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Objectives: Pupil dilation is controlled both by sympathetic and parasympathetic

nervous system branches. We hypothesized that the dynamic of pupil size

changes under cognitive load with additional false feedback can predict

individual behavior along with heart rate variability (HRV) patterns and eye

movements reflecting specific adaptability to cognitive stress. To test this, we

employed an unsupervised machine learning approach to recognize groups of

individuals distinguished by pupil dilation dynamics and then compared their

autonomic nervous system (ANS) responses along with time, performance, and

self-esteem indicators in cognitive tasks.

Methods: Cohort of 70 participants were exposed to tasks with increasing

cognitive load and deception, with measurements of pupillary dynamics, HRV,

eye movements, and cognitive performance and behavioral data. Utilizing

machine learning k-means clustering algorithm, pupillometry data were

segmented to distinct responses to increasing cognitive load and deceit.

Further analysis compared clusters, focusing on how physiological (HRV,

eye movements) and cognitive metrics (time, mistakes, self-esteem) varied

across two clusters of different pupillary response patterns, investigating the

relationship between pupil dynamics and autonomic reactions.

Results: Cluster analysis of pupillometry data identified two distinct groups with

statistically significant varying physiological and behavioral responses. Cluster 0

showed elevated HRV, alongside larger initial pupil sizes. Cluster 1 participants

presented lower HRV but demonstrated increased and pronounced oculomotor

activity. Behavioral differences included reporting more errors and lower self-

esteem in Cluster 0, and faster response times with more precise reactions

to deception demonstrated by Cluster 1. Lifestyle variations such as smoking

habits and differences in Epworth Sleepiness Scale scores were significant

between the clusters.

Conclusion: The differentiation in pupillary dynamics and related metrics

between the clusters underlines the complex interplay between autonomic

regulation, cognitive load, and behavioral responses to cognitive load and

deceptive feedback. These findings underscore the potential of pupillometry
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combined with machine learning in identifying individual differences in stress

resilience and cognitive performance. Our research on pupillary dynamics and

ANS patterns can lead to the development of remote diagnostic tools for real-

time cognitive stress monitoring and performance optimization, applicable in

clinical, educational, and occupational settings.

KEYWORDS

pupillometry, cognitive load, machine learning, heart rate variability, oculomotor
parameters, k-means clustering

1 Introduction

The physiological response to deceptive cues under increasing
cognitive load provides critical insights into both neuroscientific
understanding and the advancement of neurophysiological and
psychological assessment methods. Pupillometry, a non-invasive
technique, effectively monitors autonomic nervous system (ANS)
responses (Ferencová et al., 2021; Lowenstein and Loewenfeld,
1950; Sirois and Brisson, 2014) in real time and is associated with
cognitive load and stress (Rattan et al., 2023; Sabatino DiCriscio
et al., 2018; Simonovic et al., 2018; Wilhelm et al., 2014), and
it is linked to the locus coeruleus-noradrenaline (LC-NA) system
(Bari et al., 2020; Borodovitsyna et al., 2018; Ressler and Nemeroff,
2001), and functions such as memory and attention (Daniels et al.,
2012; Viglione et al., 2023) and cognitive effort (Franzen et al.,
2022; Marshall, 2007; Ruiz Puentes et al., 2023; Yoo et al., 2021).
Furthermore, oculomotor metrics like saccades, fixations, and
blinks are essential for understanding cognitive load or integrated
with pupillometry to offer insights into cognitive states (Angelidis
et al., 2019; Bezrukikh et al., 2018; Calancie et al., 2022; Herten et al.,
2017; Kan et al., 2021; Kim et al., 2022; Lipp and Hardwick, 2003;
Marquart et al., 2015; Nakano and Kuriyama, 2017; Sciaraffa et al.,
2021; Skaramagkas et al., 2023; Zargari Marandi et al., 2018).

Heart Rate Variability (HRV) is another metric used to assess
ANS responses to stress and deception. Studies have shown HRV’s
correlation with stress (Peabody et al., 2023) and cognitive load.
Pupillometry and cardiac metrics were also combined to assess
patterns of ANS responses (Hoogerbrugge et al., 2022; Ma et al.,
2024; Venkata Sivakumar et al., 2020). Integrating existing research
on deception, spanning eye-tracking, blink patterns, saccades
behavioral, and skin-conductance (Fang et al., 2021; Fukuda, 2001;
Macatee et al., 2017; Proudfoot et al., 2016; Suchotzki and Gamer,
2019; Tomash and Reed, 2015; Wang et al., 2010; Webb et al., 2009),
with HRV metrics could offer a comprehensive understanding of
ANS responses to deceit.

Previous studies (Ganis, 2003; Kozel et al., 2004; Ströfer
et al., 2015) also utilized fMRI to analyze the neural processes
associated with misleading and deception. However, the research
incorporating Skin Galvanic Response (SGR) or electrodermal
activity (EDA) alongside fMRI (Ganis, 2003; Kozel et al., 2004;
Ströfer et al., 2015) provides mixed results, despite it being
primarily influenced by the sympathetic nervous system (SNS) but
also modulated by parasympathetic neurotransmitters (Coon and
Low, 2023) and very promising for real-time stress analysis (Setz
et al., 2010) with machine learning techniques (Rahma et al., 2022).

Additionally, studies investigating breathing with HRV (Meehan
and Shaffer, 2024), and under cognitive stress and deception
(Grassmann et al., 2016; Kaplan et al., 2023; Kurohara et al., 2001)
underscore the necessity for further research to corroborate and
extend upon these findings. There is a growing trend in employing
unsupervised algorithms to refine the way for personalized
diagnostics and deception detection (Celniak et al., 2023; Chang
and Chen, 2023; Constâncio et al., 2023; Khalil et al., 2022).

Physiologically, in pupillary function, the SNS uses alpha-
1 adrenergic receptors to dilate the pupil via the superior
cervical ganglion. The parasympathetic nervous system
(PNS) uses M3 muscarinic receptors to constrict the pupil
via the Edinger-Westphal nucleus and oculomotor nerve
(cranial nerve III) (Ferencová et al., 2021; May et al., 2019).
Sympathetic signals contract radial muscles with norepinephrine,
while parasympathetic signals contract circular muscles with
acetylcholine, demonstrating precise regulation of pupil size.
Interestingly, these systems show high coherence of switching
in certain reactions. The coherence of pupillometry and HRV
parameters, as it was mentioned in previous works (Ma et al., 2024;
Macatee et al., 2017; Shi et al., 2022), provides insights warranting
further research of SNS-PNS balance and potential therapeutic
targets for mental states.

The coherent functioning and imbalances of the ANS branches
are investigated to gain a better understanding of their distinct
properties in depression, epilepsy, schizophrenia, post-Covid
conditions, and healthy volunteers (Asarcikli et al., 2022; Buchholz
et al., 2017; McCraty and Zayas, 2014; Sgoifo et al., 2015; Stogios
et al., 2021; Udupa et al., 2007). The regulation of the heart
rate, breathing, skin conductance, and other vegetative functions,
signal intensity in both sympathetic and parasympathetic ganglia is
modulated by specific subtypes of nicotinic acetylcholine receptors
(nAChRs) such as α3β4, α7, and α4β2 (Halder and Lal, 2021; Ho
et al., 2020; Scholze and Huck, 2020; Tizabi et al., 2023), facilitating
fast synaptic transmission. Additionally, peripheral signal intensity
is regulated by inhibitory alpha-2 adrenergic receptors (Drouin
et al., 2017), alongside the balance between sympathetic and
parasympathetic inputs. In the heart, this equilibrium is governed
by sympathetic beta-1 adrenergic receptors and parasympathetic
M2 muscarinic acetylcholine receptors (Bernstein et al., 2011;
Harvey and Belevych, 2003). The oculomotor dynamics involving
cranial nerves IV (trochlear nerve) and VI (abducens nerve)
are part of complex neural circuits (Siegelbaum, 2021). The
non-invasive regulation and analysis of ANS responses provide
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additional insights for understanding individual stress-coupling
behavior.

Despite advancements, gaps remain in understanding of the
consistency and interplay among physiological measures (Iacono
and Ben-Shakhar, 2019; Kozel et al., 2004). This study aims to
provide an integrated understanding for leveraging the potential of
neurophysiological diagnostics. As the size of the pupil is influenced
by both the sympathetic and parasympathetic branches of the
nervous system, we theorized that changes in pupil size dynamics
under cognitive load, when combined with misleading feedback,
can predict individual behavior, as well as ANS reactions that
reflect specific adaptation to cognitive stress. In order to examine
this, we utilized an unsupervised machine learning method to
identify clusters of individuals differentiated by the dynamics
of pupil dilation, and then evaluated their ANS responses in
relation to reaction time, performance, and self-esteem indicators
during cognitive tasks. By utilizing high-resolution pupillometry,
oculomotor metrics, HRV, respiratory and EDA along with
behavioral parameters, and focusing on reactions to deceptive
stimuli under increasing cognitive load, this study contributes to
the development of precise pupillometry-based diagnostic tools by
investigating the complex interrelation of cognitive and autonomic
nervous system responses.

2 Materials and methods

2.1 Participants

A cohort of 73 individuals, initially recruited between the ages
of 18 and 45 years, participated in the study. After removing
3 individuals due to technical issues in their data recordings,
70 subjects (26.17 ± 8.44 years, 25 males and 45 females) were
included in the final analysis. Participants were invited via social
networks and the faculty’s public website. Uniform assessments,
consisting of questionnaires and medical histories, were conducted
for all participants following a standardized protocol that ensured
confidentiality and data anonymization. All participants signed the
informed consent agreement prior to participation, and all the data
were anonymized. The study adhered to the ethical statement of
the Declaration of Helsinki and the study was approved by the
local ethics committee of the institute. To minimize physiological
variations that could influence the results, participants were
instructed to abstain from consuming caffeine (coffee and tea) and
nicotine (smoking) for at least 12 h before the experiment.

2.2 Preliminary assessment

The participants underwent a detailed anamnestic review to
report their smoking habit and questionnaires. Smoking was
assessed using a binary scale, where ’0’ indicated no smoking during
the individual’s last year and ’1’ indicated the presence of any
smoking, vapes, hookah or shisha on a regular basement in the
past year. Preliminary assessments included the Beck Depression
Inventory (BDI-II) (Beck, 1961; Beck et al., 2011), The Epworth
Sleepiness Scale (ESS) (Johns, 1991) to assess the excessive daytime
sleepiness, Trait Version (STAI) by Spielberger (Spielberger, 2012;

Spielberger and Reheiser, 2009), to differentiate between state and
trait anxiety.

2.3 Stimuli and procedure

For inducing cognitive load, we employed the cognitive Colour
Matching Task (CMT) (Arsalidou et al., 2010). Participants were
instructed to view images of colored balloons and compare each
with the preceding one to identify color matches. Key 1 of the
computer keyboard was designated for matches, and key 2 for
mismatches, with a primary emphasis on color rather than position.
The task consists of three blocks (Block 1, Block 2, and Block 3),
each comprising six escalating difficulty levels (Level 1 to Level 6).
Each level includes 17 trials, totaling 102 samples per block (306
samples for 3 blocks). It commences with recognizing a single color
change (Level 1) in an image with balloons and escalates up to
six color changes (Level 6). Each block took about 7 min, varying
with response times. The total experiment lasted up to 24 min
per participant, with 30-min breaks between blocks. Participants
received immediate feedback after each response. The experiment
included deceptive incorrect feedback in Block 2, levels 3–6. After
finishing a level, participants assessed their self-esteem on a 5-
point scale regarding their task performance, with ratings from 1
(many errors) to 5 (perfect execution). All participant responses
were documented and subsequently analyzed in relation to their
satisfaction with task completion.

We assessed how participants managed cognitive load by
correlating their physiological responses with their correct answers
and time they spent. Participants’ rewards included a base amount
for participation, supplemented by a performance-based bonus
calculated according to the number of correct answers, following
the methodology employed in the pilot studies (Portnova et al.,
2023; Proskurnina et al., 2023).

2.4 Recording and signal processing

Eye-tracking data, include pupillometry, oculomotor and time
of response parameters, were acquired with EyeLink Portable
Duo SR Research eye-tracker with 2 ms temporal resolution (at
500 Hz sampling rate) (Mississauga, ON, Canada: SR Research
Ltd., 2020) in a head-stable mode. Optimizing the frequency
resolution to 10 Hz is generally recommended for data analysis and
storage (Laeng and Alnaes, 2019; Steinhauer et al., 2004) or 50 Hz
downsampling (Van Rij et al., 2019), but other approaches are also
applied (Hershman et al., 2023; Mathôt and Vilotijević, 2022). We
averaged the pupil size data for each trial exposition lasting a few
seconds, so we did not need the sampling rate of 10 Hz. in this
study we were not interested in momentary reactions of the pupil,
but focused on the more longitudinal coarse-grained dynamics of
the reaction to increasing cognitive load throughout the entire
experiment, allowing us to understand the reaction pattern. The
research demonstrated effects on function processing at frequencies
up to 200 Hz for gazes and 50 Hz for pupillometry (Kucewicz
et al., 2018). Additionally, studies (Naber et al., 2013; Graff et al.,
2019) revealed robust responses at 500 Hz in the visual system and
significant temporal processing at 250 Hz in the auditory system,
respectively.
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We investigated the participants’ pupillometry dynamic
patterns in response to increasing difficulty, clustering them to
analyze ANS responses. Consequently, we averaged the pupil
size over the duration of each trial. The subjects performed a
total of 306 trials, resulting in a dataset comprising 306 time-
ordered measurements of pupil size. We analyzed these datasets
to identify patterns in response to increasing complexity, the
number of tasks completed, and the presence of false feedback in
Block 2 at difficulty levels 3 to 6. This approach eliminates the
necessity for intermediate downsampling from 500 Hz to 10 Hz and
demonstrates the application of the k-means clustering method in
pupil dynamics analysis.

The process of normalization was carried out by computing
the mean pupil size and the standard deviation of the pupil size
for each participant over the entire test period. Subsequently, each
individual measurement of the participant’s pupil size was adjusted
by subtracting the mean pupil size of the participant and then
dividing the difference by the standard deviation of the participant’s
pupil size. This procedure yielded the normalized pupil size for each
participant (Fink et al., 2023).

Stimuli sequence and data for the analysis of behavioral
responses were obtained using Experiment Builder 2.3.1
synchronized with electrocardiogram (ECG) and EDA, breathing
parameters (RSP) and skin conductance response (SGR). ECG,
RSP and SGR/EDA data were continuously recorded to assess
autonomic nervous system reactions using a rheograph-
polyanalyzer RGPA-6/12 (Medicom-MTD, Taganrog, Russia),
with a sampling rate of 250 Hz and with the following filtration
ranges: 0.5–75 Hz for ECG, 0.05–2 Hz for SGR/EDA and
0.05–5 Hz for RSP.

ECG measurements utilized sensors strategically placed on
the right and left wrists, as well as the right ankle. The QRS
complexes in the ECG signal were identified based on their
gradient steepness, with R-peaks recognized as local maxima
(Brammer, 2020; Makowski et al., 2021). The ECG rough
signal was preprocessed with HRV BioPsyKit, known for its
artifact detection capabilities (Richer et al., 2021), with fifth-
order Butterworth high-pass filter with a cutoff frequency of
0.5 Hz was applied, in combination with a 50 Hz power line
to filter additional peaks (Berntson et al., 1990). Following the
initial processing with Neurokit2 (Makowski et al., 2021) for
the analysis of HRV, the metrics derived from the time-domain,
frequency-domain analyses include the following: MeanNN
(mean of normal-to-normal RR peaks intervals) reflecting vagal
parasympathetic activity, SDNN (standard deviation of normal-
to-normal intervals) higher values indicate better autonomic
function, RMSSD (root mean square of successive differences,
indicating parasympathetic activity), LF (low frequency power),
associated with both sympathetic and parasympathetic activity,
but higher values may indicate increased sympathetic activity;
HF (high frequency power) linked to parasympathetic activity;
LF/HF ratio (low frequency/high frequency ratio) indicate the
balance between sympathetic and parasympathetic activity and
higher values suggest greater sympathetic dominance (Task Force
of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, 1996; Pham et al., 2021;
Shaffer and Ginsberg, 2017).

The SGR/EDA sensors were placed on the distal phalanx
of the index and ring fingers of the left hand and the RSP

abdominal sensor was placed on the diaphragm area. For the
analysis of and respiratory and skin conductance parameters (RSP
Amplitude Mean, RSP Phase Duration Expiration, RSP Phase
Duration Inspiration, RSP Phase Duration Ratio, RSP Rate Mean
and SCR Peaks Amplitude Mean, SCR Peaks Number, respectively)
was employed Neurokit2 software.

2.5 Machine learning clustering method

The pupil size data were normalized for mean and variance
for each participant to eliminate individual differences in pupil
size from consideration before clustering. Furthermore, the data
preprocessed in Python included a stage dedicated to data
cleansing, which involved the removal of anomalies and missing
values. The PyDS package was utilized to detect outliers in the data,
employing the unsupervised method known as Isolation Forest
(Eze et al., 2023; Lai et al., 2021; Laptev et al., 2015; Liu et al., 2008).

The study aimed to divide participants into groups based
on changes in pupil size dynamics relative to task difficulty.
Each participant is represented by a vector of 306 parameters,
which are the averaged pupil sizes over the representations.
Each element of this vector corresponds to the mean pupil size
value across a presentation, thus representing the trajectory of
pupil size fluctuations throughout the experiment. This pupil size
vector underwent a smoothing process via convolution, using a
window size aligned with the number of representations at each
difficulty level.

We applied K-mean clustering to these vectors, resulting in
two distinct clusters with significant differences in pupil size
dynamics in response to task complexity. The K-Means algorithm
(MacQueen, 1967) from the tslearn library (Tavenard et al., 2020)
was employed for clustering, with Euclidian distance to measure the
dissimilarity between vectors. The K-Means algorithm partitions
data into a set number of clusters by assigning each point to
the nearest centroid, iteratively adjusting centroids to minimize
within-cluster variance until stabilization. The clustering resulted
in two groups of participants with markedly different pupil size
dynamics corresponding to the complexity of the task. Previously,
the clustering algorithm (Shi et al., 2021; Yuan and Yang, 2019) was
utilized in the pilot study (Alshanskaia and Martynova, 2023).

2.6 Statistical analysis

In this study, we computed descriptive statistics for two
clusters, including the mean and standard deviation. The normality
of the data distribution was assessed using Shapiro-Wilk tests.
For normally distributed data, we utilized t-tests (with reported
T-statistics and p-values) and estimated effect sizes using d,
along with confidence intervals to assess statistical difference
between two cluster ANS patterns and behavioral features. For
data that did not follow a normal distribution, we applied non-
parametric methods such as the Mann-Whitney U test (with
reported test statistics and p-values). Effect sizes for non-normally
distributed data were determined using Rank-biserial correlation
(RBC), Common Language Effect Size (CLES), and the correlation
coefficient (r), each with corresponding confidence intervals. For
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ranked parameters, the Chi-squared test was utilized. All analyses
were conducted using Python with libraries such as NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), and Pandas (McKinney,
2010), computational tools for statistical testing and effect size
calculation.

3 Results

In the study, two distinct clusters (groups of individuals) were
identified based on pupillometry dynamics (see Figure 1). Cluster
0 consisted of 33 participants (9 males, 24 females) with an average
age of 24.6 ± 6.7 years old. Cluster 1 included 37 participants (16
males, 21 females), also with an average age of 27.6 ± 9.6 years
old. These clusters were used to compare other psychological and
vegetative parameters between them, to find distinct parameters
and properties, and to see the general generalizing picture.

3.1 Psychological assessment results

For psychological and preliminary assessment, statistical
significance was found in the Epworth Sleepiness Scale, indicating a
higher average sleepiness level for Cluster 0 (9.78 ± 3.38) compared
to Cluster 1 (8.03 ± 3.81). The comparison of smoking status
between clusters also showed statistical significance (χ2 = 3.854,
p = 0.049) (see Tables 1, 2). There was no statistical significance
for sleep start time before the task, wake-up time before the task,
time of sleep duration, Taylor anxiety scores, body mass index, Beck
Depression scores, Spielberger State Anxiety scores, Spielberger
Trait Anxiety, and deceptive feedback noticed after the task (which
was taken at the end of the examination).

3.2 HRV metrics

3.2.1 Time domains of heart rate variability
The MeanNN in Cluster 0 consistently displayed higher values

than Cluster 1, reaching a peak at 870 ms in Block 2, Level 3 with
the start of deceptive feedback. Significant statistical differences
were observed in almost all blocks, except for Block 1, Level 5
and Block 2, Level 2 where the differences were not significant.
Notably, both clusters peaked at Block 2, Level 3, when misleading
deceptive feedback was introduced, Cluster 1 peaked at a lower
value of 801 ms.

In the SDNN parameter, Cluster 0 also demonstrated higher
values throughout the task, with significant differences especially
notable at the beginning and end of the blocks. However, only Block
1 Level 5, Block 2 Level 2, Block 2 Level 4, and Block 2 Level 6
showed statistically significant differences. Block 3 presented the
highest values for Cluster 0 with significant differences particularly
evident in Levels 1, 4, and 5. No pronounced reaction to
deception was observed.

For the RMSSD metric, Cluster 0 demonstrated higher mean
values than Cluster 1 across all experimental blocks and levels,
with statistically significant differences observed in each instance.
Specifically, Cluster 0 reached its peak RMSSD value of 49.6 ms
during Block 3, Level 1, and recorded its minimum at 41.1 ms in

Block 3, Level 6. By comparison, Cluster 1 attained its maximum
mean RMSSD at 34.9 ms in Block 3, Level 1, and exhibited its
minimum value of 29.6 ms in Block 3, Level 4. No pronounced
physiological responses to deception were detected. (See Figure 2
and Supplementary Tables 1–3 for detailed statistical analysis for all
time domains).

3.2.2 Frequency domains of heart rate variability
For the HRV HF, Cluster 0 consistently showed higher values

than Cluster 1 across all blocks. Significant statistical differences
between the clusters were observed in Block 1, Levels 1, 3, 4.
Similarly, in Block 2, significant differences were noted in Levels
1, 3; while in Block 3, Levels 3 and 4 demonstrated statistically
significant disparities. The highest mean value for Cluster 0 was in
Block 2 Level 1 (0.051) and the lowest was in Block 2 Level 6 (0.041).
For Cluster 1, the highest mean was in Block 2 Level 2 (0.044), while
the lowest was in Block 2 Level 3 (0.026) with the deceptive feedback
with statistical significance between groups.

In terms of HRV LF, The both clusters showed increasing
trends in HRV LF values across blocks, with Cluster 1 exhibiting
higher peaks and greater variability, particularly in Block3. The
only statistically significant difference was observed in Block 3,
Level 1, indicating that Cluster 1 had higher HRV LF values. No
pronounced reaction to deception was observed.

Regarding the HRV LF/HF ratio, Cluster 0 consistently
displayed lower mean values compared to Cluster 1 across all
blocks. Statistically significant differences were found in Block 1,
Levels 3 and 4; in Block 2, Levels 3, 5, and 6; and in Block 3, Levels
3, 4, 5, and 6. No specific reaction to deception was observed.

(See Figure 3 and Supplementary Tables 4–6 for detailed
statistical analysis for all frequency domains).

3.3 Oculomotor metrics

3.3.1 Normalized pupil size parameters
The data on normalized maximum pupil size indicates that

Cluster 0 began each block with higher initial values compared
to Cluster 1, which decreased and stabilized toward the end.
Conversely, Cluster 1 generally displayed its lowest values at the
start of the blocks, with trends increasing in response to rising
difficulties. Significant differences were observed at the start of
every block (Block 1, Levels 1 and 2; Block 2, Level 1; Block
3, Level 1) and during levels with deceptive feedback (Block 2,
Levels 3, 4, 5, 6).

In the normalized pupil size mean measurements across
all blocks, Cluster 0 consistently demonstrated higher mean
values initially, followed by a pronounced decrease compared
to Cluster 1, which showed increasing trends and greater
variability. Statistically significant differences were noted in Block
1, Levels 1, 2, 5, and 6. For Block 2, both clusters peaked,
with Cluster 0 reaching its maximum mean at Block 2, Level
3 with deceptive feedback. Cluster 1 peaked at the same level.
Very significant differences were observed in Block 2, Levels
1, 3, 4, and 5. In Block 3, Cluster 0 exhibited variation from
a low to a high until the end, while Cluster 1 demonstrated
opposite trends. Significant differences were observed in Block
3, Levels 1 and 4.
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FIGURE 1

Pupillometry dynamics via k-means clustering across three blocks of six escalating cognitive levels each, with deceptive feedback in Block 2, levels 3
to 6. Cluster 0 exhibits significant initial responses at task onset. Cluster 1 shows pronounced pupillary responses to deceptive feedback in Block 2.

TABLE 1 Comparative analysis statistics of physiological and psychological variables between Cluster 0 and Cluster 1 by levels.

Variable Cluster 0 mean
(SD)

Cluster 1 mean
(SD)

Statistics Effect size
(CI)

Additional
statistics

Body mass index 21.7 (2.9) 22.3 (2.8) p-value = 0.39
Student’s t = −0.87

d = −0.208 [−0.687,
0.271]

r = −0.122,
CI r = [−0.356, 0.113]

Time of sleep
duration (min)

469.8 (57.5) 466.4 (83.0) p-value = 0.704
U = 624

RBC = −0.054,
CLES = 0.527

Epworth’s test 9.8 (3.4) 8.0 (3.8) p-value = 0.046 U = 738 RBC = −0.281,
CLES = 0.641

Taylor anxiety 20.2 (8.4) 20.1 (9.2) p-value = 0.916
U = 620

RBC = −0.016,
CLES = 0.508

Beck Depression 9.6 (7.3) 9.1 (6.5) p-value = 0.76 Student’s
t = 0.31

d = 0.075 [−0.406, 0.557] r = 0.005, CI r = [−0.231,
0.241]

Spielberger State
Anxiety

43.7 (14.3) 41.8 (11.7) p-value = 0.554 U = 605.5 RBC = −0.085,
CLES = 0.543

Spielberger Trait
Anxiety

44.2 (9.8) 45.3 (9.7) p-value = 0.655 U = 522 RBC = 0.065,
CLES = 0.468

The bold value indicates statistical significance observed in the Epworth’s test result, with a p-value = 0.046 (U = 738, RBC = –0.281, CLES = 0.641).

In the normalized pupil size minimum parameters across all
tasks, Cluster 0 consistently exhibited higher initial mean values
with subsequent decrease and stabilization, in contrast to Cluster
1, which mirrored this behavior in other pupillometry properties.
Pronounced statistically significant differences between the clusters

were observed in Block 1, Levels 1, 4, and 6. For Block 2, Cluster
0 showed lower and less pronounced trends compared to Block
1, whereas Cluster 1 started lower and peaked towards the end.
Significant disparities were noted in Block 2, Levels 1, 4, and 5.
Similar trends were repeated in Block 3. Statistically significant
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TABLE 2 Chi-square analysis of self-reported behaviors and conditions.

Self-Reported
Information

χ 2 p-value

Sleep start time before task (1−Early,
2−Late)

0.002 0.962

Wake up time before task (1−Early,
2−Late)

0.421 0.516

Smoking (0−No, 1−Yes) 3.854 0.049

History of head injury (0−No,
1−Yes)

3.674 0.055

Presence of sleep disorders (0−No,
1−Yes)

0.085 0.771

Deceptive feedback noticed (0−No,
1−Yes)

0.017 0.897

The bold value indicates statistical significance in the variable “Smoking (0–No, 1–Yes),” with
a test statistic of 3.854 and a p-value = 0.049.

differences were found in Block 3, Levels 1, 2, and 4. (See Figure 4
and Supplementary Tables 7–9 for detailed statistical analysis).

3.3.2 Saccade parameters
Throughout all tasks, Cluster 1 exhibited higher mean values

for saccade count compared to Cluster 0. Both groups showed
a trend of increasing saccade counts from the beginning to the
end of every block. Significant differences were noted in all levels
except Block 1, Level 1, and Block 3, Level 6 (beginning and the
end of the task).

For saccade velocity mean, Cluster 1 consistently demonstrated
higher mean values in degrees per second (◦/s) compared to Cluster
0 throughout all blocks. In Block 1, Cluster 0 showed a decreasing
trend from the beginning to the end, which was the same for
Cluster 1. Statistically significant differences between the clusters
were identified only in Block 1, Level 4, with Cluster 0 having lower
parameters. For Block 2, both clusters had the highest mean in
Block 2, Level 3 with deceptive feedback, but without statistical
differences. In Block 3, the mean values for both clusters ranged
from high to low.

Throughout all blocks, Cluster 1 consistently exhibited higher
mean values of saccade duration sum compared to Cluster 0. Both
Cluster 0 and Cluster 1 demonstrated increasing trends. In Block 1,
Cluster 0’s trend ranged from a minimum to a maximum, with an
increasing difference that decreased afterward. Cluster 1 showed a
similar trend but with a prolonged response. Statistically significant
differences between the clusters were identified in Block 1 Level 5
and Level 6. In Block 2, both clusters peaked in Block 2 Level 3, at
the start of deceptive feedback. Significant disparities were observed
in all levels in Block 2, with the most significant difference in Block
2 Level 3 (t-test = −3.42, p-value = 0.001), where Cluster 0 had
lower values. In Block 3, both clusters ranged from a low to a high.
Significant differences were noted in all levels except the last one.

In all the blocks, Cluster 0 consistently demonstrated lower
mean values of saccade amplitude mean compared to Cluster
1. Both clusters demonstrated pronounced fluctuations at the
beginning of the task in the first levels. In Block 2, both clusters
had the highest mean in Block 2 Level 3 with the start of deceptive
feedback, but a statistically significant difference was observed
only in Block 2 Level 5. In Block 3, significant differences were

noted in Block 3 Level 2 and Block 3 Level 4. (See Figure 5 and
Supplementary Tables 10–13 for detailed statistical analysis for all
saccade properties).

3.3.3 Fixation parameters
In all the blocks, Cluster 0 consistently exhibited higher mean

values of fixation duration mean compared to Cluster 1. Both
clusters had decreasing trends from the start to the end of every
block. Statistically significant differences between the clusters were
observed across all blocks. In Block 2 Level 3, where deception
detection started, the most significant difference between groups
was observed (t-test = 4.26, p = 0.0001).

Cluster 1 consistently demonstrated higher mean values of
fixation count compared to Cluster 0, with a rising trend for both
clusters. Significant differences were observed throughout all blocks
except in the initial Block 1 Level 1. The highest significance was
especially noted in levels with the false feedback: Block 2 Level
3 (t-test = −4.58, p = 0.00002), Block 2 Level 4 (U-test = 248.5,
p = 0.00002), Block 2 Level 5 (U-test = 275.5, p = 0.00008), and
Block 2 Level 6 (t-test = −3.56, p = 0.001). In Block 3, the trends
indicate a gradual increase in mean values for both clusters across
the block. (See Figure 6 and Supplementary Tables 14, 15 for
detailed statistical analysis for fixation properties).

3.3.4 Blink parameters
Cluster 1 demonstrated higher mean blink counts compared to

Cluster 0 throughout all blocks. Both clusters exhibited increasing
trends from the beginning to the end of each block. Statistically
significant differences between the clusters were identified in all
blocks and levels except for Block 1 Level 1 and Block 3 Level 6.
In the deceptive levels (beginning in Block 2 Level 3), statistical
significance became pronounced.

In all three blocks, Cluster 1 consistently had higher blink
durations across the study except for the initial Level 1 in Block 1,
with significant disparities in the early segments of Blocks 2 and
3. During Block 1, both clusters demonstrated a similar slightly
increasing and fluctuating pattern. No statistically significant
differences were observed between the clusters in Block 1. In Block
2, the trend was similar to the first block, with statistical significance
observed only in Block 2 Level 1. At the beginning of Block
3, Cluster 0 had statistically significantly lower blink durations
compared to Cluster 1. Statistically significant differences between
the clusters were found in Block 3 Levels 1, 2, and 3 (See Figure 6
and Supplementary Tables 16, 17 for detailed statistical analysis of
blink properties).

3.4 Cognitive metrics

3.4.1 Self-esteem
Cluster 1 demonstrated higher self-esteem parameters

compared to Cluster 0 throughout all blocks, with the exceptions
of Block 1, Level 1, and Block 3, Levels 1 and 6. In both clusters,
self-esteem decreased with the increase in difficulty. The lowest
self-esteem score for Cluster 0 was observed in Block 2, Level 6
(2.2) at the end of the deceptive period, and the highest was in
Block 3, Level 1 (4.8). For Cluster 1, the highest scores were in
Block 2, Levels 1 and 2 (4.8), and the lowest was in Block 2, Level

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1445697
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1445697 August 29, 2024 Time: 12:39 # 8

Alshanskaia et al. 10.3389/fnins.2024.1445697

FIGURE 2

Time Domains of HRV Metrics. (A) HRV MeanNN for clusters 0 and 1, displaying mean normal-to-normal intervals (ms). (B) HRV SDNN showcasing
variability between clusters across blocks, measured as the standard deviation of NN intervals (ms). (C) HRV RMSSD for clusters 0 and 1, highlighting
short-term variability, calculated as the root mean square of successive differences (ms).

6 (2.4), similar to the trends in Cluster 0. The only statistically
significant difference between the clusters was in Block 1, Level
2 (t-test = −2.07, p = 0.04), Block 2, Level 2, and Block 2, Level
3 at the start of the deceptive trial. In Block 3, no significant
differences were noted (see the table with the detailed statistics in
the supplementary Table 18).

3.4.2 Response time
Regarding the time of response, Cluster 0 demonstrated lower

mean values compared to Cluster 1, with one exception in Block
1 Level 1. Both clusters demonstrated increasing trends in time
with rising difficulty. The slowest reaction time for Cluster 0 was
in Block 2 Level 6 (end of the deceptive trial), while the fastest
reaction time was observed in Block 3 Level 1 (beginning of the
last block in the task). For Cluster 1, the fastest reaction time was
observed in Block 3 Level 4, while the highest mean was at the end
of the trial with deceptive falls feedback in Block 2 Level 6, similar
to the other cluster.

Statistically significant differences between the clusters were
observed in Block 1 Levels 3, 4, 5, and 6; Block 2 Levels 3, 4,
and 5 (false feedback trial); and Block 3 Levels 2, 3, 4, and 5.
There was no statistical significance at the beginning of every

block and at the end of the deceptive trial. Total_Time exhibited
higher mean values for Cluster 1 compared to Cluster 0, with a
statistically significant difference (p-value = 0.003), where Cluster
0 had a pronounced shorter reaction time. See Figure 7 and
Supplementary Table 19 for detailed statistical analysis of time
properties.

3.4.3 Mistakes
Cluster 0 generally demonstrated a higher mistake rate than

Cluster 1 across all tasks. Across the entire dataset, both clusters
demonstrated increasing trends, with the highest mistake rate
at the end of the blocks (see Figure 7). Significant differences
were noted in Block 2 Level 2 (U-test = 707.5, p-value = 0.043).
Detailed statistical analysis of mistake properties is provided in the
Supplementary Table 20.

3.5 Other ANS metrics

In the present study, no statistically significant differences
between clusters were observed for all analyzed respiratory and
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FIGURE 3

Frequency Domains of HRV Metrics. (A) HRV HF for clusters 0 and 1, showing high-frequency components, associated with parasympathetic activity.
(B) HRV LF comparing low-frequency components across clusters, reflecting both sympathetic and parasympathetic influences. (C) LF/HF ratio
depicting autonomic balance between clusters, a unitless measure.

skin conductance response (SCR) parameters (see Figure 8,
Supplementary Figures 7, 8 and Supplementary Tables 21–27 for
detailed statistical analysis of ANS metrics in SGR dynamics).

3.6 False feedback detection

Regarding reactions to false feedback, individuals from Cluster
1 demonstrated distinct peaking reactions compared to Cluster 0.
HRV MeanNN peaked in Block 2 Level 3 (870 ms) in cluster 1,
showing a statistically significant difference from cluster 0. Unique
to cluster 1 were the minimum HRV HF (0.026) and maximum
normalized pupil size (0.71), both in Block 2 Level 3, without
corresponding peaks in cluster 0. Cluster 1 also peaked in saccade
velocity mean (107.7 ◦/s) in Block 2 Level 3, though this was
not statistically different from cluster 0. Both clusters peaked in
saccade amplitude mean in Block 2 Level 3, with cluster 0 at
1.88 and cluster 1 at 2.03, but without statistical significance.
These findings highlight that cluster 1 exhibits more pronounced

peaking parameters and distinct autonomic and ocular responses,
suggesting a more reactive profile compared to cluster 0 (see the
tables with the statistics in the Supplementary Tables 1–27).

3.7 Parameters by blocks

The generalized analysis of the data was conducted by
blocks. This analysis identified several parameters with statistically
significant differences between clusters, as indicated by p-values less
than or equal to 0.05. The HRV MeanNN showed significance in
block 1 (p-value = 0.044), block 2 (p-value = 0.017), and block 3
(p-value = 0.015). The HRV SDNN was significant in block 3 (p-
value = 0.030). For HRV RMSSD, significance was found in block
1 (p-value = 0.003), block 2 (p-value = 0.010), and block 3 (p-
value = 0.008). The HRV HF demonstrated significance in block
1 (p-value = 0.001), block 2 (p-value = 0.008), and block 3 (p-
value = 0.034). The HRV LF/HF parameter showed significance
in block 1 (p-value = 0.012), block 2 (p-value = 0.004), and block
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FIGURE 4

Oculomotor Metrics: Normalized Pupil Size. (A) Max normalized pupil size variations for clusters 0 and 1. (B) Mean normalized pupil size, showing
average changes. (C) Min normalized pupil size, detailing minimum pupil size fluctuations.

3 (p-value = 0.003). The normalized pupil size mean parameter
exhibited significance in block 2 (p-value = 0.001) and block 3
(p-value = 0.023).

For saccade count, blocks 1, 2, and 3 all showed significance
with p-values ≤ 0.000. The saccade duration sum parameter
displayed significance in block 1 (p-value = 0.043), block 2 (p-
value = 0.002), and block 3 (p-value = 0.004). The fixation duration
mean parameter was significant in block 1 (p-value = 0.001),
block 2 (p-value = 0.000), and block 3 (p-value = 0.000). The
fixation count for blocks 1, 2, and 3 all displayed significance with
p-values of 0.000. Similarly, blink count for blocks 1, 2, and 3 all
showed significance with p-values of 0.000. Finally, the Sum Time
parameter showed significance in block 1 (p-value = 0.004), block
2 (p-value = 0.003), and block 3 (p-value = 0.004). See the tables
with the statistics and figures in the Supplementary Tables 1–27,
and Supplementary Figures 1–8.

4 Discussion

Our study investigated the relationship between pupil dilation
dynamics under cognitive load and various physiological and
behavioral responses, grouped into distinct clusters and analyzed
by levels. The findings reveal significant differences between

the clusters, particularly in HRV indices, oculomotor behavior,
and reactions to false feedback (Figure 9). The study links
oculomotor metrics with heart rate, aligned with previous research
(Hoogerbrugge et al., 2022). We assume the data analysis by
levels provides more detailed information on statistical differences
and the distinctions between Cluster 0 and Cluster 1. When
considering more general indicators by block rather than by level,
some statistically significant differences are not as well captured.
However, the key differences remain statistically significant when
analyzing the data by block.

Individuals in Cluster 0, characterized by their pupil dilation
dynamics under cognitive load, exhibited higher HRV indices.
Specifically, Cluster 0 demonstrated higher values in MeanNN,
SDNN, RMSSD, and HRV HF, and lower values in HRV LF and the
HRV LF/HF ratio in Block 3. These results suggest a predominance
of parasympathetic activity in Cluster 0, indicative of a more relaxed
autonomic state (Pham et al., 2021). Elevated parasympathetic
tone and HRV indices imply greater cardiovascular stability and
a superior ability to adapt to stress, reflecting efficient autonomic
regulation.

Conversely, Cluster 1 showed lower values in HRV MeanNN,
SDNN, RMSSD, and HRV HF, with higher values in HRV
LF and the HRV LF/HF ratio in Block 3. This pattern is
indicative of sympathetic dominance, reflecting higher stress levels
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FIGURE 5

Saccade Metrics. (A) Saccade count across clusters, emphasizing eye movement frequency. (B) Mean saccade velocity, indicating average speed of
saccades (degrees per second). (C) Sum of saccade durations, showing total time of saccades (ms). (D) Mean saccade amplitude, reflecting average
magnitude of eye movements.

(Shaffer and Ginsberg, 2017). The elevated sympathetic activity in
Cluster 1 could correspond to a heightened state of alertness or
arousal, potentially linked to sustained cognitive effort or stress.
The differential autonomic responses between the clusters highlight
the variability in individual physiological adaptation to cognitive
load, which might be aligned with lower rates of Epworth Sleepiness
Scale scores.

Cluster 0’s higher normalized pupil sizes (max, mean, min) and
fixation duration mean at the beginning of the task also support
the interpretation of initial heightened arousal and cognitive
engagement. The following decrease in these parameters may be
explained by losing engagement in cognitive load or be consistent
with the physiological autonomic shift (Ferencová et al., 2021).

Differences in oculomotor behavior further elucidate the
distinct autonomic profiles of the clusters. Cluster 0 exhibited
a lower fixation count, saccade (count and velocity, amplitude,
and duration), and blink parameters. These metrics suggest a
shift towards parasympathetic dominance and reduced autonomic
support, indicating a transition to a more relaxed state as the task

progresses, which may be caused by physiological specificity or
disengagement over time, aligning with a shift to a more energy-
efficient autonomic state (Skaramagkas et al., 2023).

Cluster 1, on the other hand, exhibited lower normalized pupil
size and fixation duration mean initially but showed increased
responses later. Their higher fixation count, saccade count, and
other metrics throughout the task suggest sustained or increased
cognitive engagement and SNS activation (Steinhauer et al.,
2004). This could reflect a persistent or escalating cognitive
load, possibly driven by different motivational or regulatory
mechanisms. The delayed but sustained oculomotor activity
aligns with their sympathetic dominance and lower HRV indices,
indicating prolonged cognitive effort and engagement.

Both clusters showed peaks in HRV MeanNN and saccade
amplitude mean in response to false feedback, with significant
differences observed. An increased MeanNN (R-R interval) is
indicative of a slower heart rate within physiological norms,
whereas a decreased interval corresponds to a faster heart rate or
lower HRV. Furthermore, increased cognitive or stress load results
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FIGURE 6

Fixation and Blink Metrics. (A) Mean fixation duration, highlighting average time of eye fixations (ms). (B) Fixation count, detailing number of fixations
made. (C) Blink count, representing frequency of blinks. (D) Blink duration, showing average time of blinks (ms).

FIGURE 7

Performance Metrics: Mistakes and Time. (A) Mistake count per cluster across tasks. (B) Time taken for task completion, showing efficiency (ms).
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FIGURE 8

SCR (Skin Conductance Response) Metrics. (A) Mean amplitude of SCR peaks, detailing physiological response levels (microsiemens, µS). (B) Count
of SCR peaks, highlighting frequency of responses.

in the decreased HRV (Forte et al., 2019; Arakaki et al., 2023).
Cluster 1 also exhibited statistically significant lower peaks in HRV
HF and normalized pupil size max during deception. This suggests
a more pronounced physiological response to false feedback in
Cluster 1, characterized by increased sympathetic activity and
acute parasympathetic modulation. The lower HRV HF indicates
a diminished capacity for vagal regulation, while the decreased
pupil size max reflects heightened cognitive and emotional arousal,
consistent with a greater stress response to deception. These results
add an additional contribution to already existing data (Celniak
et al., 2023; Webb et al., 2009).

Behaviorally, individuals in Cluster 0 reported lower self-
esteem, faster reaction times, and a higher number of mistakes,
particularly with statistical significance in Block 2. These behavioral
traits may be linked to their physiological profile, indicating a
higher level of impulsivity or reduced cognitive control (Marshall,
2007), as well as lack of motivation. The initial high arousal
followed by a decline in engagement could lead to increased
errors and lower performance consistency, reflecting a potential
drop in sustained attention and cognitive resources. Cluster 0
participants, characterized by elevated HRV indices and heightened
oculomotor arousal at the beginning of tasks, exhibited a decline
in engagement over time. This decline was evident in reduced
time spent on task execution, less pronounced reactions to false
feedback, increased errors, and reduced performance consistency.
This pattern suggests a reduction in sustained attention and
cognitive resources, potentially linked to diminished cognitive
control due to a more relaxed condition and lower engagement.
Consequently, these participants demonstrated lower performance
and self-esteem.

Cluster 1, in contrast, reported higher self-esteem, longer
reaction times, and fewer mistakes, suggesting better cognitive
control and sustained engagement. The link of lower HRV
and longer time of the task aligned with previous research
(Tinello et al., 2022). Their physiological responses, characterized
by sympathetic dominance and sustained oculomotor activity,

support the interpretation of persistent cognitive effort and
higher engagement levels. Cluster 1 participants, with lower HRV
indices and sustained oculomotor activity, maintained prolonged
cognitive engagement and spent more time completing tasks. They
exhibited higher stress levels (lower HRV), which were reflected
in better task performance, fewer mistakes, and more stable self-
esteem. The observed discrepancies between clusters might be
attributed to the optimal level of stress required for effective
task solving, as posited by the Yerkes-Dodson law (Elbćk et al.,
2022; Calabrese, 2008). Performance increases with physiological
or mental arousal but only up to a point. When arousal becomes
excessive, performance diminishes (Portnova et al., 2023; Awada
et al., 2024). Cluster 1’s lower HRV and higher arousal levels may
indicate that their autonomic nervous system (ANS) was in a
more optimal state for cognitive tasks, facilitating better cognitive
control and sustained effort. The relationship between self-esteem
and task execution might be more closely associated with cognitive-
behavioral factors than purely autonomic parameters. Effective
performance may depend more on the ANS’s ability to switch
efficiently between states rather than simply maintaining high
HRV parameters. Future research should explore these dynamics,
considering both physiological and cognitive-behavioral aspects to
understand the complex interplay in cognitive task performance
with a personalized approach.

K-means clustering based on pupil size changes under cognitive
load revealed distinct behavioral traits and significant differences
in ANS reactions and eye-movement patterns among individuals.
Cluster 0 demonstrated higher HRV related to parasympathetic
activity and an initial sympathetic response, suggesting an efficient
but transient engagement. In contrast, Cluster 1 showed lower
HRV and sustained oculomotor activity, indicating prolonged
engagement and higher cognitive load. Cluster 0 exhibited higher
HRV indices and a transition to a relaxed state, indicating
parasympathetic dominance, while Cluster 1 showed lower
HRV indices and sustained cognitive engagement, reflecting
sympathetic dominance and higher stress or engagement levels.
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FIGURE 9

Comparative analysis of cardiac, oculomotor, and behavioral responses across two clusters, revealing distinct physiological and psychological
patterns related to stress responses. Statistical significance between clusters is marked by an asterisk (*). Cluster 0 consists of 33 individuals, average
age 24.5 ± 6.7 years, with 9 males and 24 females, and more smokers. Cluster 0 exhibits higher HRV MeanNN*, SDNN*, RMSSD*, HRV HF*, and HRV
LF in block 3*, HRV LF/HF Ratio*. The Epworth Test score is 9.78 ± 3.38. Cluster 0 has higher normalized pupil size (max, mean, min)* and fixation
duration mean* at the beginning, and lower fixation count*, saccade count*, velocity mean in block 1*, duration sum*, amplitude mean in blocks 2*,
3* and blink count*, duration in blocks 2*, 3*. Cluster 0 False Feedback Reaction with pronounced extremes throughout all the blocks with Peaks
Max: HRV MeanNN*, saccade amplitude mean. Cluster 0 has lower self-esteem* and time*, but higher mistakes in block 1, 2*. Cluster 1 consists of
37 individuals, average age 27.6 ± 9.6 years, with 16 males and 21 females, and fewer smokers. The Epworth Test score is 8.03 ± 3.81. Cluster 1
shows lower mean of HRV MeanNN*, SDNN*, RMSSD*, HRV HF*, HRV LF in block 3*, HRV LF/HF Ratio*. Cluster 1 has lower normalized pupil size
(max, mean, min)* and fixation duration mean* at the beginning with a pronounced response and higher values at the end. They have higher fixation
count*, saccade count*, velocity mean in block 1*, duration sum*, amplitude mean in blocks 2*, 3*, and blink count*, duration in blocks 2*, 3*.
Cluster 1 False Feedback Reaction with pronounced extremes throughout all the blocks with Peaks Max: HRV MeanNN*, saccade amplitude mean*,
saccade velocity mean; Peaks Min: HRV HF*, normalized pupil size max*. Cluster 1 has higher self-esteem* and time*, but lower mistakes in block 1,
2*.

Both clusters demonstrated distinct responses to false feedback,
with Cluster 1 displaying a more pronounced physiological
stress response.

In conclusion, this study enhances our understanding of
the relationship between ANS responses and cognitive load,
particularly regarding stress and deception detection. The distinct
modulation of sympathetic and parasympathetic activities provides
valuable physiological markers, contributing to more precise
diagnostic and therapeutic approaches. Integrating these findings
into clinical practices and wearable technology can improve
real-time monitoring and personalized mental health support,

advancing precision therapies and continuous patient well-
being monitoring.

4.1 Limitations

The present study, while offering valuable insights into
the modulation of ANS responses during cognitive load and
deception detection using K-means clustering for precision and
personalized assessment, is constrained by several limitations. The
variability in individual physiological and psychological responses
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underscores the need for larger and more diverse participant
groups in future research. The reliance on self-reported data
introduces potential biases, necessitating more detailed research
and refinement to ensure data accuracy and interpretation. Despite
instructing participants to abstain from smoking and caffeine-
containing substances for 12 h before the procedure and confirming
their compliance before the task, future research should include
non-invasive pre-experiment baseline assessments to objectively
verify abstinence and enhance the reliability of the results.
Methodological challenges, particularly in handling signal noise,
also present limitations. While preprocessing these signals is crucial
for data clarity, it may inadvertently lead to the loss of nuanced
physiological information. Despite these limitations, the study
offers valuable contributions to the understanding of autonomic
and oculomotor responses under cognitive load and deception
detection, as well as the coherence of autonomic systems with
behavioral outcomes. The distinct physiological and behavioral
responses provide an additional instrument for non-invasive
signals in distance assessment with a personalized approach. Future
research should aim to integrate advanced technologies such
as artificial intelligence and machine learning to enhance data
accuracy and interpretation. It is essential to acknowledge the
ethical considerations associated with the use of physiological data
and real-time analysis.

Our findings on pupillary dynamics and ANS patterns,
including HRV, can be translated into clinical practice and
various applications in industry, education, and the workplace.
This can be achieved through the development of remote
personalized diagnostic tools for real-time monitoring of cognitive
stress and performance. These tools would enable clinicians
and therapists in psychology, psychiatry, and neurology to
understand personalized ANS dynamics and adjust therapeutic
interventions promptly based on physiological and cognitive
feedback. Additionally, integrating these diagnostic tools into
wearable technology or ethical remote online webcam analysis
would allow continuous monitoring of patients or participants.
This supports the development of precision therapies, improves
care, and enhances self-care. This approach can be applied to online
education or analyzing and predicting personalized cognitive
performance at work, thereby managing cognitive stress and
optimizing cognitive performance. These applications have the
potential to enhance mental health support and patient well-being.

The potential for misuse of these technologies in web or
wearable device surveillance or unauthorized monitoring poses
significant ethical risks. Ensuring robust guidelines for the ethical
application of such technologies is paramount, emphasizing the
need for informed consent, data privacy, and the ability to
immediately recall access to personal data, thereby preventing
coercive practices. Future research should focus on developing
ethical frameworks that safeguard individual autonomy and
privacy while promoting the responsible use of physiological
monitoring tools.
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