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Electroencephalography source imaging (ESI) is an ill-posed inverse problem:

an additional constraint is needed to find a unique solution. The choice of

this constraint, or prior, remains a challenge for most ESI methods. This work

explores the application of supervised learning methods for spatio-temporal

ESI, where the relationship between measurements and sources is learned

directly from the data. Three neural networks were trained on synthetic data and

compared with non-learning based methods. Two distinct types of simulation,

each based on di�erent models of brain electrical activity, were employed to

quantitatively assess the generalization capabilities of the neural networks and

the impact of training data on their performances, using five complementary

metrics. The results demonstrate that, with appropriately designed simulations,

neural networks can be competitive with non-learning-based approaches, even

when applied to previously unseen data.
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1 Introduction

Electroencephalography (EEG) is a very popular method to characterize brain activity

by recording differences in electric potential on the scalp using electrodes. Its popularity

arises from the fact that it provides non-invasive, millisecond-resolved information that

can be related to the electrical activity in the brain. The electrical sources that generate

the scalp potential distribution are macrocolumns of similarly active neurons, typically

modeled by current dipoles (Nunez and Srinivasan, 2006). Numerical models of the

relationship between a current distribution modeling the brain activity and the potential

values at the electrode’s positions can be obtained by solving the EEG forward problem

multiple times and forming a leadfield matrix (Hallez et al., 2007). EEG source imaging

(ESI) is an inverse problem that aims to estimate the unknown brain activity (or current

source distribution) from known EEG measurements. Accurately solving the EEG inverse

problem would provide a recording of the brain activity that would be highly resolved

in time and space, something that very few, if any, neuroimaging modalities can achieve

simultaneously. The EEG inverse is however ill-posed, due to, among other things, the

significantly larger number of sources in the brain than electrodes and the issues of both

superposition and volume conduction. This ill-posedness causes several solutions of the

problem to be admissible making it challenging to select the one that corresponds to the

actual brain activity. To render the problem uniquely solvable, it is necessary to provide

prior information on the data to be estimated.
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Two main families of methods exist to solve the ESI problem:

parametric and non-parametric methods (Grech et al., 2008; Baillet

et al., 2001). In parametric methods, only a few dipoles are

assumed to be active, resulting in fewer unknowns to estimate,

but making a strong assumption on the source distribution. Non-

parametric or distributed source methods, on the other hand,

aim at estimating the activity of numerous dipoles placed on a

predetermined grid. Variational formulations, which incorporate a

regularization term as prior on the data to be estimated, fall into this

last category. Although various types of regularization have been

proposed in literature (Hämäläinen and Ilmoniemi, 1994; Uutela

et al., 1999; Pascual-Marqui et al., 2011), estimating some source

activities remains challenging. This includes current distributions

corresponding to extended sources with EEG topography similar to

that of a single dipole, or multiple sources active at the same time.

Moreover, these methods require manual setting of strong priors

on data, which is challenging at best.

In this context, the use of learning based methods, more

specifically neural networks (NNs), offers a way to learn the

inverse function directly from the data. Among these, supervised

learning is a promising strategy, but requires ground truth

data. In the absence of a comprehensive dataset encompassing

whole-brain activity and corresponding EEG recordings, synthetic,

simulated, data serves as a valuable substitute, provided that

the simulation strategy accurately represents the complexities of

real EEG data to ensure the network’s ability to generalize to

actual subject recordings. A common challenge in employing

learning-based approaches lies in identifying an appropriate data

representation and neural network architecture that effectively

capture the underlying patterns in the data. NN-based approaches

have been used to estimate the spatial distribution of sources

at a specific time point, using multi-layer perceptron (MLP)

or two-dimensional convolutional NN (2D-CNN) (Wei et al.,

2021; Pantazis and Adler, 2021; Hecker et al., 2021). In this

work, we focus on estimating the spatial distribution of brain

activity not only at a single moment, but over a sequence

of time points, which we refer to as “spatio-temporal ESI.”

To effectively capture the spatio-temporal dynamics of the

data, previous studies have employed architectures such as

LSTMs (Hecker et al., 2022), autoencoders (Liang et al., 2023),

transformers (Zheng and Guan, 2023), and spatio-temporal

networks composed of LSTMs and fully connected layers (Sun et al.,

2022).

The paper is structured as follows: Section 2.1 describes the

forward model, inverse problem resolution, and the use of standard

non-learning and learning based methods. Section 2.2.1.2 and

Section 2.2.1.3 present two different approaches to generate realistic

synthetic electrophysiologic data. Additionally, Section 2.2.2

includes details of the real data used to study the generalization

of neural networks to real data. Section 2.2.3 details the neural

networks’ architectures and the training setup used. Section 2.2.4

presents the evaluation metrics used to assess and compare the

performance of the different methods on different aspects of

the result. Finally, Section 3 presents the outcomes of various

experiments, including the estimation of multiple extended sources

on two different types of synthetic data (Section 3.1), an initial

study on out-of-domain generalization (Section 3.2) to evaluate the

performance of a trained network on another synthetic dataset, and

lastly, the investigation on real data of visually evoked potential

(Section 3.3).

2 Methods

2.1 EEG source imaging

2.1.1 Forward model
The activity measured by the EEG arises mainly from

macrocolumns of pyramidal cells in the cerebral cortex (Baillet

et al., 2001). Such macrocolumns, or similarly activated

macrocolumns, can be modeled by an equivalent current

dipole (ECD) (Nunez and Srinivasan, 2006) defined by its

position, orientation, and magnitude. Since there are many such

macrocolumns in the brain, the commonly used model for brain

activity in ESI is based on the distribution of ECDs.

For an ECD with given position, orientation and unit

magnitude, the potential values, at given positions, created by the

ECD can be computed by solving Poisson’s equation on a model

of the subject’s brain called a head model (Hallez et al., 2007). By

repeating this operation for each ECD of interest in the brain, we

can build the leadfield matrix L. One coefficient li,j of this matrix

corresponds to the potential value at electrode i created by the jth

dipole.

The estimation of the leadfield matrix requires an accurate head

model of the subject and an appropriate solver. The head model

consists of a equivalent source space and an electrode montage. The

source space is based on the subject’s anatomy that can be obtained

from a segmentedMRI volume (e.g., whitematter, graymatter, skull

and scalp). From this segmentation, the equivalent dipole sources

are placed at various positions within the head, for instance on a

sub-sampled mesh of the brain or on a regular grid within the head.

The electrode montage corresponds to the number and position of

the electrodes andmust be co-registered to the source space (Michel

and Brunet, 2019).

Analytic solutions to the forward problems only exist for

spherical head models. For more realistic head models, numerical

solvers based on the Finite Element Method (FEM) and Boundary

Element Method (BEM) are typically used (Hallez et al., 2007). The

FEM or BEM rely on anatomical meshes and additional biophysical

information such as the electric conductivity of the different tissues.

Gathering subject specific anatomical and functional information,

the leadfield matrix defines the mapping between a brain activity

modeled by a distribution of ECDs to the EEG values as

Y = LX+ ǫ , (1)

whereX ∈ R
Ns×T is the current distribution, withNs sources and T

time points, Y ∈ R
Ne×T is the potential distribution at Ne electrode

positions on the scalp, and ǫ ∈ R
Ne×T represents some additive

noise. See for instance (Michel and Brunet, 2019) for more details

regarding head modeling.

2.1.2 Inverse problem
One of the sources of ill-posedness of the EEG inverse

problem—required for ESI—is the high number of unknown
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sources to be imaged in comparison to the low number of—noisy—

observations (tens of electrodes). There are two main categories

of methods used to solve the inverse problem in EEG: parametric

or equivalent current dipole methods and non-parametric or

distributed source methods (Grech et al., 2008; Baillet et al., 2001;

Maksymenko, 2019).

Parametric methods assume a limited number of active

dipoles with unknown parameters to be estimated (the positions,

amplitudes and possibly orientations of these dipoles). In this

situation, the leadfield matrix L is parameterised by the positions

and orientations of the dipoles. This leads to a non-linear problem.

This category of methods includes dipole fitting (e.g., nonlinear

least squares) and dipole scanning [e.g., beamforming (Van Veen

et al., 1997), MUSIC (Schmidt, 1986)] approaches.

In this work, we focus on non-parametric methods aimed at

estimating the amplitudes of sources placed at fixed locations. The

leadfield is pre-computed which leads to a linear problem. This

category includes methods based on a variational formulation of

the form

X̂ = argmin
X

{

‖Y− LX‖2F + λR(X)
}

, (2)

where a prior is assumed on the source data in the form of a

regularization term R(X) weighted by a regularization parameter λ.

Here, ‖.‖F denotes the Frobenius norm.

This formulation is a trade-off between the data fidelity term

‖Y − LX‖2F , which ensures that the estimated source distribution

matches the observed data, for the given leadfield matrix, and

the regularization term, which encodes a prior on the data to be

estimated. For example, in the Minimum Norm Estimate (MNE)

solution (Hämäläinen and Ilmoniemi, 1994), the regularization

term is the l2 norm of the sources. This regularization function

corresponds to the estimation of the solution with minimal energy.

This can lead to (over)smooth estimates and poor estimation

of deep sources. To address this limitation, other methods have

been proposed, such as weighted MNE or LORETA (Pascual-

Marqui et al., 2011), which uses the l2 norm of a weighted source

distribution. Another commonly used method is standardized low-

resolution brain electromagnetic tomography [sLORETA (Pascual-

Marqui et al., 2002)], in which the MNE estimate is rescaled using

the noise covariance of the data. l1 norms can also be used as a prior

to enforce spatial sparsity on the solution (Uutela et al., 1999). The

same procedure of adding a weight matrix within the l1 norm can

be used (Candes et al., 2008).

Several other regularization functions have been proposed

to improve the estimation of different activities. Still, many

challenges and limitations remain in the use of such methods. The

choice of a prior is not trivial, especially for brain activity,

which is very complex and can be significantly different

depending on the cognitive state of the subject. These

methods also require the setting of hyperparameters, such as

the regularization parameter λ in variational formulations. Due

to these limitations, the work presented here focuses on learning

based methods to estimate the inverse function directly from

the data.

2.1.3 Learning based methods
Artificial Neural Networks (ANN) are effective tools for

learning arbitrarily complex functions, such as the inverse function

between the equivalent source distribution representing the brain

activity and the EEG data. Existing works in the literature focus on

estimating the inverse function in a supervised framework, in which

the ground truth (i.e., brain activity) is known. First of all, we need

to consider the type of task that needs to be solved by learning. Early

work using neural networks focused on estimating the location

of a few active dipoles (Zhang et al., 1998; Yuasa et al., 1998;

Van Hoey et al., 2000), similar to the parametric methods presented

previously. More recent work aims at estimating the amplitude of

sources placed on a predefined grid, similarly to what is done in

distributed schemes. In this category, some studies estimate the

activity for a single time point, either from a single EEG time

point (Razorenova et al., 2020; Wei et al., 2021; Hecker et al., 2021;

Guo et al., 2022), or frommultiple EEG time points (Sun et al., 2020;

Pantazis and Adler, 2021). A more general approach is to consider

a spatio-temporal regression approach, to estimate the amplitude

of the sources for all time samples from the EEG data measured. In

this work, we focus on this task, called spatio-temporal ESI, as such

a versatile framework would help to acquire a better understanding

of the brain activity whatever the acquisition context may be, by

providing accurate spatial and temporal information.

The performance of deep neural network approaches depends

on the representation of the data within the architecture. Recent

works for spatio-temporal ESI have therefore focused on the design

of neural network architectures to exploit both the spatial and

temporal dimensions of the data. Transformers (Zheng and Guan,

2023) and LSTMs (Hecker et al., 2022) are good candidates for

exploiting the temporal structure of EEG data. Based on the LSTM

architecture, Jiao et al. (2022) further investigate smooth spatial

constraints on sources using Graph Fourier Transform (GFT).

In Huang et al. (2022), propose a denoising autoencoder with

separate layers for the spatial and the temporal dimension of the

data. In Sun et al. (2022), the authors present a method called

deepSIF relying on a two-block network architecture, consisting of

a spatial block (resNet with fully connected layers) and a temporal

block (multiple LSTM layers).

In this work, we investigate the use of three architectures

for spatio-temporal ESI: one-dimensional wide CNN (1D-CNN),

LSTM, and deepSIF—a spatio-temporal network proposed in Sun

et al. (2022). Figure 1 details the architectures, which are described

in the following. The code used to define and train the neural

networks mentioned here is available on our github: https://github.

com/SarahReynaud/stESI_pub.

The 1D-CNN architecture makes use of temporal convolutions

applied across all the measured signals. The signals acquired from

the electrodes correspond to the channels. This architecture then

exploits all the spatial information within time windows defined by

the size of the convolution kernels. This wide network is composed

of a convolutional layer of 2,048 filters with a kernel of dimension

Ne × 5 to account for all electrodes in the input data. It is

followed by a dense layer that outputs the activity of the sources.

A rectified linear unit (ReLU) activation function is used between

the convolutional and the dense layer.
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FIGURE 1

Details of the three neural networks used in this work. Original schemes for the LSTM and deepSIF architectures can be found in there original

articles (Hecker et al., 2022; Sun et al., 2022). For the neural networks in Sections 3.1, 3.2, Ne = 90, Ns = 994 and T = 500. For the neural networks

trained in Section 3.3, Ne = 59, Ns = 1, 176, and T = 500. (A) 1D-CNN architecture details. (B) LSTM from Hecker et al. (2022) architecture details. (C)

deepSIF, spatio-temporal network from Sun et al. (2022) architecture details.

The second network studied is based on a LSTM architecture,

reproducing the one described in Hecker et al. (2022). It consists of

two bi-directionnal LSTM layers and a dense layer that allows the

activity of each source of the head model to be estimated from the

features learned by the LSTM. As in the original paper, the LSTM

layers have a hidden state dimension of 85 (per direction of the

LSTM), and dropout is employed in the LSTM with a rate of 0.2.

A ReLU function is employed between the LSTM and dense layers.

The third network is the deepSIF network from Sun et al.

(2022). It consists of two modules: a spatial module and a temporal

module. The spatial module is based on residual blocks. Each

residual block is composed of two dense layers, with an exponential

linear unit (eLU) activation function, and a skip connection from

the input of the block to the output of the second dense layer. The

features extracted from the initial residual block are of the same

dimension as the input tensor, whereas the second residual block

increases the spatial dimension of the data from Ne to 500. As the

dimension is modified between the input and the output of the

block, a dense layer is employed in the skip connection to augment

the dimension of the input data. After the two residual blocks, a
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dense layer of 500 neurons is used. Then the temporal module

comprises three LSTM layers with a hidden state of dimension

Ns. The output of the LSTM corresponds to the estimated source

activity, which has a dimension of Ns × T. If necessary, the

original architectures were adapted to align with the number of

input electrodes or output sources (input and output dimensions)

corresponding to the used head models. Otherwise, the parameters

employed were those originally described in the source articles.

Further details can be found in the Figure 1, and in the original

articles.

For a fair comparison of these neural networks, the same loss

function has been used. We have observed experimentally that

using standard loss function like the Mean Squared Error can lead

to numerical issues due to the small value of the amplitudes of the

source data and to the high number of points in a sample. The loss

function used in this study is a cosine similarity loss Lcs defined as

Lcs(X, X̂) = − 1

T

T
∑

k=1

(

∑Ns
i=1 Xi,kX̂i,k

‖X:,k‖‖X̂:,k‖

)

. (3)

Using this cost function allows for a better reconstruction of

the pattern of source amplitude at each time point, regardless of

the exact estimated amplitude. The cosine similarity loss function

needs a scaling process to restore the correct amplitude values.

This processing is done via the use of Global Field Power (GFP)

scaling (Hecker et al., 2022).

X̂:,t = ˜̂X:,t
std(Y:,t)

std( ˜̂Y:,t)
, (4)

where ˜̂Y is the estimated EEG data obtained by re-projecting the

estimated source distribution on the electrode space using the

forward model ˜̂Y = L ˜̂X.
EEG data and source data are normalized by calculating Ỹ = Y

α

and X̃ = X
α
, where α = max(|Y|). Such a data normalization

preserves the linear relationship between themeasurements and the

source distribution.

2.2 Experimental setup

In the absence of ground truth for spatio-temporal ESI,

evaluation relies on simulated data. In this context, the synthetic

data must capture the complexities of real EEG data. To prevent

evaluation biases introduced by the simulated dataset, we should

employ multiple simulation strategies to assess the models’ ability

to generalize beyond training data. To this end, we propose to use

in this work two data simulation methods to achieve a thorough

evaluation of inversion methods.

2.2.1 Data simulation
This section describes the head model used to compute the

leadfield matrix, and simulations based on physical and biophysical

models of brain activity.

2.2.1.1 Head model

The head model is composed of an electrode montage and

a source space. We employed the template MRI fsaverage,

from FreeSurfer and accessible in the python library mne-

python (Gramfort et al., 2013), to construct the source space. To

calculate the leadfield matrix, we used BEM-based solver, with

three homogeneous tissues: brain, skull, and skin, with conductivity

values of 0.3 Sm−2, 0.006 Sm−2 and 0.3 Sm−2. To generate the

source space, the brain mesh is subsampled using “icosahedron 5”

subsampling, resulting in a mesh of 20,484 vertices.

Following Sun et al. (2022), we use cortical regions defined in

The Virtual Brain (TVB) (Sanz Leon et al., 2013) and employed the

center of mass of each region as the source location for estimation,

leading to a source space of 994 regions. The sources dipolar

orientations were fixed perpendicular to the surface.

The “standard_1020” electrode montage from the mne-python

package is coregistered with fsaverage head and consists of 90

electrodes (originally 94, but 4 were removed due to duplication

resulting fromModified Combinatorial Nomenclature (MCN)).

From the initial source space containing 20,484 sources and the

electrode montage, a leadfield matrix LS ∈ R
Ne×20484 is computed.

Then to obtain a leadfield corresponding to the regional source

space, based on the assumption that all sources in the region have

equal activity (Sun et al., 2022), a coefficient for an electrode i and

a region Rj is obtained by taking the sum of the coefficient for

electrode i for all the sources j′ in the region Rj.

As a result, the size of the leadfield matrix L is Ne × Ns where

Ne = 90 and Ns = 994.

To generate pairs of EEG and source activity signals, we first

generate a source distribution and then use the leadfield matrix

and the addition of noise to obtain the corresponding EEG data.

In this work, we investigate two state-of-the-art source generators:

SEREEGA and Neural Mass Models (NMM).

2.2.1.2 Simulation based on physical models (SEREEGA)

SEREEGA (Krol et al., 2018) is a Matlab toolbox that uses

physical models derived from the observations of different event-

related brain activity profiles to simulate source distributions

according to a spatial pattern (number and locations of active

sources) and a temporal pattern (waveform of each of the

sources). In this work, we simulate extended regions of active

sources consisting of neighboring regions which have a similar

activity (Grova et al., 2006). Given an order of extension and

a seed region, randomly chosen, neighboring regions of the

seed are aggregated to the extended region, up to the order

of extension. More formally: let us note S the set of sources

in the source space and s ∈ S be a randomly chosen seed

source. The first-order neighborhood of s, denoted V
(1)(s), is the

set of sources that share an edge with s in the sub-sampled

cortical mesh. To create a region of order o, we recursively

compute

V
(k) =

{

V
(k)(s) ∪ {V(k−1)(s′); s′ ∈ V

(k−1)(s)}
}

,

for k ∈ [[2, o]]. The number of extended regions is 2 and the

extent order is randomly selected in the range 1–3.

Temporal patterns are generated using event related (ER)

activity simulation, taking the form of a Gaussian function over

time

f (t) = ae
− 1

2

(

6(t−c)
w

)2

, (5)
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where a represents the amplitude, c the center and w = 6σ the

width of the Gaussian. In a given extended region, all sources share

the same temporal signal, with the amplitude decreasing according

to a Gaussian function of the distance from the considered region to

the seed region. In this work, the amplitude is randomly selected in

the range 0.5−1.5 nAm, divided by the mean number of sources in

the region (20.6), center and width are selected in ranges 49−51ms

and 125 − 375ms respectively. Each example has a 1 s duration

with a sampling frequency of 500Hz, i.e 500 temporal samples:

X ∈ R
Ns×500.

A noiseless EEG signal Ỹ ∈ R
Ne×T is generated by projecting a

source distribution X onto the electrode space through the forward

model.

Noise is added to the EEG data at a given signal to noise ration

(SNR). Given a white Gaussian noise ǫ ∈ R
N×T, ǫ ∼ N(0, I), the

SNR is set by computing

Y = Ỹ+ ǫ

‖ǫ‖F
‖Ỹ‖F√
SNR

. (6)

The SNR is set to 5 dB.

2.2.1.3 Data simulation using biophysical models (NMM)

The second type of EEG data simulation relies on Neural

Mass Models (NMM), that are mathematical representation of the

interaction between populations of neurons. They can be used for

the study of the functional behavior of the brain without having

to model the interactions at the level of single neurons (David and

Friston, 2003).

The model used is a Jansen-Rit model (Jansen and Rit, 1995)

which is based on the interaction between three subpopulations

within a cortical column: the pyramidal cells, excitatory, and

inhibitory interneurons. In this model, for default values of

parameters, the model generates an alpha-like activity. When the

gain A, i.e., average excitatory synaptic gain, is increased to about

3.5-3.6 for a region, spike-like activity appears in this region.

Following Sun et al. (2022), source distributions are simulated

using The Virtual Brain (TVB) (Sanz Leon et al., 2013). To simulate

a source distribution, one region was selected as active and its gain

value A is set to 3.6. The other regions retained the model’s default

parameters. This process is repeated, treating each region in turn as

an active region. Data was simulated at a 2,000 Hz frequency rate

and subsampled at 500Hz frequency rate.

Post processing is done (in Matlab) in order to extract portion

of one second of signal containing a spike for the active region and

no spike in other regions. The data is scaled to obtain a SNR of

15 dB between the source and background activities.

To generate a source distribution, a seed region is chosen.

Neighboring regions are aggregated to the seed in a random

direction [details in the article (Sun et al., 2022)], to a certain order

of extension similar definition given in the previous section. This

defines the spatial pattern. For the temporal pattern, a random spike

is selected from those extracted from the raw data where the active

region corresponds to the considered seed region. The waveform

of the spike is assigned to the selected neighboring regions, with a

decrease in magnitude as a function of the distance. Finally white

Gaussian noise is added to the EEG data with a SNR of 5 dB, 10 dB,

15 dB and 20 dB.

To generate the dataset, 6 portions of 10 seconds each of source

activity are generated for each region (for the active region A= 3.6

and A = 3.25 for all non active regions; mu = 0.087, sigma = 1).

Two extended regions are used, with an extension order of 3.

Figure 2 illustrate the two types of simulations, the similarity

in the spatial pattern and differences in waveform and noise

simulation.

2.2.2 Real data
To further complement this study, we evaluate performances

of neural networks on a publicly available real dataset of evoked

potential activity. The use of evoked potential data allows to remain

close to the type of activity of the synthetic dataset used to train

the networks. This real EEG data is available through mne-python

(Gramfort et al., 2013) and is shown in Figure 3. In the experiment,

different stimuli are presented to the subject in order to elicit

different brain responses. We focus on the response to visual

stimulation in the right visual field.

The raw EEG data contains 61 electrodes but two channels are

dropped due to poor signal quality, resulting in a 59 electrode setup.

Minimal pre-processing is done on the data: average referencing

is applied and epochs with an amplitude superior to 150mV are

removed. The remaining epochs of the visual right condition (N

= 57) is averaged, time locked to the stimulus event, to obtain

the evoked data. The signal obtained is 421 samples long with a

600.6Hz sampling frequency i.e around 700ms of signal of which

200ms are baseline data and 500ms correspond to the response

to the stimulus. The neural networks are trained using SEREEGA

based simulations for which no connectivity matrix is needed. The

head model was built from the MRI of the subject. The cortex

mesh is subsampled to obtain a 1,176 = vertices mesh. Sources

are oriented perpendicular to the surface. The solver used is a

BEM with 3 surfaces: the brain, the skull and the skin, with

respective conductivity values. The electrodemontage is made of 59

channels from the EEG recording. The size of the leadfield matrix is

59× 1,176. The training data has the same temporal characteristic

as previously described. The spatial pattern is changed: the number

of regions is selected between 1 and 3 instead of being fixed to 3,

and the extension order is selected in the range 1–5.

2.2.3 Neural network training
The networks were trained on 500 epochs using the ADAM

optimiser with default parameters and a batch size of 8, using

PyTorch and PyTorch Lightning (Paszke et al., 2019; Falcon and

The PyTorch Lightning team, 2019). Early stopping was applied

if the validation loss function did not decrease for 20 epochs.

Gradient clipping was used for the LSTM’s training, to avoid

gradient vanishing or exploding. The number of parameters for

each network, and for the two head models used are given in

Table 1.

2.2.4 Evaluation metrics
ESI focuses on the estimation of spatio-temporal source activity

given EEG signals.
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FIGURE 2

Simulated data with the two di�erent types of simulation: SEREEGA based and NMM based. Visualization of the waveform of active sources and the

final EEG data obtained through the forward model. For the NMM based simulation, the simulated source activity contains signals for active sources

(spikes) and noise sources. The generated EEG corresponds to the projection of this “noisy” source activity. However the ground truth source data

that is used for training corresponds to a “denoised” source activity where all non-active regions are set to zero.

FIGURE 3

Evoked data of visual right evoked potential. Topographic map at the time of the P100 (90 ms).

In an ideal reconstruction, the solution would accurately

estimate amplitude vectors, for each time point, enabling the

precise localization of active sources in the brain. More precisely,

in the case of a source distribution with a single extended

source/region, the goal is to properly estimate the source/region

with maximum activity (seed source/region), the extension of

the active area and the amplitude of sources (Hauk et al., 2022;

Samuelsson et al., 2021).

In this work, we consider 5 complementary metrics to provide a

comprehensive analysis of the performance of the neural networks

evaluated: the localization error (LE), the area under the ROC curve

(AUC), the time error, the normalized mean squared error (nMSE),

and the peak signal to noise ratio (PSNR). The LE, AUC, time error,

and nMSE are computed at the time of the maximum activity of the

ground truth seed source/region while PSNR is computed over the

entire temporal dimension to provide a more global information.

Localization error (LE), measured in mm, assesses the ability

of a method to estimate the position of active sources. It is defined

by the Euclidean distance between the true maximum source,

denoted as s and positioned at rs, and the estimated maximum
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TABLE 1 Number of parameters of the 3 neural networks studied, for the

simulated dataset (head model with 994 regions) and the real data

experiment (head model with 1,176 sources).

Network Number of parameters

Ns = 994 Ns = 1176

1D-CNN 5,177,344 6,025,216

LSTM 461,380 473,960

deepSIF 22,380,956 30,607,824

source, denoted as ŝ and positioned at rŝ

LE(X:,t0 , X̂:,t0 ) = ‖rs − rŝ‖2 . (7)

The Area Under the ROC (receiver operating characteristic)

curve (AUC) provides information about a method’s ability to

accurately recover a source’s extent. In the context of ESI, the

AUC, expressed in %, assesses the method’s capability to precisely

determine the source’s extension and not to create spurious activity.

Usually the AUC is calculated tomeasure the accuracy of a classifier.

It is the area under the ROC curve. The ROC curve is the curve of

the true positive rate (TPR) as a function of the false positive rate

(FPR), for different threshold values. To compute the AUC in our

situation, the source distribution’s absolute value is scaled between

0 and 1 and then thresholded, enabling a binary classification task

of active and inactive source classes. Then the TPR is defined as

TPR = TP
TP+TN and the FPR as FPR = FP

TN+FP , where TP are the true

positives, i.e the estimated and ground truth sources are considered

active, TN the true negatives, i.e., the estimated and ground truth

sources are considered as inactive, and FP the false positives, i.e.,

the estimated source is considered inactive while the ground truth

source is active.

To evaluate the ability of a method to properly estimate the

amplitude of a source distribution, we use the nMSE and the PSNR.

nMSE is the mean square error between the estimated normalized

source distribution and the ground truth. Normalization is

performed by dividing the source distribution by its maximum

absolute amplitude value. Normalizing the source distribution

facilitates the comparison of metric values between different

methods. It considers the estimated overall pattern instead of the

precise amplitude values. nMSE at a time t0 is given by:

nMSE(X:,t0 , ˆX:,t0 ) =
1

NsT

Ns
∑

i=1

(

Xi,t0

max(|X|) −
ˆXi,t0

max(|X̂|)

)2

. (8)

The second measure for assessing the estimation of the

amplitude is the PSNR. It is calculated between the normalized

source distributions over the entire duration of the source

distribution. PSNR is computed as:

PSNR(X, X̂) = 10 log10





max
i,t

(X̃i,t)
2

MSE(X̃, ˜̂X)



 . (9)

where X̃ = X/max(|X|) and ˜̂X = X̂/max(|X̂|)
Finally the time error offers information about the ability of

a method to correctly estimate the source waveform (temporal

TABLE 2 Assessment metrics used in this work and the corresponding

evaluated aspects of the estimated solutions.

Metric Aspect of the source
distribution that is evaluated

Localization Error (LE) Localization

Normalized MSE (nMSE) Amplitude

AUC Extension

Time error (TE) Temporal

PSNR (on multiple time instants) Amplitude

The localization error, normalized MSE and AUC are calculated for a single time point while

the PSNR is calculated over the entire time series.

activity). It is determined by calculating the absolute difference

between the instant of maximum activity of the ground-truth

activity and that of the estimated source’s (i.e., the instant of

maximum amplitude of the estimated seed source). The temporal

error, measured in ms, is computed as TE = |tmax − t̂max|, where
tmax = argmax

t

∑Ns
i=1|X|i,t.

Table 2 provides an overview of the 5 metrics considered in this

study.

3 Results

This section describes results for three different experimental

settings: (1) multiple extended sources, (2) out of domain

generalization, (3) application to real data. Results of the three

considered deep learning-based methods are compared to two

non-learning based methods: MNE and sLORETA.

3.1 Estimation of multiple extended
sources—SEREEGA and NMM based
simulations

This first experiment evaluates the performance of the

algorithms in a standard supervised learning framework. Each

simulated dataset contains 10,000 samples and is separated into

two datasets: training set (80%), validation set (20%). This training-

validation splitting strategy is the same for all experiments.

Methods are evaluated for both simulated datasets: SEREEGA and

NMM. Quantitative results are given in Table 3. Whatever the

evaluation metric used, deep learning-based methods outperform

non-learning based methods. Statistical analysis was performed

to determine whether the difference in performance between the

learning and non learning methods was significant. ANOVA was

performed on the different methods, separately for each metric,

showing a significant difference between the methods for each

metric. To further investigate which of themethods are significantly

different, we performed a post hoc Tukey test, which provides

pairwise statistical significance between methods. All deep learning

methods appeared to be statistically different from sLORETA

(the best non-learning based method) for all metrics except time

error. For the networks trained and evaluated on the SEREEGA

dataset, the LSTM, and deepSIFmodels are not statistically different
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from sLORETA (p-value = 0.623, p-value = 1) on time error.

However, 1D-CNN is significantly better than sLORETA (p-value

≤ 0.05). For the models trained and evaluated on the NMM based

dataset, all learning based methods have a worse performance

than sLORETA in terms of time error, but the difference is

not significant for the LSTM model (p-value = 0.051). In this

experiment, the deep learning-based method that provides the

best results is deepSIF. However, for the localization error the

results are not statistically different from those obtained with

the 1D-CNN model (for both datasets, p-value = 0.14 and p-

value = 0.06). These results have to be interpreted in light of the

number of parameters in each network. It should be noted that

deepSIF is a network with tens of millions of parameters, whereas

the LSTM architecture is much lighter, with less than 5× 105

parameters. The 1D-CNNmodel represents a compromise between

the other two models. In order to study a possible bias linked to

the data used, the second experiment looks at the networks’ ability

to generalize.

3.2 Out of domain generalization

The second experiment focuses on the out-of-domain

generalization of the networks to other types of simulations.

We evaluate the networks trained on SEREEGA (respectively

NMM) based simulated data and evaluate the results on NMM

(respectively SEREEGA) based simulated data. EEG signals from

these datasets are generated from different processes, leading then

to a suitable experimental setup to assess over-fitting behavior.

Quantitative results are given in Table 4. In line with previous

experiment, methods based on learning techniques generally

provide better results than non-learning methods. However, the

performance improvement is less pronounced and the sLORETA

method obtains the best scores for some metrics. More specifically,

the same statistical analysis as in Section 3.1 was performed

on these results, for each metric separately. The localization

error performance for the networks trained on SEREEGA and

tested on the NMM dataset is significantly better for 1D-CNN,

compared to all other methods. The time error is worse for

1D-CNN and LSTM than for sLORETA, but this difference is

not statistically significant (p-value = 0.24, p-value = 0.38). For

deepSIF, the performance is significantly better. For the networks

trained on NMM and tested on the SEREEGA dataset, sLORETA

performs significantly better for the localization error. For the

time error, sLORETA also performs significantly better than

all other methods except for CNN, for which the difference

is not significant (p-value = 0.98). For all other metrics and

pairs of methods, the difference was found to be significant

(p-value≪ 0.05).

This quantitative assessment is supplemented by a visual

analysis provided by the Figure 4. Given a simulated ground truth

activity (left column), the predictions of each method are displayed

as a function of the training data and the test data. These visual

results illustrate the variety of results, in particular predictions

that are more spread out than the ground truth or the absence of

estimated activity (such as deepSIF when trained on SEREEGA data

and evaluated on NMM data).

3.3 Real data

The last experiment consists of studying the results of source

estimation on real EEG data, using a network trained on simulated

data. We focus on the evoked EEG data in response to a stimulus

in the right (or left), visual field. The waveform contains a P100

component that is expected to originate from the left (or right)

visual area of the brain (Di Russo et al., 2002), in the B18/V3 area

of the brain. Since no ground truth is available for the real data,

qualitative evaluation is done through the visualization of estimated

activity. The estimated source activity for the five methods is given

at the top of Figure 5A for the right visual stimuli and Figure 5B for

the left visual stimuli.

We also projected the estimated source back onto the electrodes

through the leadfield matrix and calculated the reprojection error,

i.e., the nMSE between the true EEG data and the estimated EEG

data. Such a visualization provides a way to assess the quality of

the estimated activity by analyzing the discrepancy in the EEG

data space. The topographic plots are shown at the bottom of

Figures 5A, B, compared to the acquired EEG data.

We can see on the source estimate plots that the MNE and

sLORETA solutions are quite spread out, but have a high absolute

value in the visual area, especially in area B18, which is consistent

with theoretical findings on the sources of the P100. The results of

the different neural networks are similar, with a high level of activity

close to the left visual area. However, this activity is not in the area,

but shifted to the left (respectively right). On the topographic maps

of the reprojection of the estimated source activity, we can see that

the 1D-CNN and deepSIF methods are closer to the acquired EEG

data than LSTM.

4 Discussion

ESI is a valuable technique for non-invasively analyzing brain

activity and dysfunction. However, due to the inherent ambiguity

in the ESI problem, most ESI methods incorporate regularization

terms into their optimization objectives, which impose constraints

on the solution space to enhance its reliability and interpretability.

While sLORETA, a widely used method based on Euclidean

norms, offers computational efficiency, its source estimates often

exhibit excessive spatial spread, potentially obscuring the precise

underlying neural activity.

Deep learning approaches can provide an alternative to

solve these ill-posed source imaging problems by incorporating

biophysical models into ESI solutions through the creation of

dedicated simulation data. This study explored the potential of

data-driven learning methods for ESI, aiming to overcome the

limitations of conventional methods that rely on explicit priors on

source localization. To achieve this, we employed a large dataset

of sensor-source mapping examples, carefully designed to capture

the diverse patterns of brain activity distributions. The distribution

of this training dataset was tailored to closely resemble the actual

signals that the learning network would encounter during its

intended use.

In this work, we considered 3 learning methods with

diverse architectures in order to provide an overview of the
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TABLE 3 Evaluation results for the 3 learning based methods and 2 non-learning based methods.

Methods 1DCNN LSTM deepSIF MNE sLORETA

Data Metrics

SEREEGA LE [mm]↓ 2.99 5.17 2.64 14.51 9.17

AUC (%) ↑ 81.39 82.19 87.65 73.08 75.59

nMSE ↓ 0.002 0.002 0.001 0.017 0.040

PSNR ↑ 43.41 40.80 43.43 30.40 26.93

time error [ms] ↓ 1.35 3.57 4.58 9.55 4.72

NMM LE [mm]↓ 11.30 10.07 10.80 15.65 12.12

AUC (%) ↑ 80.36 87.90 88.72 75.65 77.59

nMSE ↓ 0.012 0.008 0.008 0.020 0.042

PSNR ↑ 31.54 33.18 33.42 29.23 25.83

time error [ms] ↓ 217.71 196.01 183.32 184.57 167.25

Simulation type are similar for training and testing: neural networks trained on SEREEGA based data are tested on a SEREEGA based test dataset, and the same is done for NMM based data.

Metrics are computed on 2,000 samples. Bold font indicates best results.

FIGURE 4

Results on simulated data for the two di�erent data simulation type : based on physical model (SEREEGA) and biophysical model (NMM). First row:

neural network trained on the SEREEGA dataset and evaluated on SEREEGA simulation. Second row: neural network trained on the SEREEGA dataset

and evaluated on NMM simulation. Third row: NN trained on the NMM based dataset and evaluated on NMM baesd simulation. Fourth row: NN

trained on the NMM based dataset and evaluated on NMM simulation. The source distribution plotted corresponds to the mean of the source

distribution at the instant of maximum activity of each region, in absolute value and normalized between 0 and 1.

capabilities of these methods for ESI compared to state-of-the-

art methods (MNE and sLORETA). The performance of these

methods significantly hinges upon the training dataset. To evaluate

their performance, we employed a set of five complementary

metrics that comprehensively assess various aspects of source

reconstruction accuracy. Additionally, we utilized two synthetic

datasets, SEREEGA, and NMM, generated using state-of-the-art

methods, to evaluate their performance and generalization

capability. One of the limitations of the use of synthetic data to

train neural networks is that the solution is highly dependent on the

underlying hypothesis made on the data used to train the networks,

and thus careful interpretation of the results should be made.

The experiments underscored the dependency of these methods

on training data, demonstrating reduced performance when the
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TABLE 4 Results for out of domain generalization: NNs are trained on one type of simulation and tested on the other type of simulation.

Methods 1DCNN LSTM deepSIF MNE sLORETA

Data Metrics

SEREEGA

NMM

LE [mm]↓ 7.38 9.39 11.86 15.65 12.12

AUC (%) ↑ 76.81 74.03 74.43 75.65 77.59

nMSE ↓ 0.007 0.007 0.009 0.020 0.042

PSNR ↑ 32.17 32.46 32.58 29.23 25.83

time error [ms] ↓ 178.95 156.99 129.47 184.57 167.25

NMM

SEREEGA

LE [mm]↓ 11.35 12.41 11.36 14.51 9.17

AUC (%) ↑ 77.68 85.37 81.52 73.08 75.59

nMSE ↓ 0.015 0.011 0.006 0.017 0.040

PSNR ↑ 35.03 36.80 40.24 30.40 26.93

time error [ms] ↓ 5.19 8.42 15.89 9.55 4.72

In the first experiment, SEREEGA is used to generate training data and NMM is used for evaluation. For the second experiment, the roles of the data simulators are reversed. Bold font indicates

best results.

training data deviates significantly from the evaluation data. Future

work should focus on reducing this drop in performance, either by

finding a more suitable architecture or by creating a more diverse

dataset.

This in-depth investigation was further complemented by a

study conducted on real-world data, further demonstrating the

promising capabilities of learning-based approaches for ESI. This

study also highlights the crucial need to incorporate confidence

measures alongside deep learning predictions to ensure the

reliability of the obtained results. This could be done for example

usingmethods such asMonte Carlo dropout (Gal andGhahramani,

2016) to get information about the uncertainty of the model on the

source estimation. More work should also be done in order to add

other real data experiments.

Making quantitative comparisons between different studies in

ESI research is challenging due to the inherent differences in the

simulated data and methodologies used. A significant source of

variation arises from theMRI data employed to create headmodels,

which differ between studies in terms of the number of sources

and electrodes. Additionally, the models used to generate brain

electrical activity vary considerably. For instance, some studies,

including (Hecker et al., 2022, 2021) and the present work, utilize

physical models of waveforms, while others adopt biophysical

models such as neural mass models (NMMs) (Sun et al., 2022).

Furthermore, some studies extract temporal patterns for sources

using real EEG waveforms (Wei et al., 2021), whereas others, such

as Jiao et al. (2024, 2022), operate at single time instants, thus

avoiding waveform simulation entirely.

In this study, we addressed this variability by comparing two

distinct types of simulated data, each generated using different

models, to evaluate performance across diverse datasets and assess

the generalization abilities of the models. Another challenge in

making comparisons between studies lies in the inconsistency

of metrics used. Even when similar metrics are employed, they

are often calculated differently. For example, localization error, a

commonly used metric in source imaging literature, is difficult to

compare directly due to variations in its calculation across studies.

A common characteristic across different studies is their

focus on reconstructing single or multiple extended sources. The

accurate estimation of extended and multiple sources remains a

significant challenge in source distribution estimation. Consistent

with previous findings (Sun et al., 2022; Huang et al., 2022;

Jiao et al., 2022, 2024; Hecker et al., 2021, 2022; Wei et al.,

2021), we observed that neural network-basedmethods outperform

traditional non-learning methods, such as sLORETA and MNE,

in recovering the spatial extent of sources. The latter tend to

overestimate source extension, a well-documented consequence of

the L2 norm regularization term.

Some studies (Sun et al., 2022; Huang et al., 2022) also

highlight the inverse problem, where methods that promote

sparisity, such as FOCUSS (Gorodnitsky et al., 1995)—which

are not examined here—tend to underestimate source extension.

These observations have been validated across a range of

real datasets. For instance, models in Sun et al. (2022) and

Jiao et al. (2022, 2024) demonstrated superior performance in

estimating source extension using epilepsy data, while models

in Hecker et al. (2021), Sun et al. (2022), and Wei et al.

(2021) consistently showed robust results across various types of

evoked data.

The findings from this study, particularly regarding

generalization, align with these earlier results. Neural networks

trained on the SEREEGA dataset, when tested on NMM-based

data, exhibited superior performance in estimating source

extension compared to sLORETA and MNE. Additionally, they

provided a more focal representation of the source on real data.

This suggests that post hoc thresholding, commonly applied to

source estimates (Maksymenko et al., 2017), is less error-prone or

potentially unnecessary for learning-based methods in comparison

to traditional non-learning-based techniques.

In this study, we focused on a multiple-source dataset, which

presents a significant challenge for source estimation. Previous

studies that have utilized both single and multiple extended

sources have shown that as the number of sources increases

from one to multiple, the performance of all methods declines.
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FIGURE 5

Results of source estimation for the non-learning and learning based methods on the real data from the sample dataset (Gramfort et al., 2013). For

each subfigure, the top row corresponds to the visualization of the absolute value of source activity at the instant of the P100, on the subject mesh.

The purple area corresponds to the B17 and B18 Broadman visual area (morphed from a template atlas). A threshold of 20% is applied on this

visualization. The bottom row shows the re-projection of the estimated activity onto the scalp through the leadfield matrix vs the ground truth EEG

data, also at time of the P100. (A) Results for the evoked potential corresponding to the “right visual stimuli” condition. (B) Results for the evoked

potential corresponding to the “left visual stimuli” condition.

However, this decline is more pronounced in non-learning-based

methods (Hecker et al., 2022).

These findings are highly encouraging and highlight the

potential of supervised learning methods in addressing the

challenges posed by ESI, particularly in accurately recovering the

source extent for both single and multiple active sources. However,

this study also underscores the limitations of the approach,

specifically the reliance on simulated data. The type of simulation
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used significantly influences the results and the generalization

ability of the models, which may pose challenges when translating

these results to real-world applications.

In conclusion, our analysis has provided a comprehensive

assessment of data-driven deep learning methods for ESI. Deep

learning methods can provide a powerful framework for ESI and

improve its adoption for spatiotemporal dynamic imaging of the

human brain, facilitating the clinical diagnosis and treatment of

a variety of neurological and mental diseases. Future key research

directions for enhancing the reliability and interpretability of

deep learning-based ESI are confidence estimation and sensitivity

analysis at the individual level. Regarding the method, future work

could focus on variational approaches linked with deep learning

approaches such as done in Jiao et al. (2024) for ESI, or in Fablet

et al. (2021) on another type of dataset. In these approaches more

explainability and flexibility is given to the model by learning the

prior with a neural network while keeping an observation term

which takes into account the forward model.
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