
Frontiers in Neuroscience 01 frontiersin.org

A CT-based machine learning 
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Purpose: This research aimed to create a machine learning model for clinical-
radiomics that utilizes unenhanced computed tomography images to assess the 
likelihood of malignant cerebral edema (MCE) in individuals suffering from acute 
ischemic stroke (AIS).

Methods: The research included 179 consecutive patients with AIS from two 
different hospitals. These patients were randomly assigned to training (n = 143) and 
validation (n = 36) sets with an 8:2 ratio. Using 3DSlicer software, the radiomics 
features of regions impacted by infarction were derived from unenhanced CT scans. 
The radiomics features linked to MCE were pinpointed through a consistency test, 
Student’s t test and the least absolute shrinkage and selection operator (LASSO) 
method for selecting features. Clinical parameters associated with MCE were also 
identified. Subsequently, machine learning models were constructed based on 
clinical, radiomics, and clinical-radiomics. Ultimately, the efficacy of these models 
was evaluated by measuring the operating characteristics of the subjects through 
their area under the curve (AUCs).

Results: Logistic regression (LR) was found to be the most effective machine 
learning algorithm, for forecasting the MCE. In the training and validation cohorts, 
the AUCs of clinical model were 0.836 and 0.773, respectively, for differentiating 
MCE patients; the AUCs of radiomics model were 0.849 and 0.818, respectively; 
the AUCs of clinical and radiomics model were 0.912 and 0.916, respectively.

Conclusion: This model can assist in predicting MCE after acute ischemic stroke 
and can provide guidance for clinical treatment and prognostic assessment.
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1 Introduction

AIS is widely acknowledged as the primary cause of mortality and impairment among 
adults (Meschia and Brott, 2018). Cerebral edema is a frequent complication after AIS and may 
be  linked to poor outcomes. According to the guidelines of the “Safe Implementation of 
Thrombolysis in Stroke-Monitoring Study (SITS-MOST) program” (Thorén et  al., 2017), 
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cerebral edema can be classified into three levels: CED-1 denotes the 
moment when swelling in brain tissue extends to one-third of the 
brain’s hemisphere; CED-2 occurs when there is swelling covering over 
a third of the hemisphere but no midline displacement has occurred; 
and CED-3 occurs when the enlargement of brain tissue results in the 
displacement of the midline. Usually, a midline shift (MLS) greater 
than 5 mm is considered an indicator of malignant cerebral edema 
(MCE) (Barber et  al., 2003). This is considered an indicator of 
malignant cerebral edema (MCE), which has a mortality rate of up to 
80%. Neurological function typically deteriorates rapidly within 2 to 
3 days after symptom onset (Liebeskind et  al., 2019). Early 
decompression by debulking flaps can effectively reduce mortality 
(Minnerup et al., 2011). Prompt identification of the MCE is vital for 
stroke neurologists to proactively intervene to avert deterioration of 
the condition and decide on treatments.

To date, MCE can be predicted by various methods, such as the 
National Institutes of Health Stroke Scale (NIHSS) score, stroke size, 
Alberta stroke program early CT score (ASPECTS), collateral 
circulation score, net water uptake (NWU), and cerebrospinal fluid 
(CSF) displacement (Thomalla et al., 2003; MacCallum et al., 2014; 
Kim et al., 2015; Dhar et al., 2016; Jo et al., 2017; Nawabi et al., 2021). 
Currently, non-contrast computed tomography (NCCT) images are 
recommended by guidelines as the preferred examination for AIS 
(Powers et al., 2019). However, diffusion-weighted imaging (DWI), 
fluid-attenuated inversion recovery (FLAIR) imaging, and computed 
tomography perfusion (CTP) have also been developed as screening 
modalities for patients with suspected AIS. Although CTP has 
gradually gained popularity, it is time-consuming and has 
contraindications for screening.

In recent years, advances in computer technology have enabled the 
conversion of imaging data into high-throughput information, which 
can indirectly respond to heterogeneity at the microscopic level of 
tissue. Texture feature-based radiomics methods are now commonly 
used (Lin et al., 2020; Xu et al., 2020; Ren et al., 2023). However, it is not 
entirely clear how NCCT infarct region-based radiomics features 
correlate with the progression of MCE after AIS. Recently, advancements 
in artificial intelligence technology have resulted in the steady 
integration of machine learning (ML) into AIS-related research. This is 
due to its superior modeling performance over traditional statistical 
techniques (Hoffman et al., 2023). To date, ML has been used to achieve 

automatic segmentation of CSF after AIS as a way to predict the risk of 
MCE and has achieved good results (Dhar et al., 2018). While research 
has focused on forecasting MCE risk post-AIS using MRI radiomics, 
NCCT radiomics based on the middle cerebral artery territory, and ML 
models derived from clinical data (Wang et al., 2021; Hoffman et al., 
2023; Wen et al., 2023), the integration of clinical and radiomics data in 
ML models for predicting MCE post-AIS remains undocumented. Our 
research led to the creation and validation of ML algorithms that merge 
clinical and NCCT infarct region radiomics features to predict MCE 
risk post-AIS. It was hypothesized that machine learning could 
accurately predict MCE risk post-AIS using both clinical and 
radiomic data.

2 Materials and methods

2.1 Patients

This retrospective analysis received approval from our institutional 
review board (approval number: KY S2023-077-01), and informed 
consent was waived because of its retrospective nature.

Between July 2016 and December 2023, clinical information and 
NCCT imagery were collected from a pair of hospitals: Affiliated 
Hospital of North Sichuan Medical College and Chongqing General 
Hospital. The study collected 461 consecutive AIS patients. The sample 
included individuals who were diagnosed with AIS and who satisfied 
the following conditions: (1) anterior circulation affected by AIS as per 
WHO guidelines (Aho et al., 1980); (2) a head CT scan was conducted 
within 1 day of symptom emergence before admission for treatment; 
(3) CT follow-up of at least 3 days unless malignant cerebral edema 
(MCE) occurred within 3 days; and (4) infarct zones identified by 
CT. The exclusion criteria were as follows: head trauma, initial brain 
hemorrhage or tumor, hemorrhagic infarction at admission, post-
admission hemorrhagic alteration, insufficient data, and notable 
irregularities in NCCT imagery. Finally, the study enrolled a total of 
179 patients, 131 of whom did not have MCE and 48 of whom did 
have MCE (Figure 1).

2.2 Endpoints

The main endpoint was any midline movement (be it the septum 
pellucidum or pineal gland) exceeding 5 mm during follow-up 
examination that required a decompressive hemicraniectomy 
craniectomy (DHC) (Barber et al., 2003; Tracol et al., 2020).

2.3 Data collection

The clinical data in our research included age, sex, stroke onset 
timing, and treatment, which were collected from the medical 
records. Additionally, assessments were carried out on patients 
regarding their NIHSS score; smoking habits; alcohol consumption; 
hypertension; diabetes; high fat levels; atrial fibrillation; and heart 
failure. The imaging data in our research included the ASPECTS, 
severe stroke, and hyperdense middle cerebral artery sign, which 
was obtained from the Picture Archiving and Communication 
System (PACS).

Abbreviations: MCE, malignant cerebral edema; AIS, acute ischemic stroke; LASSO, 

the least absolute shrinkage and selection operator; AUC, area under the receiver 

operating characteristic curve; LR, Logistic regression; CED, cerebral edema; MLS, 

midline shift; NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta 

stroke program early CT score; CSF, cerebrospinal fluid; CT, computed tomography; 

NCCT, non-contrast computed tomography; DWI, diffusion-weighted imaging; 

FLAIR, fluid-attenuated inversion recovery; CTP, computed tomography perfusion; 

ML, machine learning; DHC, decompressive hemicraniectomy craniectomy; PACS, 

picture archiving and communication system; MCA, middle cerebral artery; KNN, 

K nearest neighbors; ICC, Intraclass Correlation Coefficient; GLCM, gray-level 

co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level 

run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring 

gray-tone difference matrix; Rad-score, radiomics score; SVM, Support Vector 

Machine; XGB, eXtreme Gradient Boosting; DCA, decision curve analysis; ROC, 

receiver operating characteristic curve; ROI, region of interest; MRI, Magnetic 

Resonance Imaging.
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2.4 Capturing and analyzing images

Our research used the LightSpeed VCT (GE) or IQon Spectral CT 
(Philips) technique to capture head CT scans without any contrast 
enhancement. The patients were laid on their backs, with the orbital 
tract line serving as the baseline for scanning. The scanning zone 
extended from the apex of the head to the base of the skull. The 
scanning criteria were as follows: a tube voltage of 120 kV, a current 
setting of 220 mAs, a pitch ratio of 1.0, and layer thickness of 5 mm 
and layer spacing of 5 mm.

The patients’ NCCT scans were examined by two seasoned 
radiologists (F and Y, each with more than 5 years of expertise, 
independently). (1) The initial CT scan delineated the infarct area 
boundaries by identifying regions of marked hypointensity following 
the adjustment of image gray values. (2) The hyperdense middle 
cerebral artery (MCA) sign exhibited increased densification within 
the MCA on the affected side of the infarct compared to the 
contralateral side. (3) Massive cerebral infarction was defined as an 
infarct area that was more than one-third of the cerebral hemisphere 
or an infarct volume > 80 mL (Hua et  al., 2023). Furthermore, the 

FIGURE 1

The flow chart of patient inclusion and exclusion criteria. AIS, acute ischemic stroke; MCE, malignant cerebral edema.
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ASPECTS was determined by subtracting the hypodense area score 
from the NCCT image’s overall score of 10 (Mokin et al., 2017). Upon 
admission, the patient’s initial neurological condition was evaluated 
utilizing the NIHSS. Discrepancies in the assessments made by the 
two evaluators were settled by mutual agreement via dialog.

2.5 Data preprocessing

Missing values in the clinical data were filled using K nearest 
neighbors (KNN) (Ren et al., 2023). Moreover, normalization of the 
NCCT images was achieved by adjusting the image voxels to dimensions 
of 1 mm × 1 mm × 1 mm via linear interpolation, refining the images 
with a Gaussian filter, and setting the gray bin width of the images at 25.

2.6 Infarct lesion segmentation and 
radiomics feature screening

Infarct lesion segmentation and screening of radiomic feature 
were performed using 3DSlicer.1

This software facilitated the analysis of the initial head CT scans of 
all AIS patients, which were not enhanced in contrast, in DICOM 
format. The perimeters of the infarct area were ascertained by modifying 
the gray hues in the CT scans. Following this, a semiautomatic 
segmentation technique was employed to acquire a three-dimensional 
region of interest (ROI) for the infarct area (Figure 2). To maintain 
consistency, the same radiologist selected 90 AIS patients at random 
after 1 week for the purpose of resegmentation of the ROIs and 
extraction of the radiomics features by imaging. The ICC was used to 
assess the uniformity of characteristics between two occasions. To avoid 
overfitting, feature selection was conducted as a necessary preprocessing 
step. Accordingly, only features demonstrating an Intraclass Correlation 

1 https://www.slicer.org/

Coefficient (ICC) value above 0.75 were selected for inclusion in 
subsequent analyses to ensure their reliability for future studies.

Using the PyRadiomics plug-in of the software, radiomics 
signature was derived from the ROIs in the images. These included 
various matrices, such as the gray-level co-occurrence matrix 
(GLCM), gray-level dependence matrix (GLDM), gray-level run 
length matrix (GLRLM), gray-level size zone matrix (GLSZM), 
neighboring gray-tone difference matrix (NGTDM), wavelet-based 
features, 3D-shaped features, and first-order features.

After analyzing the radiomics features extracted twice using ICC, 
we subjected the radiomics signature with an ICC > 0.75 to a t-test for 
intergroup comparisons of radiomics scores. Subsequently, LASSO 
regression and 5-fold cross-validation were employed to identify and 
ascertain the most suitable radiomics signature linked with the 
MCE. Lasso regression is a regression analysis technique that has 
gained considerable recognition for its capacity to identify pivotal 
features in radiomics, avert overfitting, and yield sparse models that 
are concise and readily interpretable. By incorporating a regularization 
term, it reduces model complexity, automatically selects features that 
contribute the most to the model, and demonstrates robustness 
against outliers and noise (Huang et al., 2016; Bhatia et al., 2019; Kim 
et  al., 2019). Ultimately, we  incorporated the radiomics features 
associated with MCE obtained after screening and created a radiomics 
score by a logistic regression algorithm. The Rad-score for every 
patient on radiomics was calculated by summing the regression 
coefficients and the product of the equation’s characteristics.

2.7 Model building and validation

These patients were assigned to two sets: one for training (n = 143) 
and another for validation (n = 36), keeping the ratio at 8:2. In the 
training cohort, clinical variables were screened using t-test and 
ANOVA to select variables with p < 0.05. According to the one-way 
analysis, clinical factors with p < 0.05, along with Rad-score, were 
identified as significant risk factors for MCE. Using techniques such 
as KNN, Support Vector Machine (SVM), Tree, eXtreme Gradient 

FIGURE 2

The region of interest (ROI) was manually segmented along the edges of the infarcted region on each slice of the NCCT image using the 3D-Slicer software. 
(A,B) ROIs in the infarct area across different axial planes. (C) A 3D-ROI within the infarcted area. ROI, region of interest; 3D, three-dimensional.
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Boosting (XGB), and LR, five distinct machine learning models were 
developed. The models were then validated in a separate cohort, and 
their predictive performance was further evaluated. The AUC of the 
models was determined through the analysis of the subject’s operating 
characteristic curve. Calibration curves were employed to evaluate the 
concordance between the model’s predicted probabilities and observed 
outcomes. Subsequently, clinical decision curve analysis (DCA) was 
applied to determine the model’s net clinical benefit.

2.8 Analytical statistics

Analysis of the statistical data was conducted with R software (version 
4.3.1)2 and Python 3.9.3 Normally distributed data are represented as 
means ± standard deviation, whereas qualitatively distributed data are 
represented as numbers and percentages. The evaluation of clinical traits 
was conducted through the application of t-test and ANOVA. A 
two-by-two comparative analysis of the AUC across three models was 
conducted utilizing the DeLong test. In every statistical evaluation, p 
values on both sides below 0.05 were deemed significant.

ICC analyses were conducted to compare radiomics scores between 
groups. Radiomics features were filtered using a t-test with high 
correlation and no redundancy. The best feature subset was selected, and 
the radiomics model was developed through LASSO logistic regression 
within the ‘Glmnet’ software suite. The ‘class’, ‘kernlab’, ‘rpart’, ‘xgboost’ 
and ‘glmnet’ packages were utilized to construct KNN, SVM, Tree, 
XGBoost, and LR machine learning models, respectively. The ‘pROC’, 
‘rmda’, and ‘rms’ packages were utilized to construct receiver operating 
characteristic curve (ROC) curves, DCA curves, and calibration curves, 
respectively. To evaluate the variance in the AUC among the different 
models, Delong tests were conducted. Statistical significance was 
attributed solely to tests where the p value was less than 0.05.

3 Results

3.1 Clinical demographic characteristics

The study analyzed data from 179 patients (102 males [56.98%] and 
77 females [43.02%]) with a median age of 68.89 years from two hospitals. 
Of these, 48 patients suffered from MCE, while 131 did not. There were 
no significant differences between the patients’ clinical data (Tables 1, 2). 
Notable differences were detected in the NIHSS score, infarct volume, and 
ASPECTS among the MCE (+) and MCE (−) groups within the training 
dataset after univariate analysis (P<0.001) (Table 3).

3.2 Radiomics score and nomogram 
development

From each patient, 851 distinct radiomics features were derived, 
focusing on the specific region of interest (ROI) within the infarct 
zone, as seen in non-contrast-enhanced CT scans. After conducting 

2 https://www.r-project.org/

3 https://www.python.org

TABLE 1 Baseline characteristics in the training and validation cohorts.

Clinical 
factors

Training 
cohort 

(n =  143)

Validation 
cohort 
(n =  36)

p-value

Sex 0.102

  Female 60 (41.96%) 17 (47.22%)

  Male 83 (58.04%) 19 (52.78%)

Age Group(years) 0.652

  <50 5 (3.5%) 0(0.0%)

  50–60 39 (27.27%) 7 (19.44%)

  60–70 37 (25.87%) 8 (22.22%)

  70–80 34 (23.78%) 14 (38.89%)

  >80 28 (19.58%) 7 (19.44%)

Smoking 0.752

  No 94 (65.73%) 22 (61.11%)

  Yes 49 (34.27%) 14 (38.89%)

Alcohol 0.491

  No 100 (69.93%) 23 (63.89%)

  Yes 43 (30.07%) 13 (36.11%)

Hypertension 1

  No 61 (42.66%) 14 (38.89%)

  Yes 82 (57.34%) 22 (61.11%)

Diabetes 0.846

  No 98 (68.53%) 20(55.56%)

  Yes 45 (31.47%) 16 (44.44%)

Hyperlipidemia 0.034

  No 105 (73.43%) 27 (75.0%)

  Yes 38 (26.57%) 9 (25.0%)

Atrial fibrillation 0.931

  No 84 (58.74%) 23 (63.89%)

  Yes 59 (41.26%) 13 (36.11%)

Heart failure 1

  No 62 (43.36%) 15 (41.67%)

  Yes 81 (56.64%) 21 (58.33%)

Middle cerebral artery stenosis 1

  No 100 (69.93%) 29 (80.56%)

  Yes 43 (30.07%) 7 (19.44%)

Large area brain infarction 1

  No 78 (54.55%) 24 (66.67%)

  Yes 65 (45.45%) 12 (33.33%)

Treatment 0.497

  Non-

reperfusion

84 (58.74%) 23 (63.89%)

  IVT 22 (15.38%) 5 (13.89%)

  MT 29 (20.28%) 6 (16.67%)

  IVT with MT 8 (5.59%) 2 (5.56%)

Age 68.24 (58.5, 78.0) 71.47 (65.75, 78.0) 0.147

(Continued)
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an ICC analysis and t-test, we  identified 215 stable features with 
between-group differences. Ultimately, 9 radiomics features showed a 
strong correlation with the MCE, as determined through LASSO and 
a 5-fold cross-validation process (Figures 3A,B). The meanings of 
these 9 radiomics features are listed in Supplementary Table S1. The 9 
characteristics were examined using logistic regression to formulate 
an equation. Subsequently, the Rad-score was determined using the 
regression coefficients in the formula to demonstrate the predictive 
accuracy of the MCE.
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For each patient, waterfall diagrams were generated utilizing the 
Rad-score (Figures 3C,D). The nomogram was created by combining 
the clinical risk factors mentioned above, namely, the NIHSS at 
admission, stroke volume, and ASPECTS, with the radiomics labels. 
Each best predictor was assigned a separate score, and the total score 
were greater different between MCE patients and non-MCE patients 
(mean 0.198 vs. −2.048, p < 0.001) (Figure  4). The formula for 
calculating the risk score is provided.

 

_ 0.472296011411395
1.8696602424284 0.0304285470958009

0.00188490867690965
0.114446318557212

Risk Score Intercept
RS

NIHSS
Volume ASPECTS
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+ × +
× + −
× + ×

3.3 Machine learning models development

The training of the model utilized clinical factors (NIHSS score, 
infarct volume, ASPECTS), achieving a p < 0.05 following univariate 
analysis and the examination of radiomics features through t-test 

and logistic regression, utilizing five distinct ML algorithms: KNN, 
SVM, Tree, XGB, and LR. Model performance was evaluated using 
the AUCs to identify the optimal machine learning algorithms based 
on clinical-radiomics features (Table 4, Figures 5A,B). The LR model 
successfully forecasted the likelihood of MCE, with AUCs of 0.912 
(95% CI, 0.868–0.957) and 0.916 (95% CI, 0.808–1.000) in the 
training and validation cohorts, respectively. Its accuracy, sensitivity, 
specificity, positive prediction rate and negative prediction rate in 
the validation set were 0.861, 0.750, 0.875, 0.429, and 0.966, 
respectively. Despite the low PPV in the validation set, the model 
can still be  considered to have good predictive accuracy when 
combined with other metrics. Clinical-radiomics machine learning 
models based on LR were created by incorporating clinical risk 
factors and key radiomics features from the training cohort, and 
then validated in the validation cohort. The logistic regression 
classification algorithm in machine learning was selected for the 
construction of the clinical model, radiomics model, and joint 
clinical-radiomics model in the training set and validation set, 
respectively.

3.4 Model evaluation

To evaluate the performance of each model, we created subject 
operating characteristic curves and calculated the AUC.

3.4.1 Performance of clinical models
In distinguishing patients with MCE, the clinical model had an 

AUC of 0.836 (95% CI, 0.769–0.903) in the training cohort and 0.773 
(95% CI, 0.504–1.000) in the validation cohort (Figures 6A,B and 
Table 5).

3.4.2 Performance of radiomics models
In terms of discriminating MCE patients, the radiomics model 

had an AUC of 0.849 (95% CI, 0.781–0.917) in the training cohort and 
0.818 (95% CI, 0.641–0.994) in the validation cohort (Figures 6A,B 
and Table 5).

3.4.3 Performance of combined 
clinical-radiomics models

For differentiating MCE patients, the combined clinical-radiomics 
method achieved an AUC of 0.912 (95% CI, 0.868–0.957) in the training 
cohort and 0.916 (95% CI, 0.808–1.000) in the validation cohort 
(Figures 6A,B and Table 5). The results from the DeLong test showed 
no notable statistical variance among three models (p > 0.05) in the 
training and validation cohorts (Figures 7A,B).

In both the training and validation sets, there was a strong 
correlation between the combined clinical-radiomics model and the 
observed results on the calibration curves for the predictive potential 
of MCE (Figures 8A,B).

Analysis of clinical decisions across all three models revealed the 
clinical-radiomics model’s clinical importance in predicting MCE 
(Figures 9A,B).

Based on the optimal critical diagnostic value (0.5) of the clinical-
radiomics model, subjects were divided into high-risk and low-risk 
cohorts in the training and validation sets (Figures 10A,B). The results 
showed that our model could effectively predict MCE (+).

TABLE 1 (Continued)

Clinical 
factors

Training 
cohort 

(n =  143)

Validation 
cohort 
(n =  36)

p-value

Stroke Time 8.6 (2.5, 11.5) 8.72 (4.0, 11.0) 0.935

NIHSS 13.52 (8.0, 18.0) 11.83 (6.75, 16.0) 0.216

Volume 86.83 (28.4, 122.26) 69.63 (16.4, 102.81) 0.235

ASPECTS 6.75 (5.0, 9.0) 7.17 (6.0, 9.0) 0.336

Data are expressed as the mean ± standard deviation, median (interquartile range) or 
frequency (constituent ratio). IVT, intravenous thrombolysis; MT, mechanical 
thrombectomy; NIHSS, National Institutes of Health stroke scale score; ASPECTS, Alberta 
Stroke Program Early CT Score.
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TABLE 2 Baseline characteristics of the malignant cerebral edema (MCE) and non-MCE cohorts.

Variable Total (n  =  179) Non-MCE (n  =  131) MCE (n  =  48) p-value

Sex 0.799

  Female 77 (43.02%) 54 (41.22%) 23 (47.92%)

  Male 102 (56.98%) 77 (58.78%) 25 (52.08%)

Age group (years) 0.657

  <50 5 (2.79%) 4 (3.05%) 1 (2.08%)

  50–60 46 (25.7%) 31 (23.66%) 15 (31.25%)

  60–70 45 (25.14%) 35 (26.72%) 10 (20.83%)

  70–80 48 (26.82%) 35 (26.72%) 13 (27.08%)

  >80 35 (19.55%) 26 (19.85%) 9 (18.75%)

Smoking 0.453

  No 116 (64.8%) 81 (61.83%) 35 (72.92%)

  Yes 63 (35.2%) 50 (38.17%) 13 (27.08%)

Alcohol 0.887

  No 123 (68.72%) 83 (63.36%) 40 (83.33%)

  Yes 56 (31.28%) 48 (36.64%) 8 (16.67%)

Hypertension 0.185

  No 75 (41.9%) 56 (42.75%) 19 (39.58%)

  Yes 104 (58.1%) 75 (57.25%) 29 (60.42%)

Diabetes 0.251

  No 118 (65.92%) 89 (67.94%) 29 (60.42%)

  Yes 61 (34.08%) 42 (32.06%) 19 (39.58%)

Hyperlipidemia 1

  No 132 (73.74%) 92 (70.23%) 40 (83.33%)

  Yes 47 (26.26%) 39 (29.77%) 8 (16.67%)

Atrial fibrillation 0.81

  No 107 (59.78%) 80 (61.07%) 27 (56.25%)

  Yes 72 (40.22%) 51 (38.93%) 21 (43.75%)

Heart failure 0.47

  No 77 (43.02%) 70 (53.44%) 7 (14.58%)

  Yes 102 (56.98%) 61 (46.56%) 41 (85.42%)

Middle cerebral artery stenosis 0.743

  No 129 (72.07%) 104 (79.39%) 25 (52.08%)

  Yes 50 (27.93%) 27 (20.61%) 23 (47.92%)

Large area brain infarction 0.529

  No 102 (56.98%) 92 (70.23%) 10 (20.83%)

  Yes 77 (43.02%) 39 (29.77%) 38 (79.17%)

Treatment 0.536

  Non-reperfusion 107 (59.78%) 70 (53.44%) 37 (77.08%)

  IVT 27 (15.08%) 24 (18.32%) 3 (6.25%)

  MT 35 (19.55%) 29 (22.14%) 6 (12.5%)

  IVT with MT 10 (5.59%) 8 (6.11%) 2 (4.17%)

Age 68.89 (59.0, 78.0) 69.45 (60.0, 78.0) 67.35 (57.75, 78.0) 0.3

Stroke time 8.63 (3.0, 11.0) 8.86 (3.0, 12.0) 7.98 (3.0, 10.0) 0.512

NIHSS 13.18 (7.0, 17.5) 11.95 (6.5, 17.0) 16.56 (12.0, 18.25) 0*

Volume 83.37 (24.02, 119.44) 60.56 (12.85, 86.5) 145.62 (92.62, 175.78) 0*

ASPECTS 6.83 (5.0, 9.0) 7.32 (6.0, 9.0) 5.5 (4.0, 7.0) 0*

Data are expressed as the mean ± standard deviation, median (interquartile range) or frequency (constituent ratio). The P-value for NIHSS, volume, and aspects is less than 0.001. IVT, 
intravenous thrombolysis; MT, mechanical thrombectomy; NIHSS, National Institutes of Health stroke scale score; ASPECTS, Alberta Stroke Program Early CT Score.
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4 Discussion

To our knowledge, the research introduces an innovative machine 
learning approach to develop a predictive framework for the 
MCE. This technique combines machine learning techniques with the 
visualization of radiomics features in infarcted areas using 
non-contrast-enhanced CT scans and traditional clinical features. This 
model is capable of evaluating the likelihood of MCE in AIS patients 
experiencing anterior circulation complications following reperfusion 
or non-reperfusion treatment. This approach enhances visual 
recognition in NCCT images for MCE prediction performance and 
enhances the diagnostic accuracy of primary care doctors. The data 
were obtained from a multicenter study via routine post admission 
examinations, allowing for quick and generalizable application of the 
model. Our model demonstrated AUC values of 0.912 and 0.916 in 
both training and validation sets, respectively.

Patients suffering from acute ischemic stroke face a critical 
complication known as MCE, which carries a significant risk of 
mortality, potentially increasing to 80% (Liebeskind et al., 2019). The 
usual cause is the sudden blockage of blood vessels in either the 
proximal middle cerebral artery or the distal internal carotid artery. 
Cerebral edema is typically a result of the failure of energy-dependent 
ion transfer from brain cells after AIS and disruption of the blood–brain 
barrier. These factors combine to allow excess water to leak into brain 
tissue, impairing normal neuronal function (Hu and Song, 2017; 
Abdullahi et  al., 2018). Prompt identification of MCE and prompt 
surgical intervention, coupled with early debulking decompression, are 
key to lowering patient mortality risks (Hofmeijer et al., 2009). Current 
clinical diagnostic measures for MCE rely on CT-based observations of 
midline brain deviation or brain herniation formation, which are 
usually indicators of delayed onset (Pham and Ng, 2024). Therefore, it 
is crucial to identify early diagnostic markers for MCE.

The correlation between clinical data and MCE was analyzed, 
revealing that the NCCT-based infarct volume, ASPECTS, and NIHSS 
score were correlated with MCE. These scores could indicate the extent of 
ischemic or infarcted lesions. Patients with MCE (+) had lower ASPECTS, 
greater infarct volume, and higher NIHSS scores than patients with MCE 
(−). Research indicates that individuals with MCE (+) experienced more 
intense initial infarct size and higher NIHSS scores than did those with 
MCE (−), which is consistent with the results of Wu et  al. (2018). 
Furthermore, the research revealed that patients with MCE (+) exhibited 
a reduced ASPECTS upon admission in comparison to those with MCE 
(−), which is consistent with the results of Jo et al. (2017). (p = 0.007).

TABLE 3 Univariate analysis of the risk factors for malignant cerebral 
edema (MCE) in the training cohort.

Training cohort (n  =  143)

Clinical 
factors

MCE (n =  41) 
(28.67%)

Non-MCE 
(n =  102) 
(71.33%)

p-
value

Sex 0.465

  Female 19 (46.34%) 41(40.2%)

  Male 22 (53.66%) 61(59.8%)

Age Group(years) 0.376

  <50 1 (2.44%) 4 (3.92%)

  50–60 13 (31.71%) 26 (25.49%)

  60–70 8 (19.51%) 29 (28.43%)

  70–80 10 (24.39%) 24 (23.53%)

  >80 9 (21.95%) 19 (18.63%)

Smoking 0.905

  No 31 (75.61%) 63 (61.76%)

  Yes 10 (24.39%) 39 (38.24%)

Alcohol 1

  No 35 (85.37%) 65 (63.73%)

  Yes 6 (14.63%) 37 (36.27%)

Hypertension 0.345

  No 18 (43.9%) 43 (42.16%)

  Yes 23 (56.1%) 59 (57.84%)

Diabetes 0.515

  No 25 (60.98%) 73 (71.57%)

  Yes 16 (39.02%) 29 (28.43%)

Hyperlipidemia 1

  No 34 (82.93%) 71(69.61%)

  Yes 7 (17.07%) 31 (30.39%)

Atrial fibrillation 1

  No 22 (53.66%) 62 (60.78%)

  Yes 19 (46.34%) 40 (39.22%)

Heart failure 0.702

  No 6 (14.63%) 56 (54.9%)

  Yes 35 (85.37%) 46 (45.1%)

Middle cerebral artery stenosis 1

  No 21 (51.22%) 79 (77.45%)

  Yes 20 (48.78%) 23 (22.55%)

Large area brain 

infarction

0.818

  No 9 (21.95%) 69 (67.65%)

  Yes 32 (78.05%) 33 (32.35%)

Treatment 0.633

  Non-reperfusion 31 (75.61%) 53 (51.96%)

  IVT 3 (7.32%) 19 (18.63%)

  MT 5 (12.2%) 24 (23.53%)

  IVT with MT 2 (4.88%) 6 (5.88%)

Age, years 67.66 (58.0, 78.0) 68.47 (59.0, 77.75) 0.714

(Continued)

TABLE 3 (Continued)

Training cohort (n  =  143)

Clinical 
factors

MCE (n =  41) 
(28.67%)

Non-MCE 
(n =  102) 
(71.33%)

p-
value

Stroke time 7.85 (3.0, 10.0) 8.9 (2.0, 14.25) 0.491

NIHSS 17.34 (13.0, 19.0) 11.99 (7.0, 17.0) 0*

Volume 146.91 (90.92, 177.49) 62.68 (13.25, 89.09) 0*

ASPECTS 5.51 (4.0, 7.0) 7.25 (6.0, 9.0) 0*

Data are expressed as the mean ± standard deviation, median (interquartile range) or 
frequency (constituent ratio). The P-value for NIHSS, volume, and aspects is less than 0.001. 
IVT, intravenous thrombolysis; MT, mechanical thrombectomy; NIHSS, National Institutes 
of Health stroke scale score; ASPECTS, Alberta Stroke Program Early CT Score.
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Radiomics features indicate the intensity, distribution, and 
interrelationships between pixels that cannot be observed by the naked 
eye. Radiomics feature analysis is widely used in radiomics to convert 
high-throughput data extracted from medical images into quantitative 
metrics. These metrics provide a better and more intuitive 
understanding of disease heterogeneity (Castellano et al., 2004; Miles 
et  al., 2013; Ren et  al., 2018). Currently, there are relatively few 
applications of imaging in AIS. CT-based radiomics has proven effective 
in predicting hemorrhagic transformation risks in AIS patients and in 
evaluating the prognosis of those undergoing standard treatment 
(Zhang et al., 2023; Heo et al., 2024). Furthermore, radiomics analysis 
using MRI successfully pinpointed the time of stroke onset in AIS 
patients (Lu et al., 2024). Additionally, the radiomics features of brain 
MRI images could serve as initial indicators for the emergence of 
cognitive deficits and pneumonia poststroke (Luo et al., 2024; Wang 
et al., 2024). This study presents a radiomics model that uses signature 
extracted from NCCT images to predict serious complications-MCE 
after AIS. The model performed well, and the 9 best quantitative 
radiomics signature were identified. Among them, the GLRLM feature 
reflects the distribution of consecutive low gray pixels in the image, one 
GLCM feature reflects the homogeneity of the image texture, two shape 
features reflect the shape properties of the image region, three first-order 

features, one GLSZM feature reflects the roughness of the image texture, 
and one GLDM feature reflects the similarity of the image dependencies.

Among them, the wavelet transform-based grayscale tour 
length matrix (GLRLM) feature (wavelet-HLH_glrlm._
LongRunLowGrayLevelEmphasis) and the grayscale covariance matrix 
(GLCM) (original_glcm._JointAverage) were identified as the most 
important features. Ischemic stroke is an injury to brain tissue due to 
cerebrovascular obstruction in which dysfunction of certain ion 
channels and transporters can cause disruption of the blood–brain 
barrier. This disruption can lead to edema and structural changes in 
the brain tissue of the affected region. Conventional imaging 
techniques, such as computed tomography (CT) and magnetic 
resonance imaging (MRI), are primarily used to identify areas of 
cerebral infarction, but these techniques typically provide image 
information only about macroscopic structural changes in the brain, 
and it is difficult to detect microtextural changes. Radiomics methods 
are able to reflect information about the texture, density, and shape of 
brain tissue by extracting high-dimensional features from CT or MRI 
images, thus providing a finer representation of the microscopic 
changes in brain tissue after stroke. In imaging, infarcted areas tend to 
have low gray levels, while surrounding healthy brain tissue has higher 
gray levels. As a result, there is usually a significant textural difference 

FIGURE 3

Radiomics score (Rad-score) development. (A,B) Radiomics feature selection based on least absolute shrinkage and selection operator (LASSO) and 
5-fold cross-validation. When binomial deviance is the smallest, a total of nine optimal features are obtained (A) shows the LASSO regression model’s 
variable reduction and coefficient adjustment. (B) Shows the model’s mean squared error (MSE) evolving with the log of the penalty coefficient λ, 
helping to pinpoint optimal features. (C,D) The Rad-score of each patient in the training and validation cohorts. Red indicates malignant cerebral 
edema (MCE), and blue indicates non-MCE.

https://doi.org/10.3389/fnins.2024.1443486
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2024.1443486

Frontiers in Neuroscience 10 frontiersin.org

between the infarcted area and the healthy brain tissue. In this study, 
the wavelet-HLH_glrlm._LongRunLowGrayLevelEmphasis feature 
was extracted by wavelet transform (HLH direction) and gray-level 
run-length matrix (GLRLM) analysis and used to characterize the 
texture of dark regions in the image. This radiomics feature helps to 
quantify the heterogeneity between infarcted and normal tissue and 

thus assess the complexity of the lesion area. For example, high values 
of this feature indicate a continuous distribution of low gray values over 
a large area, which may be associated with extensive ischemic necrosis, 
indicating the severity of brain injury. Another feature, original_glcm_
JointAverage, is a texture feature based on a gray value covariance 
matrix that quantifies the gray value variability of a stroke region by 

FIGURE 4

Clinical and radiomics nomogram.

TABLE 4 Diagnostic performance of clinical-radiomic features across machine learning models in training and validation cohorts.

Models Cohorts AUC 95% CI SEN SPE ACC

LR model Training cohort 0.912 (0.868, 0.957) 0.722 0.860 0.825

Validation cohort 0.916 (0.808, 1.000) 0.750 0.875 0.861

KNN model Training cohort 0.722 (0.639, 0.805) 0.657 0.833 0.790

Validation cohort 0.628 (0.418, 0.838) 0.375 0.857 0.750

SVM model Training cohort 0.877 (0.822, 0.933) 0.833 0.737 0.741

Validation cohort 0.916 (0.812, 1.000) 0.500 0.824 0.806

Tree model Training cohort 0.773 (0.694, 0.852) 0.961 0.585 0.853

Validation cohort 0.626 (0.442, 0.809) 0.966 0.286 0.833

XGB model Training cohort 0.814 (0.751, 0.877) 1.000 0 0.713

Validation cohort 0.754 (0.558, 0.949) 1.000 0 0.806
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capturing the average relationship of gray values between adjacent 
pixels. This variability may be related to the severity of the lesion and 
the homogeneity of the tissue damage. In the present study, the above 
two types of radiomics features were most significantly correlated with 
MCE. The predictive performance of the developed radiomics model 
was better than that of the conventional clinical model (AUC: 0.849 vs. 
0.836), suggesting that the model can be used to assess the severity of 
the lesion and the homogeneity of the tissue damage, to analyze the risk 
of occurrence of MCE after AIS, and may be helpful in optimizing the 
therapeutic regimen. These findings indicate that a heightened risk of 
MCE is correlated with diversity in the stroke area. However, additional 

studies are required to clarify the connection between MCE and 
pathological changes in the radiomics features of NCCT-based images. 
In this research, predictive models developed with the 9 radiomics 
features closely linked to MCE exhibited notably greater AUCs than 
those utilizing clinical data in both the training and validation sets. 
This indicates that radiomics signature surpass clinical records in 
predicting MCE efficacy. Thus, while infarct volume, the ASPECTS, 
and the NIHSS score can predict the risk of MCE, models based on 
NCCT radiomics can further improve MCE prediction performance. 
This allows clinicians to identify AIS patients requiring debulking 
decompression at an early stage, thereby improving patient benefit rates.

FIGURE 5

ROC curves of clinical-radiomic features in the training (A) and validation (B) cohorts for each machine learning model.

FIGURE 6

ROC curves for the clinical model, radiomics model, and clinical-radiomics model in the training cohort (A) and validation cohort (B).
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TABLE 5 Diagnostic Performance of logistic regression machine learning models based on clinical features, radiomics features, and clinical-radiomics 
features in training and validation cohorts.

Models Cohorts AUC 95% CI SEN SPE ACC

Clinical model Training cohort 0.836 (0.769, 0.903) 0.667 0.802 0.776

Validation cohort 0.773 (0.504, 1.000) 0.600 0.871 0.833

Radiomics model Training cohort 0.849 (0.781, 0.917) 0.667 0.779 0.762

Validation cohort 0.818 (0.641, 0.994) 0.500 0.824 0.806

Clinical-radiomics model Training cohort 0.912 (0.868, 0.957) 0.722 0.860 0.825

Validation cohort 0.916 (0.808, 1.000) 0.750 0.875 0.861

FIGURE 7

Results of the Delong test in the training cohort (A) and validation cohort (B).

FIGURE 8

Calibration curves of clinical-radiomics model in the training cohort (A) and validation cohort (B).
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In this research, the DeLong test did not show statistical significance 
for the three models. Notably, the clinical-radiomics model 
demonstrated superior AUC and precision compared to the clinical 
model across both the training and validation cohorts. This suggests that 
radiomics has the potential to improve MCE prediction in the future. 
Additionally, the DCA results demonstrated that this clinical-radiomics 
model provides a significant net benefit in predicting MCE. Therefore, 
the clinical-radiomics model can be  considered a reliable and 
reproducible tool to aid treatment decisions. It may be implemented in 
clinical practice following validation in a larger cohort.

It is crucial to acknowledge the constraints inherent in this 
research. Initially, the backward-looking aspect of this subject 
could lead to biases in information and selection. Although the five 
machine learning algorithms used in this study, namely KNN, Tree, 
XGB, SVM, and LR, all include strategies for dealing with data 
imbalance, the applicability of the models still needs to be further 
confirmed through prospective and multi-center validation with a 

broader range of samples due to the data set imbalance caused by 
sample size limitations and the lack of external validation for the 
constructed models. Additionally, additional studies using CT or 
Magnetic Resonance Imaging (MRI) brain perfusion imaging 
might be required for more significant outcomes, given the model’s 
potential inapplicability to hyperacute AIS patients whose infarct 
limits are indeterminable by modifying image gray values. Despite 
its limitations, this study developed a prediction model for MCE by 
combining radiomics features with clinical features. The proposed 
model could assist in the prompt and precise prediction of MCE in 
individuals suffering from acute anterior circulation infarction.

5 Conclusion

In summary, this research offers fresh perspectives on forecasting 
MCE in cases of ischemic stroke. The findings indicate that the 

FIGURE 9

Decision curve analysis curves in the training cohort (A) and validation cohort (B).

FIGURE 10

Classification performance of the clinical-radiomics model in the training (A) and Validation (B) cohorts. MCE, malignant cerebral edema. MCE, 
malignant cerebral edema.
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integration of clinical and radiomics signature in machine learning 
models can precisely predict MCE, aiding in clinical decision-
making processes.
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