligt et al., 2012; Proietti Onori et al.,

2018). These disorders were modeled through a lentivirally

induced expression of the RHEB-p.P37L, CAMK2G-WT or

CAMK2-p.R292P genes, compared to transduction with a control

virus. Recordings from different days in vitro were included in

this study to verify the accurate detection of bursts throughout

the development of the culture. Manual and autoMEA analysis

were done using data from DIV7 and DIV14 for the RHEB-

p.P37L model, and at DIV18 for the CAMK2G-p.R292P model.

Additionally, the convergence of the model onto a cortical dataset

was tested using a wild-type dataset of cortical data recorded

at DIV14.

4.4 Statistics

Statistical analyses were performed using GraphPad Prism 5

(GraphPad Software, Inc., CA, USA). Burst detection accuracy

was tested using the Chi-square test. The normality of the data

was assessed using the Shapiro-Wilk test. The correlation for each

outcome parameter comparing the model analysis to the manual

analysis was analyzed using Pearson’s r or the non-parametric

alternative if the normality assumption was not met, and the linear

relationship was plotted using simple linear regression. Statistical

analysis of disease phenotypes was performed using a Student’s t-

test (RHEB-p.P37L data), or One-way ANOVA (CAMK2g-p.R292P

and cortical data). For all statistical analyses, alpha was set at 0.05.

The specific tests used for each experiment are specified in the

figure legends or the results section. Values are represented as
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averages ± SEM. Sample sizes for each experiment are indicated

in the figure legends.
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