
TYPE Opinion

PUBLISHED 10 September 2024

DOI 10.3389/fnins.2024.1443121

OPEN ACCESS

EDITED BY

André van Schaik,

Western Sydney University, Australia

REVIEWED BY

Roberto Marangoni,

University of Pisa, Italy

Konrad Szaciłowski,

AGH University of Science and

Technology, Poland

*CORRESPONDENCE

Pier Luigi Gentili

pierluigi.gentili@unipg.it

RECEIVED 03 June 2024

ACCEPTED 27 August 2024

PUBLISHED 10 September 2024

CITATION

Gentili PL, Zurlo MP and Stano P (2024)

Neuromorphic engineering in wetware: the

state of the art and its perspectives.

Front. Neurosci. 18:1443121.

doi: 10.3389/fnins.2024.1443121

COPYRIGHT

© 2024 Gentili, Zurlo and Stano. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Neuromorphic engineering in
wetware: the state of the art and
its perspectives

Pier Luigi Gentili1*, Maria Pia Zurlo1 and Pasquale Stano2

1Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy,
2Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of

Salento, Lecce, Italy

KEYWORDS

chemical artificial intelligence, chemical reaction networks, emergence, oscillatory

chemical reactions, synthetic biology, DNA, proteins, fluidic memristors

1 Introduction

The UN General Assembly (2015) has compiled an Agenda, containing 17 goals to

be pursued worldwide to promote a sustainable future by 2030. Accomplishing these

goals requires designing and implementing more effective strategies to manage Complex

Systems, including human beings and their societies, the world economy, urban areas,

natural ecosystems, and the climate (Gentili, 2021a). A promising strategy, which is

literally blooming, relies on the development of Artificial Intelligence (AI) and Robotics.

AI helps humans collect, store, and process the Big Data required to monitor the constant

evolution of Complex Systems (Corea, 2019). AI also assists us in making up our minds

for controlling the behavior of Complex Systems. Hard and soft robotics allow humans

to access environments otherwise precluded. For instance, they help us (1) investigate

the geochemical characteristics of other planets and examine the abysses of our oceans

to discover new mines of precious materials and energy resources, (2) access the interior

organs of our bodies for less invasive surgery, (3) and work in dirty or dangerous places.

Two are the principal and traditional approaches exploited to develop AI (Lehman et al.,

2014; Mitchell, 2019). The first approach entails writing “intelligent” software that runs

on electronic computers based on von Neumann’s architecture, whose principal drawback

is having processing and memory units physically separated. Some software mimics

rigorous logical thinking, while others imitate the structural and functional features of

neural networks to learn how to perform tasks from data. The second approach for

developing AI entails implementing artificial neural networks in hardware for neuro-

prosthesis or designing brain-like computing machines, with processors and memory

confined in the same space (the so-called mem-computing; Sebastian et al., 2020). Artificial

neural networks are rigid if they aremade of silicon-based circuits or inorganicmemristors;

they are flexible if based on organic semiconductor films (Christensen et al., 2022; Lee

and Lee, 2019; Wang et al., 2020; Zhu et al., 2020). They can be designed with three

distinct architectures: (A1) feedforward (having trainable unidirectional connections),

(A2) recurrent (with trainable feedback actions), or (A3) reservoir (consisting of an

untrained non-linear dynamic system coupled to trainable input and output layers)

network (Nakajima, 2020; Tanaka et al., 2019; Cucchi et al., 2022; see Figure 1A).

In the last decade or so, a novel promising strategy to develop AI

has been put forward: it consists of mimicking human intelligence and

the forms of intelligence exhibited by all the other living beings through

molecular, supramolecular, and systems chemistry in wetware, i.e., liquid
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FIGURE 1

(A) Shows the three principal architectures of artificial neural networks: they are (A1) feedforward, (A2) recurrent, and (A3) reservoir networks. (B)

Showcases the three principal methodologies for developing neuromorphic engineering in wetware.

solutions (Gentili and Stano, 2023a,b; Kuzuya et al., 2023; Murata

et al., 2022), which is the peculiar phase supporting life. As

we believe that this still not-well-explored field represents a

huge opportunity to understand and exploit computation in the

molecular realm—thus closely mimicking the natural (biological)

cognitive abilities—here we would like to highlight the current

methodologies. In particular, we focus on artificial neural networks

in wetware and, hence, on the strategies to develop neuromorphic

engineering in the fluid phase. The selection of topics presented in

this short article is not meant to represent the whole diversity of this

research area—it rather mirrors our specific interests. The variegate

methodologies proposed so far can be grouped into three distinct

approaches (see Figure 1B) presented succinctly in the next three

paragraphs. Some future perspectives are shortly presented in the

last paragraph.

2 Chemical reaction networks

Any liquid solution containing two or more reactive solutes

may display some of the brain’s dynamic features, especially if

considered as a useful model or even a simplified version of

it. Although any brain is a complex three-dimensional cellular

architecture, chemical reaction networks can share some aspects of

their organization. Indeed, it is still possible to draw direct analogies

between the chemical compound and chemical reaction space to

bio-inspired brain-type architectures with the reactive molecules

of solutes representing the neurons and their mutual impacts

being the synapses (Csizi and Lörtscher, 2024). The molecules of

solvent, which do not react but assist the chemical transformations

of solutes, are like the brain’s glial cells. Some solute molecules’

collisions trigger chemical reactions, whereas others are chemically

ineffective. Specific steric and energetic conditions must be verified

to render a molecular impact reactive. The Arrhenius law defines

the transformation rate constant (kr) of the reagents into the

products and it formally corresponds to the activation function of

the molecular nodes:

kr = Ae
−Eact
RT (1)

In Equation 1, the pre-exponential factor A is related to the

steric requirements, whereas Eact is the minimum energy needed

to make an impact reactive. Usually, it is the thermal energy,

RT, available to all the molecules, which is exploited to overcome

the barrier Eact , unless other energetic inputs are unleashed from

outside. The kinetic constant kr , defined in Equation 1, is related

to the computational rate for the chemical reaction network: it

increases by heating. If the concentration of i-th solute is C0,i

(expressed in moles per volume of solution, i.e., in molarity M),

the total number of molecular neurons (N) per unit of volume

(expressed in liters) will be given by the Avogadro’s number times

the sum of the solutes’ analytical concentrations:

N =
(

6.022× 1023
)

∑

i

C0,i (2)

Molecular networks compute in a highly parallel manner,

and their computational rate (CR) might be remarkable: For a

bimolecular reaction of the type A+ B
kr
→ P, it will be:

CR =
(

krC0,AC0,B

) (

6.022× 1023
)

(3)

When the rate-determining step is the encounter of the

reactants (A and B) by diffusion, the apparent reactive constant
(

kr
)

app
≈ 109M−1s−1, and if C0,AC0,B ≈ 10−9M2, then the

computational rate is hundreds of zettaFLOPS (i.e., ≈ 1023) per

unit of volume, i.e., five orders of magnitude faster than the best

supercomputer in the world, according to the TOP500 project
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(https://www.top500.org/). Of course, in a chemical reaction,

even if carried out by billions and billions of molecules, it is

generally impossible to address individual reaction events in order

to distinguish them because they occur randomly distributed in

space and time. The situation could be improved through micro-

compartmentalization, but it remains far from the performances

of the two-dimensional architecture of the processors inside

an electronic computer and even further from the remarkable

computational performances of the three-dimensional architecture

of a biological brain.

In any fluid solution, the network’s architecture is not fixed,

but fluid, subjected to the constant movement of the molecular

neurons, promoted by diffusion, stirring (if present), and advection

(if induced). It is a reservoir network (Figure 1A3), whose overall

shape and size are fixed by the solid device containing the

solution (Adamatzky, 2019) and whose computational rate is

directly proportional to the concentrations of the solutes. If the

molecules constituting the network are prepared and maintained

in a coherent quantum state, they can be employed to perform

quantum neuromorphic computing (Ghosh et al., 2021). When

molecular Brownian motion destroys the coherent quantum states,

the chemical reservoir can be exploited to implement classical logic.

If the input-output relationships are steep sigmoid functions, they

are appropriate for implementing binary logic gates (De Silva,

2013). The molecular logic gates have been demonstrated to be

reconfigurable because the input-output relationship can change

depending on the technique used to monitor the read-out layer

of Figure 1A3. When the input-output function is not sigmoid

but hyperbolic or linear, the molecular network is appropriate for

processing infinite-valued logic, like fuzzy logic (Gentili, 2018).

Fuzzy logic is a model of human capability to make decisions

using natural language. The words are fuzzy sets. It has been

demonstrated that fuzzy sets can be chemically implemented

through the context-dependent conformational distributions of

compounds (Gentili, 2021b; Gentili and Perez-Mercader, 2022).

The major challenges for neuromorphic engineering through

chemical reaction networks are to connect (1) different chemical

logic gates for the implementation of extended circuits analogous

to those in electronics and (2) distinct chemical words to

build molecular languages. One way is through optical signals

(Andréasson and Pischel, 2015) and another through microfluidic

platforms that allow controlling the encounter of molecular

reagents (Kou et al., 2008).

Some chemical reactive systems produce intermediates that

establish mutual strong non-linear relationships, typical of a

recurrent network, and give rise to bottom-up emergent properties,

such as spontaneous temporal and spatial self-organization

phenomena (Epstein and Pojman, 1998; Ashkenasy et al., 2017).

These chemical systems, whose iconic instance is the Belousov-

Zhabotinsky reaction, have been proposed as dynamic surrogates

of real neurons because they can reproduce their oscillatory,

chaotic, and excitable regimes (Okamoto et al., 1995; Izhikevich,

2007; Gentili and Micheau, 2020). They can communicate through

chemical, electrical, and optical signals, giving rise to spatio-

temporal synchronization phenomena, analogous to those shown

by real neural networks. The single neural surrogates can be

confined to either macro- or micro-reactors. They have been

arranged in all three archetypes of neural networks shown in

Figure 1A: feed-forward, recurrent, and reservoir networks (Gentili

et al., 2017; Litschel et al., 2018; Vanag, 2019; Gentili, 2022;

Tomassoli et al., 2024).

When the molecules participating in the chemical reaction

networks are biopolymers, such as DNA, RNA, and proteins, we

enter the realm of synthetic biology, which constitutes the second

strategy for developing neuromorphic engineering in wetware

(Vasle and Moškon, 2024).

3 Synthetic biology

The non-linear reactivity of biopolymers, i.e., DNA, RNA, and

proteins engaged in fundamental processes for cell life, is ideal for

implementing reservoir and recurrent networks (Cameron et al.,

2014; Tang et al., 2021) in vivo and in vitro. Since each biopolymer

exists as a collection of conformers, whose features are context-

dependent, the bio-chemical reaction networks are intrinsically

fuzzy (Gentili, 2024). Fuzzy neural networks guarantee adaptability

and the capability to make decisions in environments dominated

by uncertainty and vagueness (Zadeh, 1997; Gentili and Stano,

2022). Within a cell, biopolymers participate in chemical reactions

that occur in overcrowded micro- and nano-compartments (i.e.,

the organules), often at their interface, and involving tethered

reactive species, limiting their random Brownian motions. This

well-orchestrated and complex bio-chemical reaction network

gives rise to an autonomous cellular computing system. A cell

is capable of (1) collecting data about the external environment

and its internal state through transmembrane sensory proteins; (2)

processing the sensory data andmaking decisions, which (3) trigger

the genetic module or (4) modify cellular metabolism (Roederer,

2005; Gentili and Stano, 2024). Living cells are too complex to

be reproduced synthetically, from scratch, through a bottom-up

approach. The synthetic cells (SCs) implemented so far are more

similar to wetware machines that are programmed to compute and

accomplish specific tasks, such as assaying chemical information

and therapeutics (Chang, 1987; Guindani et al., 2022). However,

attention has been recently paid to how to make them more

organism-like, i.e., “minimally cognitive” (Damiano and Stano,

2018; Stano, 2023). For example, an explicitly declared goal is

to implant a sort of minimal brain made of chemical reaction

networks inside SCs (Braccini et al., 2023), aiming at a simple form

of autonomy. A step further will be reachable when an SC could

become a neural network node made of other SCs (with or without

involving natural cells) to imitate the organizational and functional

features of biological tissues. In these cellular networks, two- or

three-dimensional cultures of human brain cells (the so-called

brain organoids) will be employed, facilitating the reconstruction

of the histoarchitecture and functionality of real neural networks

(Smirnova, 2024).

4 Nanofluidic iontronics

Bioinspired nanofluidic iontronics represents the most recent

approach for developing neuromorphic engineering in wetware

(Hou et al., 2023). It consists of hybrid circuits made of solid

nanochannels and electrically conductive ionic solutions to imitate

real neurons that use ionic currents as information carriers. The
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solid nanochannels are not simple containers: their shape and

size affect the electrical properties of the devices. There are two

groups of nanofluidic devices: (1) nanofluidic transistors that

mimic structures and functionalities of biological ion channels,

and (2) nanofluidic memristors that mimic synapses (Xiong et al.,

2023a). Under nano-confinements, both water molecules and

ions exhibit anomalous transport behaviors, such as ultrahigh

ion/proton transport speed and selectivity (Robin et al., 2023).

These nanofluidic devices not only reproduce brain-like neural

electrical signals but also realize the logic operation or memory

functionalities. The way to endow bioinspired nanofluidics with

smart responsiveness is to modify the inner surface of the channels

with various responsive molecules, such as aptamers and antibodies

(Xiong et al., 2023b). A wide range of chemical species could

coexist and move freely in electrolyte solutions contributing to

abundant chemical information compared with solid memristors.

The biological compatibility of fluidic memristors is convenient for

the communication between real neurons and devices.

5 Discussion

Despite the recent impressive advancements in conventional

(hardware/software) AI and Robotics, we expect a profound

revolution in the sciences of the artificial (Cordeschi, 2002) will

definitely come from exploring fluid chemical systems and their

computational capabilities. The development of neuromorphic

engineering in wetware requires an interdisciplinary effort,

involving chemists, physicists, biologists, engineers, computer

scientists, and neuroscientists. Differently from general-purpose

electronic computers, neuromorphic devices in wetware will be

specific-purpose. In computing, they will be particularly alluring

for recognizing variable patterns, solving NP-hard problems, and

processing vague information (Adleman, 1994; Adamatzky et al.,

2005; Evans et al., 2024; Csaba and Porod, 2020; Gentili and

Stano, 2024) because chemical reaction networks performmassive-

parallel computations. Furthermore, neuromorphic devices in

wetware will guarantee a seamless interface with living beings

because they can interplay with living cells even at the

molecular level. They will reciprocally communicate through

both chemical and physical signals. Chemical communication can

be carried out not only through diffusion, but also advection,

chemical waves and motor proteins. Neuromorphic devices in

wetware will monitor, and heal if required, biological functions

through the implementation of multi-scale artificial and biological

communication networks, called Internet of Nano/Bio-things

(IoBNTs; Akyildiz et al., 2015; Stano et al., 2023). We think it is

reasonable to expect that such IoBNTs will approach the power of

biological intelligence to process information based on uncertain

and context-dependent data without an excessive expenditure

of energy.
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