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Introduction: Wearable in-ear electroencephalographic (EEG) devices hold 
significant promise for integrating brain monitoring technologies into real-life 
applications. However, despite the introduction of various in-ear EEG systems, 
there remains a necessity for validating these technologies against gold-
standard, clinical-grade devices. This study aims to evaluate the signal quality of 
a newly developed mobile in-ear EEG device compared to a standard scalp EEG 
system among healthy volunteers during wakefulness and sleep.

Methods: The study evaluated an in-ear EEG device equipped with dry 
electrodes in a laboratory setting, recording a single bipolar EEG channel using 
a cross-ear electrode configuration. Thirty healthy participants were recorded 
simultaneously using the in-ear EEG device and a conventional EEG cap system 
with 64 wet electrodes. Based on two recording protocols, one during a resting 
state condition involving alternating eye opening and closure with a low degree 
of artifact contamination and another consisting of a daytime nap, several 
quality measures were used for a quantitative comparison including root mean 
square (RMS) analysis, artifact quantification, similarities of relative spectral 
power (RSP), signal-to-noise ratio (SNR) based on alpha peak criteria, and 
cross-signal correlations of alpha activity during eyes-closed conditions and 
sleep activities. The statistical significance of our results was assessed through 
nonparametric permutation tests with False Discovery Rate (FDR) control.

Results: During the resting state, in-ear and scalp EEG signals exhibited similar 
fluctuations, characterized by comparable RMS values. However, intermittent 
signal alterations were noticed in the in-ear recordings during nap sessions, 
attributed to movements of the head and facial muscles. Spectral analysis 
indicated similar patterns between in-ear and scalp EEG, showing prominent 
peaks in the alpha range (8–12  Hz) during rest and in the low-frequency range 
during naps (particularly in the theta range of 4–7  Hz). Analysis of alpha wave 
characteristics during eye closures revealed smaller alpha wave amplitudes and 
slightly lower signal-to-noise ratio (SNR) values in the in-ear EEG compared to 
scalp EEG. In around 80% of cases, cross-correlation analysis between in-ear 
and scalp signals, using a contralateral bipolar montage of 64 scalp electrodes, 
revealed significant correlations with scalp EEG (p  <  0.01), particularly evident in 
the FT11-FT12 and T7-T8 electrode derivations.

Conclusion: Our findings support the feasibility of using in-ear EEG devices with 
dry-contact electrodes for brain activity monitoring, compared to a standard 
scalp EEG, notably for wakefulness and sleep uses. Although marginal signal 
degradation is associated with head and facial muscle contractions, the in-ear 
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device offers promising applications for long-term EEG recordings, particularly 
in scenarios requiring enhanced comfort and user-friendliness.
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1 Introduction

Wearable devices are increasingly present in healthcare as tools for 
biomedical research or clinical applications. Their growing 
development has been accelerated by recent technological progress, 
which combines skin-attachable physiological monitoring sensors 
with compact and high-performance recording components. One type 
of wearable device that has gained attention is those worn in or around 
the ear, known as “earables. Positioned uniquely on the human head, 
these devices offer a specialized location for sensing various 
physiological parameters, including face, eye, head movements, body 
sounds, heart rate, blood oxygen saturation, or respiration (Röddiger 
et  al., 2022). This technology takes advantage of the anatomical 
characteristics of the ear that offer a convenient dock to host the 
required electronics needed to fit a wearable device. Most importantly, 
they are discrete and unobtrusive as they are similar to audio devices 
people commonly use, such as earbuds or earplugs.

Due to its proximity to the brain, the external ear offers an 
interesting location for monitoring brain activity. Specifically, various 
types of wearable devices for recording brain electrical activity, known 
as electroencephalogram (EEG), have been developed (Kaongoen 
et al., 2023). These devices utilize electrodes placed in different areas 
within the outer ear, predominantly in the ear canal (Looney et al., 
2011; Goverdovsky et al., 2017). The interest in this type of technology 
comes from the use of small electrodes (each with an area of 
approximately 9 mm2) that are easy to wear, significantly reducing 
setup time compared to traditional EEG systems, which require the 
placement of multiple electrodes on the scalp by trained personnel. 
Additionally, the tight fit of an earpiece in the ear canal applies 
pressure on the electrodes, ensuring stable electrode positions and 
partially reducing motion artifacts that commonly degrade signal 
quality in conventional EEG recordings (Mikkelsen et al., 2015). The 
initial development of the in-ear EEG device by Looney et al. (2011) 
marked a significant breakthrough in this wearable monitoring 
technology. Since its introduction, this technology has been rigorously 
tested and proven effective in over 90 peer-reviewed studies (Juez 
et al., 2024), highlighting improvements in materials, system design 
for everyday use, and the reliability of signal quality (Correia et al., 
2024). Additionally, innovations have included sensor designs such as 
custom 3D molded impressions tailored to individual ear shapes 
(Valentin et al., 2021) and the use of memory foam for better comfort 
and fit (Goverdovsky et al., 2016). Tabar et al. (2023) further advanced 
the technology by creating a universal earplug made from soft silicone, 
noted for its high-quality signal and suitability for extended 
monitoring. This ear-EEG technology has found diverse applications, 
ranging from monitoring emotional and stress levels (Athavipach 
et al., 2019; Lee et al., 2020) to more specialized uses such as hearing 
tests (Christensen et  al., 2018), securing personal authentication 
systems (Merrill et al., 2019), and detecting drowsiness in drivers 

(Hong et  al., 2018). In medical contexts, these devices have been 
especially valuable. They are used for sleep analysis, performing 
comparably to the gold-standard polysomnography to assess sleep 
stages accurately (Mikkelsen et al., 2017a). The technology is also 
gaining recognition for its potential to monitor epileptic seizures, 
allowing continuous, real-time observation outside hospital 
environments and improving diagnostic and follow-up processes 
(Zibrandtsen et al., 2017; Joyner et al., 2024). Recent studies have 
shown its effectiveness for long-term EEG monitoring in patients with 
Alzheimer disease (Musaeus et al., 2023a) and Lewy body dementia 
(Musaeus et al., 2023b), both conditions that significantly increase the 
risk of epileptic disorders. Overall, in-ear EEG technology holds the 
potential for developing new monitoring procedures for various 
clinical conditions.

Specifically, numerous studies have demonstrated that EEG 
signals captured from the ear canal closely resemble those obtained 
from scalp electrodes located near the ear, whether during cognitive 
activities (Kidmose et al., 2012) or sleep (Zibrandtsen et al., 2016). In 
particular, (Looney et al., 2011) proved high coherence between an 
in-ear EEG electrode and the standard scalp T7-M1 electrode 
(ipsilateral mastoid reference) from the international 10–20 placement 
system, reflecting the shared activity between the temporal lobe and 
in-ear locations. However, the signal recorded inside the ear typically 
has a lower amplitude than scalp EEG (Mikkelsen et al., 2015). This is 
likely due to the greater distance from the brain’s generating sources 
to the recording sites inside the ear and the electrical and geometric 
properties of the electrodes used for recording. In general, recording 
high-quality bioelectrical signals from electrodes placed within the ear 
relies critically on the electrode-skin interface. Several ear-EEG studies 
have been performed with wet electrodes, in which conductive gel or 
hydrogel was applied between the electrodes and the skin (Mikkelsen 
et  al., 2015). Nevertheless, dry-contact ear-EEG electrodes would 
increase the comfort and user-friendliness of these devices (Mikkelsen 
et al., 2019). However, these electrodes are not without constraints, 
notably exhibiting significantly higher impedance at the electrode-
skin interface (200–1,000 kΩ vs. 10–20 kΩ) (Chi et  al., 2010). 
Therefore, a lower signal quality is expected, and data quality loss 
should be evaluated by concurrent recording of the proposed in-ear 
EEG system alongside conventional gel electrodes positioned on 
the scalp.

In this study, we conducted a systematic signal evaluation of a 
mobile in-ear EEG device developed by Naox Technologies. This 
device comprises non-invasive dry electrodes paired with a 
miniaturized electronic system that captures EEG signals from the 
subject’s ear canals. Our primary objective was to validate the EEG 
signal of the in-ear system against a research-grade EEG system 
equipped with a 64-electrode cap in laboratory conditions, using a 
sample of healthy volunteers during both wakefulness and sleep 
periods. Our secondary objective was to assess the signal quality of the 
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in-ear system over several hours of continuous recording compared 
to scalp electrodes, with a particular focus on electrodes located at 
temporal positions T7-T8.

2 Methods

2.1 The in-ear EEG device

The in-ear EEG device, created by Naox Technologies (Figure 1A), 
follows established scientific recommendations. The electrodes, made 
from silicon and coated with conductive silver ink for optimal 
biocompatibility and conductivity, have surface areas between 8 mm2 
and 11 mm2. The device features four electrodes, designated as ERE, 
ERI, ELE, and ELI, corresponding to two contact points within each 
ear canal (left and right). Employing a cross-ear electrode 
configuration (Left Ear Superior - Right Ear Superior, ELE-ERE), the 
system functions as a single bipolar EEG channel, detecting voltage 
differences between electrodes in opposite ear canals. The ground 
(GND) connection is achieved by linking the lower electrodes (ELI 
and ERI) within both ear canals.

An electronic board amplifies the EEG signal and converts it to a 
digital format with a sampling rate of 250 Hz and 24-bit resolution. 
The data is transmitted in real-time via Bluetooth Low Energy 2.4GHz 
(BLE) to a laptop. The device’s battery supports up to 10 h of 
continuous recording, allowing for prolonged monitoring sessions. 

Weighing approximately 20 grams, it provides a lightweight and 
non-intrusive user experience. Additionally, the system complies with 
electrical safety standards, including IEC 60601–1, IEC 60601–1-2, 
IEC 80601–2-26, IEC 60601–1-11, and IEC 62133, ensuring its safety 
and reliability across various applications.

A notable challenge when using dry electrodes, such as those in 
the in-ear Naox device, is their inherently higher impedance (Ze = 300 
kΩ, see Section 4.2), which tends to increase noise levels. To mitigate 
this issue, active electrodes with a high input impedance (Zi = 13 TΩ) 
were integrated into the earplugs. This design ensures that the input 
voltage (Vi) equals the output voltage (Vo), as depicted in 
Figure 2A. Choosing a buffer with such a high input impedance, much 
greater than the electrode-skin impedance of 300 kΩ, helps minimize 
noise due to common mode and external interference as a 
consequence of impedance adaptation. By aligning the high input 
impedance of the active electrodes with the impedance at the 
electrode-skin interface, we effectively reduce noise and maintain the 
integrity of the EEG signals.

2.2 Scalp EEG acquisition system

The general benchmarking framework in this study aims to 
compare EEG signals captured by the in-ear wearable device and those 
recorded using gold-standard EEG monitoring equipment featuring wet 
scalp electrodes. In our study, we utilized a 64-channel Compumedics 

FIGURE 1

Experimental setup for EEG recording used in this study. (A) Close-up view of the in-ear EEG device developed by Naox Technologies, with electrodes 
inserted in positions ELE, ERE, ELI, and ERI, corresponding to two contact points inside each ear canal. (B) Experimental setup for simultaneous scalp 
and in-ear EEG acquisition. The EEG cap with 64 scalp electrodes and eartips for in-ear EEG recording. The EEG signals from the scalp and in-ear 
devices are synchronized via a synchronization card that receives triggers from the STIM2 device. The in-ear EEG signals are transmitted to a computer 
via Bluetooth. (C) Detailed images showing the placement of the in-ear EEG device in the left (L) and right (R) ears. Red circles highlight the positioning 
of T7 and T8 scalp electrodes used for comparison.
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NEUVO amplifier for scalp EEG signal acquisition (Figures 1B,C), with 
a sampling rate of 2000 Hz, and Curry 8 software for data acquisition. 
The scalp electrodes were positioned according to the 10–10 
international system. Skin preparation involved the application of a 
conductive gel (Ten20) to enhance electrode-skin conductivity. 
Additionally, for the sleep protocols, we included two electrooculogram 
electrodes and one chin electrode for sleep scoring. Before all 
experiments, we  checked scalp EEG signals to maintain optimal 
impedances (< 5 kΩ) and performed a visual inspection of signal quality 
to identify and discard any instances of failure in electrode-skin contact. 
These aspects were evaluated based on the best practice guidelines and 
recommendations for EEG studies (Keil et al., 2014).

2.3 Synchronization between the in-ear 
and scalp systems

Achieving precise temporal synchronization (around 1 ms) 
between the scalp and in-ear EEG devices was crucial for ensuring 
accurate signal comparison in our analysis. To address this 
challenge, we  utilized the STIM2 system from Compumedics 
Neuroscan, known for its high-precision stimulus presentation. 
According to the experimental protocol, the STIM2 system 
delivered triggers simultaneously to the Compumedics (scalp) and 
Naox (in-ear) systems. To facilitate this synchronization, 

we developed an electronic synchronization card connecting the 
STIM2 system to Compumedics and Naox devices via a jack cable 
(Figure 1B). This setup allowed for precise alignment of triggers, 
ensuring synchronization below the millisecond threshold. After 
data acquisition, the recorded signals from both devices 
underwent further alignment using a custom software routine. 
This offline process involved detecting trigger markers through 
peak detection from the absolute values of the trigger signals. In 
a single case (subject 21), synchronization was not possible due to 
missing triggers recorded by the in-ear device during the 
alpha test.

2.4 Experimental protocols and procedures

We enrolled 30 healthy controls (20 females and 10 males; Age: 
26.9 ± 6.5 years, range: 20–46 years). The selected subjects were not 
treated with any medications, had no history of substance abuse or 
dependence, and did not have a neurological or psychiatric illness, 
head trauma/stroke, sleep or hearing disorders (pathologies affecting 
the inner and middle ear). All participants provided written informed 
consent before participation, and the ethical committee of Sorbonne 
University approved the study. The data acquisition experiment was 
conducted at the Laboratoire d’Imagerie Biomédicale (LIB), from 
September 2023 to February 2024.

FIGURE 2

In-ear EEG impedance measurements over time. (A) Architecture of the in-ear EEG system configuration. Dry electrodes with an impedance (Ze) of 
300 kΩ are connected to active electrodes with a high input impedance (Zi) of 13 TΩ and unity gain (G  =  1). This setup ensures the input voltage (Vi) 
equals the output voltage (Vo), minimizes current flow (I  =  0), and reduces noise, preserving signal quality for accurate EEG signal transmission to the 
Naox system. (B) Impedance spectra measured at different time points: at the initial time (t0, black circles), 10  min after the initial time (t0  +  10  min, gray 
squares), 1  h after the initial time (t0  +  1  h, red triangles), and 3  h after the initial time (t0  +  3  h, red diamonds). The impedance is plotted against 
frequency (0.1  Hz to 1,000  Hz) on a logarithmic scale. Dashed lines represent the standard deviation (SD). (C) Impedance at 50  Hz measured at the 
same time points: t0, t0  +  10  min, t0  +  1  h, and t0  +  3  h. The y-axis represents impedance in kilo-ohms (kΩ). Data is presented as mean  ±  standard 
deviation (SD) with individual data points for the different participants (N  =  7) plotted.
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Each participant first attended an earbud fitting session before the 
actual recordings. During this session, the operator chose earpieces that 
best fit the participant’s ears (3 sizes: S, M, and L) and with acceptable 
signal quality characterized by visual inspection of the in-ear EEG on 
the acquisition laptop. Altogether, the majority of the participants (57%) 
used the medium-sized “M” earpieces, whereas the small-sized “S” ones 
were better suited for 43% of the subjects. Before inserting the earpieces, 
the ear canals were cleaned with cotton swabs (Q-tips). For the actual 
recording session, the operator first placed a 64-EEG electrode cap with 
conductive gel on the scalp. Subsequently, the participant placed the 
EEG earbuds on each ear without conductive gel (dry-contact electrodes).

Dual in-ear and scalp EEG recordings started around 2 pm and 
continued throughout the afternoon (until 5 pm). Two experimental 
sessions were recorded: In the first protocol (the “Alpha test”), 
participants alternated between opening and closing their eyes for 30 s 
in response to an auditory cue that signaled a change in condition. A 
low-pitched sound indicates the eyes-closed condition, and a high-
pitched sound indicates the eyes-open condition. The sequence always 
began with the eyes-closed condition. Each session comprised 10 
trials, split evenly between eyes closed and eyes open, totaling a 
duration of 5 min per subject. Across all participants, the combined 
duration of the recordings reached 145 min. All participants sat 
comfortably in a quiet room. As in standard EEG protocols, 
participants were instructed to stay still and concentrate on a cross in 
front of them to minimize significant movements of the head and 
facial muscles during recordings, thereby reducing EEG artifacts, 
especially those related to face movements. During the second 
condition (the “nap test”), the participants were invited to have an 
afternoon nap of around 1 h (a total of 26.5 h was recorded among all 
subjects). During the measurements, the subjects were placed in a 
relaxed supine position and encouraged to relax or, if possible, to 
sleep. No recommendations were provided concerning head or body 
movements. After the recording sessions, each participant completed 
a poststudy survey to evaluate the comfort and usability of the device.

2.5 In-ear EEG impedance measurements

Electrode-skin impedance is a critical factor for assessing the 
quality of EEG signals, influenced by elements such as electrode 
material, design, and skin characteristics. Generally, dry electrodes 
exhibit higher impedance compared to wet electrodes; however, factors 
like sweating can lower this impedance, improving signal quality (Chi 
et al., 2010). Specifically, in-ear dry electrodes show a reduction in 
impedance over time, eventually stabilizing to levels similar to those 
of wet electrodes (Xu et  al., 2023). To investigate the impedance 
changes in the ear canal using the in-ear electrodes from this study, 
we adhered to established protocols from previous research (Kappel 
and Kidmose, 2015; Kappel et al., 2019; Mandekar et al., 2022). From 
the enrolled participants, we randomly selected seven subjects before 
the experimental sessions. Their ear canals were first cleaned with ear 
swabs prior to electrode insertion and measurement. We employed a 
PalmSens4 impedance analyzer (PalmSens BV, The Netherlands), 
connecting ear tip electrodes to the working (ELE) and reference 
(ERE) electrodes (Shin et al., 2022). Impedance spectra were recorded 
from 0.1 to 1,000 Hz at four intervals: immediately after insertion (t0), 
after 10 min (t0 + 10 min), after 1 h (t0 + 1 h), and after 3 h (t0 + 3 h). 
Measurements were conducted in a contralateral configuration for 

both ears simultaneously, with each measurement interval lasting 
approximately 2 min. We  calculated the mean, standard deviation 
(SD), and standard error of the mean (SEM) for the impedance spectra 
and obtained resistor and capacitor values using the PalmSens4 fit tool.

3 Signal processing

3.1 Root mean square values of the in-ear 
and scalp EEG signals

Root mean square (RMS) metrics are commonly used in studies 
comparing different types of EEG equipment to evaluate signal quality 
(Shin et al., 2022; Tabar et al., 2023; Erickson et al., 2024). Following these 
studies, we first preprocessed raw signals by applying a finite impulse 
response (FIR) bandpass filter (0.3–35 Hz) to remove slow trends while 
retaining as much EEG information as possible. The motivation behind 
this filtering approach was to capture a broad range of EEG frequencies 
pertinent to various wake and sleep states, including slow-wave activity 
(0.5–4 Hz) and faster rhythms up to 35 Hz. Subsequently, we calculated 
the average RMS values for epochs of 10 s (non-overlapping). The data 
underwent artifact rejection criteria, where we considered only windows 
that did not exceed the threshold of −100 μV to +100 μV (for at least 10% 
of the time) for our analysis. A window duration of 10 s was commonly 
adopted in artifact detection (Lopes et al., 2023) because it balances 
capturing sufficient data for robust statistical analysis while minimizing 
the effects of transient artifacts. In contrast, longer durations like 30-s 
windows are more prone to artifacts that could skew the analysis. 
Utilizing shorter epochs helps mitigate these issues, thereby enhancing 
the reliability and accuracy of the results.

3.2 Alpha peak criteria for the eye closed 
condition

Our analysis focused specifically on the 5 trials from the “Alpha 
test” during which participants kept their eyes closed for 30 s. To create 
time-frequency spectrograms for each subject’s signals, we  first 
implemented a wavelet decomposition using the continuous Gabor 
Wavelet described by Morlet et al. (1982). Next, we characterized the 
increase in the power of the alpha band (8–12 Hz) through the signal-
to-noise ratio (SNR) within the alpha frequency range that 
we calculated using the formula established by Tautan (2014):

 
SNR alpha

mean Power Hz
mean Power Hz without Hz

( ) = −( )
− −( )

8 12

5 35 7 13

We adopted a criterion for a “clear peak” as an SNR value 
exceeding 1.5, corresponding to a 3.52 dB amplitude difference relative 
to surrounding noise.

3.3 Correlations between in-ear and scalp 
EEG

We estimated the Pearson correlation coefficient during the eyes-
closed condition to measure the similarity of the in-ear signals with 
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the scalp EEG in the alpha frequency band (8–12 Hz). In particular, 
using a contralateral bipolar montage, we calculated the normalized 
cross-correlations between the in-ear signals and each of the 64 scalp 
electrodes. For this, we used MATLAB’s “xcorr” function, with a lag 
of 0.1 s, after passband filtering within the alpha range. The lag was 
implemented to mitigate a possible drift occurring between the clocks 
of the two independent EEG systems, which leads to a slight 
misalignment between the signals. Also, to ensure uniformity, 
we harmonized the sampling frequency of the scalp signal with that 
of the in-ear EEG, setting both at 250 Hz. Similarly, during the “Nap 
tests,” we quantified the correlation coefficients between in-ear and 
scalp EEG signals for each sleep stage (Wake, N1, N2, N3, REM). 
Here, we computed the correlation between the in-ear signal and one 
bipolar scalp EEG channel (T7-T8) using 10-s sliding windows and 
broadband filtering within the 0.3–35 Hz range. These correlations 
were interpreted based on conventional criteria: poor (<0.02), fair 
(0.2–0.4), moderate (0.4–0.6), substantial (0.6–0.8), and almost perfect 
agreement (>0.8) (Landis and Koch, 1977).

3.4 Sleep scoring

Sleep scoring was conducted using scalp EEG and EOG signals 
through USleep (Model U-sleep-FT V2.0), an online platform 
specifically designed for automated sleep staging. USleep is a publicly 
available, ready-to-use deep neural network for resilient sleep staging 
inspired by the popular U-Net architecture for image segmentation. 
This model is based on a deep neural network with multiple 
convolutional layers of varying kernel sizes and strides to capture both 
short-term and long-term dependencies in the EEG and EOG signals 
and to extract features from the input signals. These layers are followed 
by max-pooling layers, which reduce the spatial dimensions and 
computational complexity while preserving essential features. After 
the convolutional and pooling layers, the network includes fully 
connected layers that perform the final classification into different 
sleep stages. From its previous version, the model was improved by 
fine-tuning using a larger and corrected training dataset, which 
enhanced its performance across different patient groups. The 
USleep-FT V2.0 model requires two input channels, which can be a 
combination of EEG and EOG signals. It was trained on a 
comprehensive polysomnography (PSG) recordings dataset, totaling 
25,696 records from 16 clinical cohorts. The model’s effectiveness was 
thoroughly tested on 8 separate clinical cohorts with 346 PSG records. 
The F1 scores obtained by the model were on par with the top clinical 
experts. Additionally, a detailed cross-validation process was used 
during training and testing to ensure the model’s robustness and 
ability to generalize to new data (Perslev et al., 2021). As recommended 
by the American Academy of Sleep Medicine, the scalp derivations 
used for automatic sleep scoring included the electrode derivations 
‘F4-M1’, ‘C4-M1’, and ‘O2-M1’, along with EOG channels (HEOG and 
VEOG) recorded during nap sessions (Berry et al., 2020). Following 
additional recommendations, the scalp signals were initially 
preprocessed and filtered within a frequency range of 0.3 to 35 Hz. 
Sleep stages were successfully scored in standard 30-s epochs for 22 
subjects. It’s important to note that the model employed in our study 
was not specifically adjusted or fine-tuned with the EEG data we used. 
This means that we  applied the model with its predefined 
configurations without optimizing it for the unique characteristics or 

specific variations of our EEG data. Also, it should be  noted that 
we  performed sleep scoring solely using scalp EEG data, and the 
resulting hypnograms were then utilized to analyze the in-ear EEG 
data. These in-ear recordings were collected simultaneously and 
synchronized with the scalp EEG data. However, in 7 other subjects, 
interruptions in the in-ear signal recordings made synchronization 
difficult, resulting in the rejection of the corresponding data for these 
cases. In total, Wake was consistently observed in all 22 subjects. The 
N1 phase was observed in 20 out of 22 subjects (91%), the N2 phase 
in 19 out of 22 recordings (86%), the N3 phase in 7 out of 22 
recordings (32%), and the REM phase in 4 out of 22 recordings (18%). 
After sleep scoring, we quantified the average relative spectral power 
(RSP) of the in-ear and scalp EEG during each stage (Wake, N1, N2, 
N3, REM). To do this, we performed a Fast Fourier Transform (FFT) 
analysis for each subject using sliding windows of 10 s. With these 
relative power values of a given frequency, we then defined the ratio 
of the sum PSD in this frequency to the sum PSD in a wide frequency 
range (0.3 Hz, 35 Hz). Finally, we statistically compared in-ear and 
scalp EEG in the standard frequency bands: delta: 0.3–4 Hz, theta: 
4–8 Hz, alpha: 8–12 Hz, beta1: 12–18 Hz, and beta2: 18–35 Hz. 
Statistical tests could not be performed for the N3 and REM phases 
due to an insufficient number of subjects (7 and 4, respectively) 
presenting these two sleep stages.

3.5 Statistical analysis

To determine the statistical significance of the linear correlation 
coefficients obtained from in-ear and scalp EEG signals, we conducted 
a Pitman nonparametric permutation test following established 
methodologies detailed in prior literature. Nonparametric statistical 
testing, commonly employed in neuroimaging studies (Nichols and 
Holmes, 2002), offers the advantage of not relying on population 
parameters or knowledge of the sampled population (Daniel and 
Cross, 2018). Our approach closely followed procedures outlined in 
previous studies (Theiler et al., 1992; Maris and Oostenveld, 2007; 
Haaga and Datseris, 2022), involving the creation of surrogates by 
randomly shuffling short-time block intervals or trials in the time 
domain. Specifically, we fixed one signal and randomly shuffled all 
corresponding 10-s intervals from the second signal. Subsequently, 
we computed the Pearson correlation coefficient between the fixed 
signal and the shuffled signal intervals. As recommended by Butar and 
Park (2008), this procedure was repeated 1,600 times to generate a 
distribution of correlation coefficient values from permutations to 
achieve robust statistical inference from permutation tests. A 
two-sided p-value was calculated by comparing the absolute values of 
correlation coefficients from shuffled permutations to the true 
absolute value obtained from the original data series. In cases 
requiring multiple comparisons, such as when analyzing various EEG 
channels or different time intervals, we controlled the False Discovery 
Rate (FDR) using the Benjamini and Hochberg (1995) method.

We adopted a similar permutation-based procedure for all 
statistical comparisons involving amplitude and power measures 
between scalp and in-ear signals. In this instance, we permuted all 
values from the original distributions of measures, comparing them 
to obtain the difference between means for each permutation. We then 
estimated the two-sided p-value as the proportion of absolute values 
of mean differences from permutations that exceeded the true absolute 
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value of the mean difference calculated from the original distribution 
of measures, with a statistical significance level defined at p < 0.01. 
We  then controlled the False Discovery Rate (FDR) using the 
Benjamini-Hochberg method.

4 Results

4.1 Comfort and technical issues

Most participants had a positive experience with the in-ear 
system, describing it as comfortable and user-friendly (90%, 26/29). 
In particular, during the nap tests, about 70% of the subjects (20/29) 
managed to fall asleep wearing both scalp and in-ear EEG systems. In 
a small number of cases (10%, 3/29), participants reported some 
physical discomfort with earplugs, primarily due to added pressure 
around the tragus and antitragus, especially noticeable during naps, 
which sometimes hindered their ability to fall asleep. One participant 
(subject 22) experienced the earpieces slipping out when turning onto 
their sides during sleep, leading him to remove and reinsert them. 
Regarding data acquisition, dual in-ear and scalp EEG recordings were 
successfully performed without technical issues in 29 out of 
30 subjects. However, in one participant (subject 7), we encountered a 
problem with the in-ear acquisition system, which prevented the 
whole data acquisition. Additionally, in 7 subjects, interruptions 
occasionally occurred in the in-ear signal recordings during the nap 
protocol due to Bluetooth communication issues, requiring a 
system reboot.

4.2 Electrode skin contact impedance

Impedance spectra of the in-ear dry electrodes were recorded 
immediately after insertion (t0), after 10 min (t0 + 10 min), after 1 h 
(t0 + 1 h), and after 3 h (t0 + 3 h). At t0, we found that the impedance 
was relatively high (mean 902 ± 400 kΩ), with large inter-subject 
variations, but strongly decreases over time across the frequency range 
from 0.1 to 1,000 Hz, particularly after 1 h, and stabilizes around 3 h 
(Figure  2B). This trend indicates that the electrode-skin interface 
improves over time, possibly due to sweating and better electrode 
contact. Additionally, impedance was significantly decreased from t0 
to t0 + 10 min, with further reductions at t0 + 1 h and t0 + 3 h 
(Figure 2C). The average impedance at 50 Hz across all intervals was 
290.4 ± 95 kΩ, comparable to the impedance of a state-of-the-art 
in-ear dry electrode (for example, 377 kΩ in Kaveh et al., 2020). This 
data confirms that the used in-ear electrodes stabilize over time, 
achieving impedance values similar to those observed with other dry 
electrodes, thereby enhancing signal quality.

4.3 Visual inspection of in-ear signals

We initially evaluated the EEG signal quality through a systematic 
visual inspection of the filtered signals (0.3–35 Hz). In-ear and scalp EEG 
data were aligned and displayed on consecutive pages of 10-s portions. 
We utilized several standard electrode montages (referential on mastoids, 
longitudinal, and transversal bipolar montages) to inspect the scalp 
EEG. In most subjects (69%, 20 out of 29 cases), resting alpha waves with 

closed eyes at 8–12 Hz (posterior dominant rhythms) were confirmed on 
in-ear signals. Similar to standard scalp EEG, we observed in-ear alpha 
waves responsive to eye-opening and closure (Figure 3A). Furthermore, 
we  evidenced high similarity between in-ear and scalp individual 
waveforms. Nevertheless, in-ear electrodes recorded smaller alpha 
waveforms than the scalp signal, with an average amplitude 
approximately two times lower. During the naps, theta waves (4–8 Hz) 
were identified in around 45% of cases of sleep (10/22), particularly 
during the transition from wakefulness to sleep, and were concurrent 
with T7-T8 waves in the same frequency range (Figure 3B). Additionally, 
during stages 2 and 3, spindles and slow waves were visually identified 
with shapes similar to scalp electrodes (Figures 3C,D). Once again, in-ear 
electrodes recorded smaller waveforms compared to the scalp signals.

This difference was particularly noticeable for spindles, which 
were often difficult to distinguish from background activity. Moreover, 
during nap recordings, involuntary head movements, mouth opening, 
or contractions of facial/jaw muscles frequently caused intermittent 
high voltage artifacts in the EEG signals. Signal inspection revealed 
isolated fluctuations in in-ear and scalp signals, with strong electrical 
potentials approximately 5–10 times the amplitude of brain signals 
(Figure 3E). Occasionally, we observed artifacts only in the in-ear 
signal. We identified contributors to these activities associated with 
ear canal deformations resulting from mandible movements (e.g., 
swallowing, mouth-opening, speaking) or changes in ear pressure 
when the subject laid their ears on the pillow. In such cases, poor skin 
contact with the in-ear sensors could also lead to significant 
fluctuations in EEG signals exceeding 100 μV (Figure 3F).

4.4 Evaluations in the time domain

4.4.1 Root mean square values of the in-ear and 
scalp EEG signals

During the “alpha tests,” we observed that the RMS values of the 
in-ear device remained consistently stable across the population and 
exhibited minor fluctuations from 5.3 μV to 28.8 μV (mean 
12.3 ± 6.4 μV, see Figure 4A for individual RMS values), which fell 
within a comparable range to the simultaneously recorded scalp T7-T8 
EEG signals using electrodes with gel (mean: 8.6 ± 3.5 μV; range: 
0.76 μV - 20.2 μV). Comparing the distributions of intraindividual 
RMS values for ear-EEG and scalp-EEG, we found that a small number 
of the in-ear recordings, around 20% (5 out of 29, indicated by 
asterisks on Figure 4A) exhibited minor statistical differences between 
medians (right-tail Wilcoxon rank sum test, p > 0.05).

During the “nap tests,” we observed that the RMS values of the 
in-ear device displayed stronger fluctuations across the population, 
ranging from 5.2 μV to 21.0 μV (mean 10.8 ± 4.3 μV, as shown in 
Figure  4B), in comparison to the “alpha tests. Additionally, the 
simultaneously recorded scalp T7-T8 EEG signals using electrodes 
with gel exhibited comparable large fluctuations (range: 0.8 μV to 
26.5 μV; mean: 9.4 ± 4.6 μV). However, in 27% (8 out of 29) of the 
subjects (as indicated by asterisks in Figure 4B), stronger discrepancies 
in the RMS values were observed between ear-EEG and scalp-EEG, 
suggesting a higher degree of in-ear signal degradation, possibly 
associated with intermittent lack of contact between the earplugs and 
the skin. In one particular instance (see subject 22 in Figure 4B), it was 
confirmed that the earpiece had fallen out of the ear during sleep and 
was repositioned by the subject in an unstable position.
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4.4.2 Proportion of artifacts
Existing literature on EEG artifacts suggested that segments with 

extreme values (±200 μV) can be regarded as low-quality data (Islam 
et  al., 2016). To identify transient artifacts in EEG segments, 
we  quantified epochs of 10 s (non-overlapping) that exceeded the 
threshold of −100 μV to +100 μV. In a consistent way with the results 
for the root mean square values during the “alpha tests,” we observed 
that in-ear signals have a very small proportion of bad data, with only 
a single subject exhibiting bad data exceeding 10% of the entire 
recording, which is comparable to the simultaneously recorded scalp 
T7-T8 EEG signals (Figure 5A). However, during the “nap tests,” in 
17% (5 out of 29) of subjects (as indicated by asterisks in Figure 5B), 
we  identified a significant proportion of bad data (>10%) for the 
ear-EEG, suggesting intermittent degradation of the in-ear signals.

4.5 Evaluations in frequency domain

4.5.1 Alpha peak criteria for the eye closed 
condition

During the “alpha test,” subjects were instructed to close their eyes 
every 30 s over 5-min periods. In the condition where participants had 
their eyes closed, we utilized the data to determine the individual 
frequency peak within the traditional alpha frequency range (8–12 Hz). 
We  employed a decomposition of Gabor wavelets to calculate the 

time-frequency spectrograms during the eye-closed condition. 
Figure 6B illustrates the time-frequency spectrograms of the in-ear 
EEG and the simultaneously recorded scalp T7-T8 (grand average over 
all subjects and eye closings). Notice the prominent peaks in the alpha 
range during eye closings in both in-ear and scalp signals. Furthermore, 
we compared the power amplitudes of alpha waves recorded on both 
devices, evaluating their similarity with the linear regression coefficient. 
Our findings revealed that scalp electrodes recorded higher alpha 
power, averaging around twice that of in-ear electrodes (Figure 6C).

On average, we found that the SNR of alpha waves had values of 
1.4 ± 0.3 (range: 1–2.2) and exceeded 1.5  in 29% (8/28) of cases 
(Figure  6A). These values were comparable to those reported in 
research laboratories, indicating that for dry in-ear sensors, the ratio 
for alpha power typically exceeds 1.5 (Mandekar et al., 2022). In 21% 
(6/28), SNR(alpha) values were close to 1, suggesting negligible 
responses in the alpha frequency range. Furthermore, in 5 out of 6 of 
these cases, high SNR(alpha) values were observed at the scalp (>1.5), 
suggesting a degradation of the in-ear signals in these instances. As 
expected, the scalp T7-T8 signals demonstrated a slightly higher SNR 
than the in-ear EEG signal (with an average of 1.9 ± 0.6, range: 1–3.0).

4.5.2 Alpha wave correlations during the eye 
closed condition

Statistical analysis revealed that 93% of subjects (26 out of 28) 
exhibited a significant (p < 0.01, Pitman nonparametric permutation 

FIGURE 3

Signal analysis of different EEG waveforms from simultaneous scalp (T7-T8) and dry-contact in-ear recordings. The in-ear EEG signals are amplified (x2) 
for comparison. (A) Example of EEG signal traces comparing simultaneous scalp and in-ear recordings during “alpha test. The signals show epochs of 
eye-open (EO) and eye-closed (EC) states. The top panel highlights a detailed waveform comparison during the EC state, demonstrating the high 
similarity in alpha waves during the EC condition captured by the two systems (dry-contact in-ear in blue and gel-based scalp electrode cb2). 
(B) Comparison of theta wave activity (4–7  Hz) between scalp (red) and in-ear (blue) EEG recordings. (C) Comparison of slow wave activity (0.5–2  Hz) 
from the scalp (red) and in-ear (blue), highlighting the consistency in detected slow waves. (D) Spindle activity (12–16  Hz) from the scalp (red) and in-ear 
(blue), indicating the capability of the in-ear device to capture sleep spindles. (E) Example of movement artifacts (face and head) observed in in-ear 
(blue) EEG recordings compared to scalp (red). (F) Example of artifacts from poor skin contact observed in in-ear sensors (blue) during eyes closed (EC).
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test) correlation between scalp and in-ear signals (see Figure 7 for 
individual results and grand average). We  found the strongest 
correlations between the in-ear signal and the scalp EEG at FT11-
FT12 (0.42 ± 0.02 on average) and T7-T8 (0.38 ± 0.01 on average), 
compared to other parietal electrodes (P1-P2; 0.3 ± 0.01 on average) 
(refer to Figure 7 for global average). Only 2 subjects had a negligible 
or small correlation (<0.2). The high correlation observed between the 
in-ear and scalp electrodes positioned at temporal locations implies 
that most sources recorded with electrodes in contralateral ear canals 
originate from the temporal lobe.

4.5.3 Power spectra
We quantified the evolution of relative spectral power (RSP) of 

scalp (T7-T8) and in-ear EEG signals across different sleep stages 
(Wake, N1, N2, N3, and REM). We calculated corresponding RSP 
values within standard frequency ranges (Delta: 0.3–4 Hz, Theta: 
4–8 Hz, Alpha: 8–12 Hz, Beta1: 12–18 Hz, and Beta2: 18–35 Hz). Once 
again, we considered in our analysis the underwent artifact rejection 
criteria, where only windows that did not exceed the threshold of 
−100 μV to +100 μV (for at least 10% of the time). Across sleep stages, 
the spectral characteristics of in-ear recordings revealed clear 
similarities with scalp EEG T7-T8 channels (Figure 8A for the grand 
average). During Wake, the RSP confirmed a single peak around 
10 Hz, approximately aligned across in-ear and scalp channels.

Nevertheless, the relative alpha power was significantly higher on 
the scalp compared to the in-ear recordings (p < 0.01, Pitman 
nonparametric permutation test). Further statistical differences 

between scalp and in-ear channels were also identified during Wake 
in the Delta and Beta1 frequency ranges. In contrast, during N2 and 
N3, power levels remained strongly similar between in-ear and scalp 
recordings (with no statistically significant differences in N2). Here, 
low-frequency activities (Delta and Theta) prevailed over all other 
frequency bands (Figure 8B for an illustrative subject). In particular, 
during N3, a strong peak between 4 and 7 Hz (theta range) was 
identified in around 45% of sleep cases (10 out of 22) with similar 
power in both scalp and in-ear channels.

4.5.4 Correlations between in-ear and scalp EEG 
during sleep stages

To further explore similarities between individual in-ear and scalp 
patterns, we  estimated correlation coefficients between the in-ear 
signal and the scalp EEG (T7-T8) during sleep stages. Across the 22 
subjects, we found a significant correlation between scalp and in-ear 
signals in all cases (100%), with an average correlation of 0.51 ± 0.086. 
This correlation increased across different sleep stages (Figure 8C). 
During Wake, N1, and N2, the correlation coefficients had high values 
(mean 0.48 ± 0.08, 0.52 ± 0.07, and 0.5 ± 0.07, respectively), consistently 
indicating moderate coherence between in-ear and scalp signals. 
Interestingly, the N3 stage did exhibit a notable increase in coherence, 
with a substantial correlation between in-ear and scalp channels, 
averaging a mean value of 0.62 ± 0.08. This suggests a potential 
synchronization of slow-wave activity between scalp and in-ear EEG 
signals during deep sleep. Finally, during REM sleep, the correlation 
trends showed moderate coherence between both signals across all 

FIGURE 4

Comparison of root mean square (RMS) measurements obtained from scalp (T7-T8) and dry-contact in-ear electrodes. Individual RMS values are 
indicated by grey dots, with the mean RMS values represented by the height of the bars. Subjects marked with an asterisk (*) indicate those with 
notable differences between scalp and in-ear RMS values. (A) The RMS of the EEG signal amplitude during the alpha test is plotted for each subject 
(Sub ID) using scalp (red bars) and in-ear (blue bars) electrodes over 10-s windows. (B) The RMS of the EEG signal amplitude during the nap test plotted 
for each subject (Sub ID) using scalp (red bars) and in-ear (blue bars) electrodes over 10-s intervals.
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frequency bands (0.48 ± 0.17 on average), suggesting slight differences 
in EEG patterns between the two recording modalities during 
this stage.

5 Discussion

In our study, we  conducted a comprehensive signal quality 
analysis of a mobile in-ear EEG device with dry-contact, comparing 
it to a standard research-grade EEG system employing wet electrodes. 
Our investigation first focused on impedance changes of the skin-
electrode interface in the ear canal, revealing a progressive decrease 
over time, particularly notable after 1 h of use. This decline indicates 
an improved electrode-skin interface and enhanced signal quality, 
consistent with previous research in dry sensors (Kaveh et al., 2020; 
Xu et  al., 2023). Next, to quantitatively evaluate signal quality, 
we employed several measures, including RMS values, % of good 
data, SNR (alpha), and cross-signal correlations in the alpha band 
during eye-closed conditions or in the broadband during sleep. 
Comparisons with scalp T7-T8 signals indicated high performance, 
particularly during quiet resting states when participants minimized 
head and facial muscle contractions. In particular, alpha waves were 
detected in approximately 80% of in-ear signals, exhibiting a strong 
correlation with scalp electrodes albeit with slightly lower amplitude. 
Also, during sleep, we found a relatively high correlation (between 
0.48 and 0.62) regardless of the sleep phases, indicating that the 
signals were generally consistent between in-ear and scalp during the 

whole sleep session. Throughout our analysis, we  found clear 
similarities in the temporal and spectral characteristics between 
scalp and in-ear signals. These results are consistent with other 
studies in the literature comparing the similarity between scalp T7 
and T8 and in-ear signals (Looney et  al., 2011). In line with 
additional research using full scalp coverage (Mikkelsen et al., 2015; 
Mikkelsen et al., 2017b), we found the highest correlation values in 
temporal regions. This suggests that the primary sources of the 
signals captured by electrodes in the ear canals are located within 
both temporal lobes, a conclusion also supported by neural source 
modeling studies (Meiser et al., 2020; Yarici et al., 2023). However, it 
is important to note that most previous studies have validated the 
similarity of in-ear and scalp EEG signals based on averaged 
responses, such as event-related potentials (ERP) or steady-state 
responses (Kappel et al., 2019). These studies typically do not account 
for individual brain waves, which are a standard focus in traditional 
EEG analysis. For instance, research like the study by Mikkelsen et al. 
(2015) showed that in-ear EEG performs comparably to conventional 
scalp channels located close to the ears in spectrogram-based 
analysis and in detecting similar timings of ERP components. 
Similarly, in sleep research, previous studies that investigated the 
specific use of in-ear electrodes have primarily focused on 
macrostructure features that characterize sleep, such as the 
comparison of sleep staging or sleep timing parameters (Mikkelsen 
et al., 2017a; Tabar et al., 2023). Following a different approach, our 
study is one of the first to investigate the point-by-point correlation 
of waveform similarity between in-ear and scalp EEG systems during 

FIGURE 5

Comparison of the percentage % of bad data between scalp (T7-T8) and in-ear EEG recordings. (A) The percentage of bad data segments for each subject 
using scalp (red) and in-ear (blue) EEG recordings during the alpha test. The dashed line at 10% indicates the threshold for acceptable data quality. Subjects 
are identified by their ID numbers along the x-axis. Most subjects show low percentages of bad data, with a few exceptions. (B) The percentage of bad data 
segments for a different group of subjects, again comparing scalp (red) and in-ear (blue) EEG recordings. The 10% threshold line is included for reference. 
Notable differences (subjects marked by asterisks) in bad data percentages are observed, especially for certain subjects (e.g., Sub 13 and Sub 22).
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FIGURE 6

(A) Signal-to-noise ratio (SNR) for the alpha band (8–12  Hz) during the eyes-closed (EC) condition for each subject (Sub ID). Red bars represent scalp 
(T7-T8) recordings, and blue bars represent dry-contact in-ear recordings. Error bars indicate the standard error. (B) Spectrograms of EEG recordings 
from in-ear electrodes (bottom) and simultaneously recorded scalp T7-T8 electrodes (top), averaged across all subjects. Periods of eyes open (EO) and 
eyes closed (EC) are indicated. (C) Scatter plot showing the correlation between the square root of the power recorded from scalp (T7-T8) and in-ear 
electrodes. The x-axis represents the square root of the power from in-ear electrodes, and the y-axis represents the square root of the power from 
scalp (T7-T8) electrodes. Each point corresponds to a 10-s epoch. A linear trend line with a slope of 2.1 is included.

FIGURE 7

Topographical plots of alpha wave correlation values during the eyes-closed condition, comparing scalp (contralateral bipolar montage) and in-ear 
EEG signals for each subject. Each subplot corresponds to a different subject, with scalp electrode locations indicated. The color scale represents 
correlation values, ranging from 0.1 (dark red) to 0.5 (yellow). The grand average across all subjects is displayed on the right.
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wakefulness and sleep. By demonstrating that EEG systems can 
effectively correlate with each other in spontaneous EEG waves, our 
research sets a standard for future assessments in clinical settings, 
allowing clinicians to make more informed decisions based on 
consistent and reliable interpretations of in-ear EEG data. 
Additionally, while our study focused on linear correlation, future 
research could benefit from incorporating non-linear similarity 
metrics, such as mutual information or conditional entropy 
(Hlaváčková-Schindler et al., 2007). These metrics can help address 
possible non-linear warping and distortions of the in-ear signals, 
thus providing a more comprehensive depth to the comparisons.

Our study further affirmed that dry electrodes, known for their 
ease of use and reusability, are well-suited for wearable in-ear EEG 
devices designed for long-term monitoring. However, the EEG signals 
recorded by these dry electrodes are more susceptible to interference 
from movement-related artifacts due to their typically high skin-
electrode impedance. The electrodes showed high sensibility to 
electrical artifacts, such as electrode pops emerging from abrupt 
impedance changes, which are visually recognizable in the EEG as 
very large, abrupt, sharp artifacts. In contrast, conventional wet 
electrodes mitigate this problem by being glued to the scalp. The 
conductive paste also acts as a shock absorber, minimizing relative 
motion between the electrode and scalp, thereby reducing motion 
artifacts. Here, unlike other commercially available systems (e.g., MN8 
earbuds from Emotiv®), the used in-ear device incorporates active 
electrodes with a high input impedance, effectively shielding the signal 

from external electromagnetic interference and thereby enhancing 
signal quality. Nevertheless, as reported, especially during Wake or N1 
stages, where spontaneous head and facial movements were present, 
the performance of in-ear recordings was marginally compromised 
(bad data >10% of the recording) in approximately 30% of subjects 
due to movements causing deformation of the ear canal and 
interruptions in skin contact. These signal degradations were 
considerably influenced by the stability of the contact surface inside 
the ear canal. Variable contact surfaces may occur in different 
individuals depending on multiple parameters, including the 
geometrical complexity of the ear canal and related contact pressure. 
Therefore, a significant factor contributing to signal quality could 
be the fit of the electrodes within the ear canal, which differs among 
subjects. Additionally, inherent physiological and anatomical 
differences further compound these variations. These differences can 
influence the effectiveness of the electrodes in capturing electrical 
activity, thereby affecting the overall correlation between in-ear and 
scalp EEG results.

Thus, addressing this variability is challenging due to the small 
sample size, which included only 29 subjects. While the results are 
indicative, they are not definitive, and further validation through 
larger-scale studies is necessary in the future. Additionally, the 
method of simultaneous in-ear and scalp recordings presents 
challenges due to the spatial scale at which EEG signals change over 
the scalp’s surface. Cortical activity dynamics involve propagating 
waves at various frequencies that alter the signal’s amplitude at a 

FIGURE 8

(A) Relative spectral power (RSP) across subjects for different sleep stages (Wake, N1, N2, N3, REM) for scalp (red) and in-ear (blue) EEG recordings. 
Each plot represents the average RSP across subjects for the specified sleep stage. Asterisks inside the vertical dashed lines indicate the frequency 
bands where there are statistically significant differences (p  <  0.01). (B) An example hypnogram of a nap (top), raw signals (middle), and relative 
spectrograms of scalp (T7-T8) and in-ear EEG signals (bottom) during sleep. (C) Cross-correlation values between scalp (T7-T8) and in-ear EEG signals 
across different sleep stages. Bars represent mean cross-correlation values, with individual subject values overlaid as circles. The overall mean across 
all sleep stages is shown on the right.
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sub-centimeter scale in the brain (Ryynanen et  al., 2006). 
Consequently, it is unrealistic to expect that electrodes inside the ear 
canal would record the exact same signal as those on the scalp. This is 
likely the cause for the high variability of the cross-correlations 
reported in this article. Additionally, our results show that the alpha 
power recorded by scalp electrodes was, on average, approximately 
twice as high as that captured by in-ear electrodes (see Figures 6C, 
8A). This consistently higher amplitude of alpha waves at the scalp is 
likely due to the closer proximity of scalp electrodes to the brain’s 
electrical sources and reduced interference from barriers, such as skull 
bone and tissue, compared to in-ear electrodes. These differences 
highlight the unique characteristics and potential limitations of each 
electrode type and suggest that in-ear EEG technology may require 
specific calibration or enhancements to match the performance of 
traditional scalp-based systems. Such insights are essential for 
developing more accurate and reliable EEG monitoring techniques 
adaptable to various clinical and research settings. Furthermore, this 
highlights the importance of tailored approaches in the application of 
ear-EEG technology, emphasizing the need for individualized 
considerations. Recognizing and addressing this variability is crucial 
to ensure the accuracy and reliability of in-ear EEG measurements 
across diverse individuals and populations. Further exploration and 
refinement of the technology are necessary to address these challenges 
and optimize its effectiveness in various research and clinical contexts. 
This approach could include creating customized algorithms or 
de-noising techniques specifically tailored to handle individual users’ 
artifacts, such as tongue movements, eye movements, and chewing. 
Additionally, innovations in electrode design and strategic placement, 
derived from the fields of hearing aid technology or ear, nose, and 
throat (ENT) medicine, could further enhance the effectiveness of 
these solutions. In this context, recent research focuses on the 
materials used for electrodes and the design of earpieces, emphasizing 
the shape of the electrodes or sensors with highly flexible or adaptable 
components (Wang et al., 2023). Further design improvements, such 
as earpieces that stay in place or sensors that adapt to changes in the 
ear’s shape, will enhance in-ear recording for long-term, out-of-lab 
use. In that sense, obtaining precise anatomical data of participants’ 
ear canals before device deployment allows for the tailoring of 
electrode design and placement, ensuring optimal fit and contact with 
the skin, thus minimizing signal artifacts and maximizing signal 
quality. However, previous work has shown that the signal quality 
from customized earpieces does not significantly surpass that of 
generic earpieces (Kidmose et al., 2013). Device developers might also 
consider incorporating feedback mechanisms into in-ear EEG devices 
to monitor electrode-skin contact and signal quality during data 
acquisition continuously. This could include integrating sensors or 
impedance monitoring systems into the device design to detect and 
address issues related to poor electrode contact or signal degradation 
in real time. In addition to technological improvements, standardized 
electrode placement and signal acquisition protocols could ensure 
consistency and reproducibility across participants. Providing training 
and guidelines for device fitting and positioning to research 
participants or healthcare professionals responsible for device 
deployment could further enhance the reliability of in-ear 
EEG measurements.

Clearly, signal distortions or degradations observed in in-ear EEG 
measurements could impact the accuracy of assessing brain activity, 
particularly in clinical settings where precise measurements are 

imperative. Discrepancies in signal amplitudes between scalp and 
in-ear EEG recordings may pose challenges in establishing 
standardized protocols and reference ranges for interpreting EEG 
data. Clinicians and researchers may need to account for these 
discrepancies when utilizing in-ear EEG devices for longitudinal 
monitoring or cross-sectional studies. Further research and validation 
studies are needed to understand the implications of these disparities 
comprehensively and to optimize the application of in-ear EEG 
technology in clinical practice.

6 Conclusion

Our results not only prove the applicability of a novel in-ear 
device for EEG acquisition but also hint at the exciting potential of this 
technology. We  found no considerable differences in signal 
characteristics compared to gel-based T7-T8 scalp EEG electrodes, 
despite marginal effects due to deformations of the ear canal. The 
overall data quality of EEG earbuds was positive, and the in-ear system 
offers increased comfort, particularly for repetitive dry-contact 
biopotential measurement applications and durations longer than 
60 min. These findings suggest that sleep monitoring with EEG 
earbuds will be feasible in the majority of cases, opening up a world of 
possibilities for this technology.

Future research should focus on improving in-ear device design 
to minimize signal disruptions during movement and optimize sensor 
placement. To expand its utility, further exploration of clinical 
applications, especially in sleep monitoring and real-world settings, 
is warranted.
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