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Accuracy optimized neural
networks do not e�ectively
model optic flow tuning in brain
area MSTd

Oliver W. Layton1* and Scott T. Steinmetz2

1Department of Computer Science, Colby College, Waterville, ME, United States, 2Center for

Computing Research, Sandia National Labs, Albuquerque, NM, United States

Accuracy-optimized convolutional neural networks (CNNs) have emerged as

highly e�ective models at predicting neural responses in brain areas along

the primate ventral stream, but it is largely unknown whether they e�ectively

model neurons in the complementary primate dorsal stream. We explored how

well CNNs model the optic flow tuning properties of neurons in dorsal area

MSTd and we compared our results with the Non-Negative Matrix Factorization

(NNMF) model, which successfully models many tuning properties of MSTd

neurons. To better understand the role of computational properties in the

NNMF model that give rise to optic flow tuning that resembles that of MSTd

neurons, we created additional CNN model variants that implement key NNMF

constraints – non-negative weights and sparse coding of optic flow. While

the CNNs and NNMF models both accurately estimate the observer’s self-

motion from purely translational or rotational optic flow, NNMF and the CNNs

with nonnegative weights yield substantially less accurate estimates than the

other CNNs when tested on more complex optic flow that combines observer

translation and rotation. Despite its poor accuracy, NNMF gives rise to tuning

properties that align more closely with those observed in primate MSTd than

any of the accuracy-optimized CNNs. This work o�ers a step toward a deeper

understanding of the computational properties and constraints that describe the

optic flow tuning of primate area MSTd.

KEYWORDS

optic flow, deep learning, neural networks, sparse coding, MSTd, motion, dorsal stream,

self-motion

Introduction

Since the introduction of AlexNet (Krizhevsky et al., 2012), convolutional

neural networks (CNNs) have revolutionized the field of computer vision and have

reached the point where they rival or exceed human performance on certain image

recognition tasks (Ciresan et al., 2012; Lee et al., 2017; Phillips et al., 2018).

Despite their recent impact on computer vision, CNNs have longstanding roots in

visual neuroscience (Serre, 2019; Lindsay, 2021). Hubel and Wiesel proposed that

the visual system is organized hierarchically based on their seminal discovery of

simple and complex cells in cat visual cortex (Hubel and Wiesel, 1962; Hubel,

1982). Fukushima (1980) instantiated this theory as one of the first CNNs called

Neocognitron. Remarkably, Neocognitron contains mechanisms that CNNs still use today,
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including the rectified linear unit activation function (ReLU) that

models the nonnegativity and nonlinearity of neuronal firing rates

and the max pooling operation that facilitates invariance in pattern

recognition.

Given that CNNs contain biologically-inspired mechanisms, it

is fascinating that these artificial neural networks have emerged

as highly effective at predicting neural responses in areas along

the primate ventral stream that include V1 (Cadena et al., 2019;

Burg et al., 2021), V4 (Yamins et al., 2013; Guclu and Van Gerven,

2015), and IT (Khaligh-Razavi and Kriegeskorte, 2014; Yamins and

Dicarlo, 2016). CNNs that explain most of the variance of neural

responses in ventral stream areas generally achieve the highest

image classifcation accuracy on the ImageNet dataset (Yamins et al.,

2014; Schrimpf et al., 2018), a collection of more than one million

natural images (Deng et al., 2009).

While such accuracy-optimized CNNs have had success in

modeling neurons along the ventral stream, it is largely unknown

whether they effectively model neurons in the complementary

primate dorsal stream. Here we investigated the extent to which

CNNs account for well-established tuning properties in dorsal

stream area MSTd where neurons demonstrate selectivity to

the expansive motion patterns experienced during self-motion

(optic flow) (Duffy and Wurtz, 1995; Takahashi et al., 2007).

MSTd neurons exhibit systematic tuning to combinations of

translational (T) and rotational (R) optic flow (Graziano et al.,

1994), which, to first-order approximation, capture any optic flow

pattern (Figure 1). The translation and rotation directions that elicit

the maximal response in individual neurons are not uniformly

represented across the MSTd population—neurons are more likely

to demonstrate a preference for optic flow corresponding to

the lateral and vertical axes of self-motion (Takahashi et al.,

2007). While this may seem counter-intuitive, MSTd neurons do

nevertheless demonstrate increased discriminability of forward

self-motion (Gu et al., 2010). Most MSTd neurons show a ≈90◦

difference in the translation and rotation directions that yield the

maximal response (Takahashi et al., 2007). There is strong evidence

that optic flow sensitivity in MSTd stems from the feedforward

integration of local direction and speed signals from MT and other

afferent visual areas (Maunsell and Van Essen, 1983; Perrone, 1992;

Born and Bradley, 2005).

Beyeler et al. (2016) introduced the Non-Negative Matrix

Factorization (NNMF) model of MSTd that reproduces the

aforementioned optic flow tuning properties as well as others that

will be described later on in this article. NNMF refers to the process

of approximating a matrixAwith the product of two other matrices

H and W, where all three matrices have nonnegative entries. This

forms a basis with which the original matrix may be reconstructed,

and, similar to principal component analysis (PCA), the basis has

fewer dimensions than the original matrix. Beyeler et al. (2016)

apply NNMF to the local motion responses of model MT units

to optic flow (A) and interpret the resulting W matrix as MT-

MSTd receptive field (RF) connection weights (basis vectors) and

H matrix as MSTd unit activations (basis coefficients). This NNMF

model can be thought of as a two-layer neural network that, once

fit, represents a simple linear model of MT activations (Figure 2).

Unlike PCA, NNMF yields a sparse “parts-based” representation of

optic flow patterns wherein many fitted coefficients equal zero (Lee

and Seung, 1999; Beyeler et al., 2019).

In the present study, we optimized CNNs to estimate the

translational and rotational self-motion from each optic flow field

in a large dataset. We compared the tuning characteristics of

neurons in these CNNs to both neurophysiological studies of

MSTd (Ben Hamed et al., 2003; Takahashi et al., 2007) and tuning

characteristics of the NNMF model proposed (Beyeler et al., 2016).

To better understand what makes NNMF a successful model of

MSTd, we trained CNN variants that incorporate one or both

key computational properties of NNMF: nonnegative weights and

sparse coding.

Materials and methods

We begin by describing the optic flow datasets used to train

and evaluate the computational models. We subsequently present

the model specifications and end the section with a description

of our analyses. To facilitate comparisons with the NNMF model

of MSTd, many of our datasets and analyses are based on those

of Beyeler et al. (2016), which replicate a number of analyses

performed in previous primate studies within a computational

modeling framework. These analyses focus on neural tuning to

translational and rotational optic flow and encompass direction

preference, tuning width, degree of selectivity, and sparseness of the

neural signal.

Optic flow datasets

Our datasets consist of the optic flow generated during

simulated self-motion through visual scenes that comprise either a

frontoparallel plane (Figure 3A) or ground plane (Figure 3B). Each

data sample corresponds to a single vector field that represents

the optic flow produced during an instant of time when the

observer moves with 3D translational velocity ET =
(

Tx,Ty,Tz

)

and rotational velocity ER =
(

Rx,Ry,Rz
)

. We simulated an observer

with a 90◦ field of view and assume that the projection of points

from the visual scene onto the retinal image plane occurs using a

pinhole camera model with focal length f = 1 cm (Raudies and

Neumann, 2013). Following Beyeler et al. (2016), we compute the

optic flow on an evenly spaced 15×15 grid of points within retinal

image plane. The x and y coordinates of these points both span

[−f , f ], the central portion of the image plane that falls within the

simulated 90◦ field of view (Raudies and Neumann, 2013; Beyeler

et al., 2016). Given a translation
(

ET
)

vector, a rotation vector
(

ER
)

,

and the 2D grid of sample points on the image plane (x, y), we

evaluated the instantaneous optic flow
(

ẋ, ẏ
)

(Longuet-Higgins and

Prazdny, 1980):

(

ẋ

ẏ

)

= 1
Z(x,y)

(

−f 0 x

0 −f y

)
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A B C

FIGURE 1

Example optic flow fields generated from simulated self-motion through a 3D dot cloud environment. Self-motion along a straight path of travel

creates translational optic flow (T) with motion that radiates from the direction of movement. Eye or head movements yield rotational optic flow (R).

(A) depicts translational optic flow from straight-forward self-motion. (B) depicts rotational optic flow corresponding to a rightward eye movement

(yaw rotation). (C) depicts the optic flow created from a combination of translation and rotation (T+R). The optic field shown in (C) is the sum of

those in (A, B).

FIGURE 2

Schematic depiction the NNMF model of MSTd proposed by Beyeler et al. (2016). A population of M = 9, 000 speed and direction tuned MT units

integrate each input 15×15 optic flow field, generating a N× 9, 000 matrix of activations (A), where N denotes the number of optic flow samples (left

two panels). This matrix serves as the input to the NNMF algorithm, which factors A into the matrices H and W (center panels). H corresponds to the

nonnegative basis coe�cients, which is interpreted as the activations of the 896 model MSTd units to the N optic flow samples. W corresponds to

896 basis vectors, which is interpreted as the MSTd RF connection weights from MT units. The product Arec = HW is a reconstruction of the MT input

activations A (right panel).

In Equation 1, Z(x, y) refers to the depth of the point in

the world that projects to (x, y) on the image plane. For the

frontoparallel plane scene, Z(x, y) is set to the relative depth of

the plane (see Table 1). For the ground plane scene, Z(x, y) =

Z(y) = hf /
(

ycos (α)+ fsin (α)
)

, where h is the height of the

ground plane relative to the eye, f is the camera focal length, and

α is the vertical offset angle of the gaze relative to the horizontal

axis. Following Beyeler et al. (2016), we set h = −10 m (i.e., ground

plane is 10 m below the observer) and α = −30◦ (i.e., observer

gaze is directed 30◦ below the horizon). The shape of each optic

flow dataset is (N, 15, 15, 2), where N indicates the number of data

samples and 2 corresponds to the
(

ẋ, ẏ
)

optic flow components.

Table 1 summarizes the datasets used in the present study. Each

one adheres closely to the specifications provided by Beyeler et al.

(2016). We fit each of the models with the TR360 training set and

the remaining datasets serve as test sets to evaluate performance

on optic flow that is not used to fit the models (i.e., to test

generalization). To create the reported total number of samples,

unless noted otherwise, we crossed the independent variables with

each other then generated repetitions of these conditions until the

number of samples matched the total number. For example, to

generate the 6,030 TR360 samples for the frontoparallel scene, we

crossed T speed (3), R speed (3), and frontoparallel plane depth (5)

to obtain 45 samples. We subsequently repeated this process 134

times to obtain the 6,030 total fronotoparallel samples. We drew

values for indicated random variables (T and R directions in this

case) anew when generating each sample so that the dataset does

not contain duplicate samples.

In the TR360 dataset, half of samples correspond to

simulated self-motion toward the frontoparallel plane and

the other half correspond to simulated self-motion over

the ground plane. We shuffled the order of samples before

fitting the models and creating the train/validation/test

set splits.
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FIGURE 3

Examples of optic flow fields from the TR360 dataset used to fit the models. (A) Simulated translation and rotation with respect to a frontoparallel

plane 4 m in front of the observer. Translation is -29◦ in azimuth (x) and 7◦ in elevation (y) at 1 m/s. The simulated observer undergoes 10◦/sec

rotation (3D rotation unit vector ER = [0.33, 0.79, 0.52]). (B) Simulated translation with respect to a ground plane with a 30◦ downward gaze o�set

(α = −30◦). Translation is 28◦ in azimuth (x) and -33◦ in elevation (y) at 1.5 m/s.

TABLE 1 Optic flow dataset specifications.

Dataset Description Size (Num samples N) Independent variables

TR360 Simulated self-motion toward either a

frontoparallel plane or above a ground plane. T

and R direction is uniform random: T/R elevation

[–180, 180]◦ , T/R azimuth [–90, 90]◦ .

total: 12,060 (6,030 frontoparallel +

6,030 ground) train: 6030 validation:

3,015 test: 3015

T speed: [0.5, 1.0, 1.5] m/s R speed: [0, 5,

10] m/s Frontoparallel plane depth: [2,

4, 8, 16, 32] m

BenHamedT Simulated self-motion (T only) toward a

frontoparallel plane. Direction of azimuth and

elevation is uniform random within [–45, 45]◦ of

straight-ahead. Observer speed is uniform random

within [0.5, 2]◦/s.

10,000 Frontoparallel plane depth: [1, 2, 4, 8] m

BenHamedR Simulated self-motion (R only) with a

frontoparallel plane. Combinations of pitch and

yaw rotation only, no roll. Net rotational speed is

uniform random within [0,±10] ◦/s.

10,000 Frontoparallel plane depth: [1, 2, 4, 8] m

TestProtocolT Diagnostic set of optic flow patterns used to

evaluate MSTd tuning to specific T directions.

514 (512 combinations of T azimuth

and elevation &±90◦ vertical)

T azimuth: [0,±11.25,±22.5, ...,±180]◦

T elevation: [0,±11.25,±22.5, ...,±90]◦

TestProtocolR Diagnostic set of optic flow patterns used to

evaluate MSTd tuning to specific R directions.

514 (512 combinations of T azimuth

and elevation &±90◦ vertical)

R azimuth: [0,±11.25,±22.5, ...,±180]◦

R elevation: [0,±11.25,±22.5, ...,±90]◦

T and R denote translation and rotation, respectively. T indicates optic flow that contains only translation, T/R indicates optic flow with both translational and rotational components. Training

set is used to fit network weights, while test set is used to evaluate performance on novel patterns. Uniform indicates sampling from the uniform random distribution with the specified endpoints.

Azimuth and elevation angles of 0◦ correspond to straight-ahead heading. See text for details.

Computational models

Convolutional neural networks
We implemented the CNNs using TensorFlow 2.11 in Python

3.10 (Abadi et al., 2016). We trained the models on a Microsoft

Windows 10 workstation equipped with an NVIDIA GeForce

RTX 4090 graphics processing unit (GPU) that has 24 GB of

RAM. As depicted in Figure 4A, the general CNN architecture

processes the optic flow at the input layer with shape (N, 15,

15, 2). The CNN applies 2D spatial convolution to the input

signal with stride 1 and zero padded with “same” boundary

conditions. This is followed by the ReLU activation function

and the 2D max pooling operation. The 2D convolution and

max pooling layers are stacked together one or more times.

The units in the final max pooling are flattened and connected

to one or more layers with dense connectivity and the ReLU

activation function. The final stage is a multi-output regression

layer with 5 neurons, each representing the self-motion variables

that we train the network to estimate: translational azimuth

and elevation, as well as rotational pitch, yaw, and roll. Prior

to training, we normalized each label separately so that each

spans the range [–0.5, 0.5]. The goal of the training process

is to minimize the loss incurred in jointly estimating the

5 self-motion variables using the Adam optimizer, configured

with default hyperparameters except as noted below. We use

mean squared error (MSE) loss for translational elevation

(unscaled range: [–90, 90]◦) and the rotation variables (unscaled

range: [–10, 10]◦/s). For the translational azimuth, the network
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FIGURE 4

CNN (A) and NNMF (B) model diagrams. (A) The first stages of the CNN consist of convolutional units that filter the optic flow field within the RF. This

is followed by the max pooling operation, which downsamples the spatial resolution of the optic flow signal. Convolution and max pooling layers

may be stacked multiple times before the units are flattened into a 1D representation. These units are connected with one or more layers of densely

connected units. The output layer consists of five neurons, one for each self-motion property that the network estimates (the azimuth and elevation

of observer translation as well as the pitch, yaw, and roll components of observer rotation). The network minimizes the mean-squared-error (MSE)

loss for regression. The MLP model excludes the convolution and max pooling stages (teal). (B) In the NNMF model, MT units that are preferentially

tuned to a unique combination among 8 directions and 5 speeds integrate optic flow within their RF. MSTd activations emerge by multiplying the MT

activations with the MT–MSTd weights obtained from the NNMF algorithm.
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TABLE 2 Ranges used in random search for optimal CNN

hyperparameters.

Hyperparameter Value range

Number of convolution and max

pooling stacks

[1, 3]

Number of dense layers [1, 6]

Number of convolutional filters [2, 300]

Number of dense units [2, 10,000]

Convolutional unit filter size [2, 15]

Max pooling window size [2, 4]

Max pooling stride length [1, 3]

L1 regularization strength [0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1,

2]∗

Learning rate [1e-5, 1e-4, 1e-3, 1e-2]∗∗

Except for the learning rate, hyperparameters were selected on a per-layer basis on every

iteration of the search. ∗L1 regularization was only included in CNN_L1 and CNN_L1++

networks and was drawn randomly from this set. ∗∗Learning rate was drawn randomly from

this set.

minimizes the following loss function since the range is circular

[–180, 180]◦:

Lcirc =
1

B

B
∑

i=1

1

2

[

1− cos
(

π
(

yi − ŷi
))]

(2)

In Equation 2 B is the mini-batch size, yi is the translational

azimuth label for sample i on the normalized scale, and ŷi
is the normalized predicted translational azimuth value on the

normalized scale. This loss function yields the maximum penalty

of 1 when the error is 180◦ offset from the label (e.g., predicting

straight-ahead when optic flow of moving straight-back) and 0

penalty when the error is zero or 360◦ offset from the label. That

is, this loss function does not penalize learning angles that deviate

by multiples of 360◦.

We considered the extent to which several CNN variants

modeled MSTd tuning properties:

1. MLP. Multi-Layer Perceptron that possessed the same

architecture as the CNN shown in Figure 4A, but without the

convolution and max pooling layers (without the teal boxes).

2. MLP_MT_PRE. Identical to MLP except the input to the neural

network is the same as that of the NNMF model—activations

obtained from the layer of 9000model speed and direction tuned

MT neurons rather than optic flow.

3. CNN_L1. The CNNwith L1 regularization added to the loss and

weights in each layer. The regularization strength was controlled

independently in each layer and the values were determined

through the optimization process described below.

4. CNN_++. The CNN optimized subject to the constraint that the

weights, except for those in the first hidden layer and the output

layer, must be non-negative.

5. CNN_L1++. The CNN optimized with both L1 regularization

and the non-negative weight constraint.

We initialized the weights in each network using the Glorot

Uniform method, the TensorFlow default (Glorot and Bengio,

2010; Abadi et al., 2016). This means that the initial value of each

weight is drawn from the following Uniform distribution:

U

[

−

√

6

Fin + Fout
,

√

6

Fin + Fout

]

(3)

In Equation 3, Fin and Fout refer to the number of units in the

previous and current layer, respectively. We initialized the weights

of the networks with the non-negative weight constraint according

to the absolute value of Equation 3 to ensure that the weights would

initially take on nonzero values.

We optimized the neural network architecture and

hyperparameters through a two-stage random search process.

During the first stage, we searched for the CNN network

hyperparameters listed in Table 2. This involved fitting the

CNN model to the TR360 training set and recording the

hyperparameters that yielded the smallest validation loss summed

across the 5 output neurons. Whenever the search identified an

optimal CNN candidate that possessed a hyperparameter value that

encroached on the upper limit of its respective range, we expanded

the range and restarted the search. During the second stage, we ran

independent searches to optimize each of the variant networks. We

conducted the searchs over the hyperparameter ranges in Table 2,

which are informed by the first stage. We trained all networks

with a mini-batch size of 64 samples and early stopping with a

patience of 60 epochs (see Supplementary Figure S1 for model

training and validation loss curves). Table 3 shows the optimized

hyperparameters values for each of the networks.

Non-negative matrix factorization model
We implemented and configured the NNMF model according

to the specifications of Beyeler et al. (2016), except where noted

otherwise.

The first stage of the model (Figure 4B) transforms each 15×15

optic flow field into motion signals in model area MT. Model MT

neurons exhibit sensitivity to the speed and direction of optic flow

signals over time. We simulated 9000 (NMT) model MT neurons: 8

preferred directions and 5 preferred speeds centered on each of the

15×15 positions in the optic flow input (9, 000 = 8× 5× 15× 15).

Tuning to the direction θ(x, y) present at position (x, y) within

the RF of a neuron relative to the preferred direction θpref obeys a

von Mises distribution (Equation 4):

dMT(x, y; θpref ) = exp(σθ (cos(θ(x, y)− θpref )− 1)) (4)

where σθ = 3◦ indicates the bandwidth of the direction tuning,

which was set to approximate the ≈ 90◦ full-width at half-

maximum found in MT cells (Britten and VanWezel, 1998; Beyeler

et al., 2016).

The tuning of each model MT neuron to the optic flow speed

(ν) at position (x, y) within the RF obeys a log-normal distribution

(Nover et al., 2005):

sMT(x, y; νpref ) = exp






−
log
(

ν(x,y)+s0
νpref+s0

)2

2σ 2
ν






(5)
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TABLE 3 Optimized network hyperparameters.

Hyperparameter CNN MLP MLP_MT_PRE CNN_L1 CNN_++ CNN_L1++

Number of convolution and

max pooling stacks

1 0 0 1 1 1

Number of dense layers 5 5 5 3 2 2

Number of convolutional

filters

157 0 0 188 162 103

Number of dense units [2,997, 7,566, 5,979,

6,709, 2,631]

[2,958, 6,244, 3,234,

5,067, 2,651]

[3,536, 2,367, 141,

5,108, 408]

[5,484, 7,352, 9,770] [3,145, 2,529] [7,281, 5,741]

Convolutional unit filter size 2 N/A N/A 2 2 2

Max pooling window size 2 N/A N/A 4 2 2

Max pooling stride length 3 N/A N/A 1 1 2

L1 regularization strength 0 0 0 [1e-5, 0, 1e-5, 1e-3,

0]

0 [0, 1e-4, 1e-5,

1e-3]

Learning rate 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3

Entries in lists correspond to the values in each relevant layer of the network. For example, [3,145, 2,529] means that there are 3,145 units in the first dense hidden layer and 2,529 units in the

second dense hidden layer.

where σν in Equation 5 defines the speed tuning bandwidth, s0
defines a non-negative offset parameter to prevent the singularity

in the logarithm at 0, and νpref defines the preferred speed of the

model neuron. We set σν = 1.16 and s0 = 0.33 to match the

median values obtained from neural data (Nover et al., 2005). The

5 model MT preferred speeds are 2, 4, 8, 16, and 32◦/s (Nover et al.,

2005; Beyeler et al., 2016).

The activation of each model MT neuron is the product of the

direction and speed inputs within the RF (Equation 6):

A = dMT(x, y; θpref )sMT(x, y; νpref ) (6)

We used NNMF to decompose the MT activation matrix A into

the product of two other matrices HW, all of which must have

non-negative entries:

A ≈ HW (7)

TheMTmatrixA has shape (N,M), whereN corresponds to the

number of optic flow samples and M corresponds to the number

of MT units. The matrix H has shape (N,K) and represents the

activations of the K = 896 model MSTd units to each sample.

The matrixW has shape (K,M) represents the weights between the

M = 9, 000 MT units and the K = 896 model MSTd units. NNMF

minimizes the MSE reconstruction loss Lnnmf between Arec = HW

(Equation 7) and A

Lnnmf =
1

NM

N
∑

i=1

M
∑

j=1

(

Aij − Arecij

)2
, (8)

subject to the non-negativity constraint that all entries Hik ≥ 0

and Wkj ≥ 0. We implemented NNMF in TensorFlow and used

gradient descent with the Adam optimizer (learning rate: 1e-3)

to minimize Lnnmf (Equation 8). We enforced the non-negativity

constraint on each training epoch through the ReLU function.

NNMF has several free hyperparameters that must be specified.

First, the matricesH andW require initialization.We used uniform

random values between 0 and

√

∑N
i=1

∑M
j=1 A

NMK , as used in the Scikit-

learn library implementation of NNMF (Pedregosa et al., 2011).

Second, the number of basis vectors in the decomposition K

must be selected. Following Beyeler et al. (2016), we repeatedly fit

NNMF 14 times, using K̂ = 64 basis vectors in each instance.

This allows the model to incorporate variability in the fitted basis

vectors due to the random initiation ofH andW. We concatenated

the matrices fit from each of the 14 NNMF fits to obtain K =

896. Third, NNMF requires convergence criteria for the iterative

optimization of Equation 8 to be set. This is important since

fitting NNMF for too many iterations risks overfitting the training

set. We stopped the fit when the absolute difference in the loss

obtained between successive training epochs was at most 1e-4.

This is the default tolerance value used in the MATLAB function

nnmf , which Beyeler et al. (2016) used to fit their model (we are

assuming they used default parameter values since they do not

state otherwise). We required NNMF to be fit to the training set

for at least 2 epochs. Fourth, an algorithm must be selected by

which NNMF is fit. We used gradient descent since it allowed

us to fit NNMF using the same paradigm as the neural networks

and our TensorFlow implementation allowed us to train quickly

on the GPU. We obtained similar results using the alternating

least-squares algorithm, which is what Beyeler et al. (2016) used.

We used the following equation (Equation 9) to computeMSTd

activations Htest in the fitted NNMF to Ntest novel stimuli.

Htest = AtestW
T , (9)

where Atest is the MT activations to the novel stimuli (shape:

(Ntest ,M)) andWT is the transpose of the MT–MSTd fitted NNMF

basis vectors (shape: (M,K)).

Analyses

We focused our analyses of the units in the final hidden

layer of the CNNs and the MSTd layer of the NNMF algorithm
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(Htest). Unless noted otherwise, we excluded neurons that did not

produce nonzero activation to any of the test optic flow patterns

(“unresponsive neurons”/“dying ReLUs”) from the analysis (Glorot

et al., 2011; Lu et al., 2019). Our analyses focus on model outputs

to test sets, which represent novel optic flow that was not used to fit

the models.

MSTd receptive field maps
We used using the TestProtocolT and TestProtocolR diagnostic

datasets to characterize the tuning of model units to different

translation and rotation directions. First, we interpolated the unit’s

activations obtained to the N = 514 optic flow patterns within

each diagnostic dataset on a regular azimuth-elevation mesh. We

subsequently evaluated the interpolation at 561 sample points

made up of 33 azimuths (0–360◦ in 11.25◦ increments) and 17

elevations (–90–−90◦ in 11.25◦ increments). Finally, we created a

heat map showing a Lambert cylindrical equal-area projection: the

horizontal axis corresponds to the azimuthal angle θ , the vertical

axis corresponds to the elevation angle ψ transformed as sin(ψ),

and the color corresponds to the unit activation.

In addition to generating heat map plots showing individual

unit tuning, we created composite heatmaps showing the activation

at each sample point averaged across the entire model population.

Translation and rotation tuning preferences
We established the translation and rotation tuning preferences

of each unit using the TestProtocolT and TestProtocolR datasets

(see Table 1). We estimated each neuron’s preferred tuning using

the population vector method (Georgopoulos et al., 1986; Beyeler

et al., 2016). This involves summing the product between each unit

activation and the corresponding optic flow translation or rotation

labels (ETi or ERi), represented as 3D Cartesian unit vectors.

Population tuning width
To characterize the T or R tuning width of each model unit,

we considered the interpolation obtained on the TestProtocolT

and TestProtocolR datasets. We evaluated the interpolation at 100

azimuths and 50 elevations (3.6◦ increments along either axis). We

defined a unit’s tuning width as the Euclidean distance between

where unit achieves its maximum and half-maximum activation.

Peak heading discriminability
To quantify how well individual model units discriminate

between similar headings, we presented each model with 24 optic

flow patterns with equally spaced translation directions spanning

0–360◦ (step size: 15◦) in the horizontal plane (0◦ elevation).

We fit separate cubic splines with 1000 equally spaced sample

points to the set of activations produced by each model unit.

We evaluated the first derivative of the spline to measure the

discriminability at different reference directions of translation.

Following Gu et al. (2006) and Beyeler et al. (2016), we report the

peak heading discriminability, defined as the heading direction at

which the spline derivative reaches its maximum. To mitigate edge

and circularity effects, we padded the endpoints with activations

produced to additional optic flow stimuli with 20 translation

direction steps reaching±300◦ on either side of the 0–360◦ central

interval.

Heading and rotation tuning index
The translation direction (heading) that generates the strongest

response represents the heading preference for a particular model

unit. The heading tuning index (HTI) measures the selectivity

of each unit’s heading tuning. A neuron with a strong heading

preference (HTI ≈ 1) activates only to a narrow range of heading

directions, while a neuron that activates to a broad range of

headings exhibits a weak preference (HTI≈ 0).

We computed the HTI for each model unit j on the

TestProtocolT dataset according to (Gu et al., 2006; Beyeler et al.,

2016):

HTIj =

∣

∣

∣

∑N
i=1 rijEei

∣

∣

∣

2
∑N

i=1

∣

∣rijEei
∣

∣

2

(10)

where rij denotes the activation of the jth model unit in response

to the ith stimulus, Eei denotes the heading direction for the ith

stimulus as a 3D Cartesian unit vector, and | · |2 denotes the L2

Euclidean norm. This equation produces HTI values ranging from

0 (no directional tuning) to 1 (strong directional tuning).

Moreover, we used using Equation 10 to compute a tuning

index that measures each neuron’s rotation selectivity that we refer

to as the rotation tuning index (RTI). We computed the RTI of

each neuron based on the activations obtained on the rotation-only

TestProtocolR diagnostic dataset, substituting the 3D Cartesian

rotation unit vector (Eei) for sample i in Equation 10.

Sparseness metrics
We assessed the sparseness (s) of model MT unit activity (r)

using the following metric (Vinje and Gallant, 2000):

s =






1−

1

N

(

∑N
i=1 ri

)2

∑N
i=1 r

2
i






/

(

1−
1

N

)

(11)

where s in Equation 11 is a metric ranging from 0 to 1, with

0 indicating a dense code where every neuron is always active

and 1 indicating a local code where a single neuron is active

for each stimulus. A sparse coding represents a middle ground,

where a subset of neurons activate to any given stimulus. We use

this equation to calculate two measures of sparseness. The first is

population sparseness, the proportion of model units active for a

single stimulus, where ri represents the activity of the i
th model unit

to a stimulus and N is the total number of model units. The second

is lifetime sparseness, the proportion of stimuli a single model unit

is active for, where ri represents the activity of a model unit to the

ith stimulus and N is the total number of stimuli. The population

and lifetime sparseness metrics reflect average values for all stimuli

and model units, respectively.
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Software accessibility

We implemented and simulated NNMF and the CNNs in

Python using the NumPy (Harris et al., 2020), SciPy (Virtanen

et al., 2020), Pandas (McKinney, 2010), Seaborn (Waskom, 2021),

and TensorFlow (Abadi et al., 2016) libraries. The trained neural

network models and optic flow datasets are available on Hugging

Face (https://huggingface.co/collections/OWLab/optic-flow-cnns-

15x15-66bce4ab1c1fda3179e21b0c). Code to load the models and

datasets is available on GitHub (https://github.com/owlayton/DL-

MSTd-Acc-SelfMotion-Release).

Results

Inspired by the success of accuracy-optimized CNNs at

modeling neural activity in primate ventral stream areas, we

examined the extent to which CNNs capture optic flow tuning

in dorsal stream area MSTd. We optimized CNNs to estimate

the observer’s visual translation and rotation on a 6030 sample

optic flow dataset (TR360) composed of 3D linear translation

sampled from all possible directions and 3D rotation sampled from

a range of commonly encountered speeds (0–10◦/s) (see Table 1).

In addition to a “baseline” CNN model (see Section Materials and

methods), we simulated CNN variants that implement two key

characteristics of the NNMFmodel of Beyeler and colleagues whose

properties closely emulate many well-established characteristics

of MSTd: sparse coding of optic flow and non-negativity in

connectivity weights that gate afferent signals. Our aim was

to examine how these computational principles influence the

correspondence with MSTd properties. The three CNN variants

that we considered are:

1. CNN with L1 regularization (LASSO) in each layer (Tibshirani,

1996), which promotes spareness in each neuron’s weights

(CNN_L1).

2. CNN optimized with non-negative weight constraints imposed

on each internal network layer (CNN_++).

3. CNN with both L1 regularization and non-negative weight

constraints (CNN_L1++).

To better understand how the convolution operation influences

the emergence of MSTd-like optic flow tuning properties when the

goal is accurate self-motion estimation, we compared the CNNs to

multi-layer perceptions, which possess the same architecture except

that they lack the convolution and max pooling layers early in the

network. We considered two variants to gauge how training neural

networks on a MT-like motion representation instead of optic flow

may impact optic flow tuning. One multi-layer perception model

(MLP) integrates the optic flow signal directly similar to how the

CNNs do, whereas the other model (MLP_MT_PRE) integrates the

responses of MT-like speed and direction tuned units to optic flow

like NNMF does (see Materials andMethods and “MT Layer” panel

of Figure 4B).

We begin by presenting the accuracy with which CNNs perform

this task before comparing CNN translation and rotation tuning

properties with those of primate area MSTd.

Accuracy of self-motion estimates

We assessed the accuracy with which the neural networks

estimate the 3D translation and rotation of the simulated observer

on a test set comprising 3,015 novel optic flow stimuli that the

models did not encounter during training. The CNN estimates

translation and rotation with a high degree of accuracy—the

CNN achieves mean absolute errors (MAEs) of 5.5◦ (Figure 5B)

and 0.2◦ (Figure 5D), respectively. The mean squared error

(MSE) in estimating the corresponding self-motion parameters

are 236.9◦2 (Figure 5A) and 0.1◦2 (Figure 5C). As Figures 5A–

D indicates, the accuracy achieved by the MLP is comparable

to that of the CNN. The MLP that integrates the MT-like

motion representation rather than optic flow (MT_MT_PRE)

garners approximately double the MSE and MAE. While CNN_L1

performs similarly to both the CNN and MLP, networks with the

non-negative weights estimate translation and rotation with far less

accuracy (CNN_++, CNN_L1++; Figures 5A–D). Inspection of the

individual predictions reveals qualitative differences: whereas CNN

and MLP yield a high concentration of estimates near true values

along the unity line (Figures 5E, F), predictions from the CNN_++,

CNN_L1++ are more dispersed and deteriorate markedly when

estimating backward translation (≈ ± 180◦). Combining L1

regularization and the non-negative weight constraint does not

improve accuracy compared to CNN_++ (Figure 5J).

For comparison, we simulated the original NNMF model of

Beyeler and colleagues (Beyeler et al., 2016). To do this, we fit a

linear regression to the NNMF model MSTd activations obtained

on the training set stimuli, and, similar to the CNNs, we assessed the

accuracy of estimates obtained on the test set. Figures 5A–D show

that the NNMF model yields substantial translation and rotation

errors. For example, in the case of translation NNMF garners

approximately twice the MSE and MAE obtained by the CNNs

that yield the least accurate estimates (CNN_++, CNN_L1++).

Figure 5K reveals that the individual NNMF predictions more

closely resemble those produced by CNN_++ and CNN_L1++ than

those without the non-negativity constraint.

The poor accuracy of self-motion estimates decoded from

NNMF is somewhat surprising given that Beyeler et al. (2016)

report only≈ 5◦ and 1◦ mean error when decoding translation and

rotation, respectively, from the optic flow stimuli of Ben Hamed

et al. (2003). These are novel stimuli not used to fit the model.

The discrepancy in accuracy could stem from the fact that the Ben

Hamed stimuli were considerably simpler than the TR360 dataset

simulated here. The Ben Hamed stimuli consist of two separate

datasets: either pure translation within ±45◦ of straight-ahead

(BenHamedT dataset) or pure rotation (BenHamedR dataset).

This contrasts with the TR360 dataset that contains combined

translation and rotation along any 3D direction. Without refitting

the models (i.e., the weights reflect learning on the more general

TR360 dataset), we decoded self-motion from the CNNs and the

NNMF model on the Ben Hamed datasets to determine whether

task difficulty could account for the large difference in accuracy.

Following Beyeler et al. (2016), we decoded from the NNMFmodel

by fitting a separate linear regression for each self-motion label

and assessing the mean validation accuracy through a 10-fold

cross validation procedure. We carried out this process for the

BenHamedT and BenHamedR datasets independently. To facilitate
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FIGURE 5

Test accuracy on the TR360 optic flow dataset obtained by the CNN and NNMF models. MSE represents mean squared error and MAE represents

mean absolute error. (A, B) Accuracy of translational self-motion estimates achieved by each model. (C, D) Accuracy of rotational self-motion

estimates achieved by each model. (E–K) Scatter plots focus on the model predictions for individual optic flow test samples in the case of azimuthal

translation (“heading_x”). The x axis corresponds to the true value, the y axis corresponds to the value predicted by the model, and the red curve

shows the unity line (no error). Note that headings of 180◦ and –180◦ correspond with the same direction (backward).

comparison with the CNNs that were trained end-to-end on the

TR360 dataset with a supervised learning paradigm, we lesioned

the weights between the last hidden layer and the output layer and

fit separate linear regressions to the last hidden layer activations

through the same 10-fold cross validation procedure that was used

with the NNMF model. Consistent with Ben Hamed et al. (2003),

Beyeler et al. (2016), we decoded from a random sample of 144

neurons in each model unless the last hidden layer of a network did

not have this many responsive neurons. In this case, we decoded

from all responsive neurons.

Figure 6 shows the MAE obtained by cross-validation when the

models estimate the horizontal (x) and vertical (y) translational

(heading) components in the BenHamedT dataset (Figure 6A)

and the corresponding rotational components in the BenHamedR

dataset (Figure 6B). Both NNMF and the neural networks

estimated self-motion with a high degree of accuracy—MAEs

of several degrees or less. The substantial gap in accuracy

between the CNN variants with and without the non-negativity

constraint (CNN_++ and CNN_L1++) obtained on the TR360

dataset (Figure 5) largely vanishes on the Ben Hamed datasets. It

is important to consider that the BenHamedT dataset contains

headings ranged from –45◦ to 45◦ in both the horizontal and

vertical directions and BenHamedR dataset contains rotational

speeds that range between –10 and 10◦/s. Together, these findings

suggest that the NNMF model encodes optic flow accurately

when decoding pure translation and rotation over limited extents,

but incurs substantial error when estimating self-motion from

more complex combinations of translation and rotation. The

fact that most models yield highly accurate estimates on Ben

Hamed datasets supports the notion that task difficulty explains

the discrepancy between NNMF accuracy on the TR360 and Ben

Hamed datasets.
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A B

FIGURE 6

Accuracy of each model on the BenHamedT (A) and BenHamedR (B) datasets. The BenHamedT dataset consists of optic flow corresponding to

translation-only self-motion and the direction of translation varies –45−45◦ in both x and y. The BenHamedR dataset consists of optic flow

corresponding to rotation-only self-motion with –10−10◦/s speeds. Error bars show 95% confidence intervals (CIs) on the MAE estimated by 10-fold

cross-validation.

To establish whether the disparity in accuracy achieved by

NNMF across the TR360 and Ben Hamed dataset stems from its

non-negative and sparse “parts-based” representation, we applied

the PCA algorithm to the MT optic flow activations and performed

the same decoding procedure. PCA is another dimensionality

reduction algorithm that does not enforce non-negativity and does

not yield a parts-based encoding. We found that PCA configured

with 64 basis vectors (i.e., same as NNMF) yields the same pattern

of results as NNMF—4,962.1◦2 and 5.34◦2 MSE when estimating

translation and rotation, respectively, on TR360 test samples as

well as 0.16◦ and ≈0◦ MAE when estimating translation and

rotation, respectively, on the Ben Hamed stimuli. We conclude

that the poor NNMF generalization on the TR360 dataset is

not necessarily the consequence of a non-negative and sparse

encoding.

Translation tuning profiles

Now we turn our analysis to characterizing the tuning of

model units to translational optic flow and drawing comparisons

with primate MSTd. The heatmaps in Figure 7 show the

translation tuning profile of four units randomly selected from

each model alongside the tuning profiles of two MSTd neurons

from Takahashi et al. (2007). We generated each heatmap

by considering the neural responses of a single model unit

to 512 translational optic flow stimuli with regularly spaced

azimuths and elevations (11.25◦ steps) from the TestProtocolT

diagnostic dataset (see Materials and Methods). To facilitate

comparison with existing neurophysiological and modeling

work, we adopt the same coordinate system as Takahashi

et al. (2007) and Beyeler et al. (2016) where 0◦ and 180◦

azimuth correspond to leftward and rightward translation,

respectively, and –90◦ and 90◦ elevation correspond to upward and

downward translation, respectively (see bottom-right schematic

in Figure 7). In some cases the tuning profiles of single

model units share qualitative similarities with the MSTd neuron

exemplars (e.g., MSTd Neuron 2, NNMF Neuron 4, CNN_++

Neuron 2).

To characterize translation responses more generally across the

population, we summed the activations obtained to each translation

direction and generated population translation tuning profiles

for each model (Figure 8). The CNN population (Figure 8A)

produces the highest activation to ≈ 300◦ azimuths (backward-

right translation). The MLP, MLP_MT_PRE, and CNN_L1 models

(Figures 8B–D) respond maximally to 270◦ azimuths (backward

translation) and minimally to 90◦ azimuths (forward translation).

The activation in both MLP models is tightly concentrated at

upward and downward elevations and weak around 0◦ elevations

(Figures 8B, C), whereas in the CNN_L1 model there is an

asymmetric bias toward downward translation (Figure 8D). The

CNNs with the non-negativity weight constraint yield peak

responses (Figures 8E, F) around 135◦ azimuth (forward-left

translation), which are close to the peak produced by the NNMF

model (Figure 8G).

Translation direction preferences

Following Takahashi et al. (2007) and Beyeler et al. (2016), we

characterized the translation tuning preference of each model unit

using population vector decoding (see Materials and Methods).

Each scatter plot in Figure 9 shows the preferred translational

azimuth and elevation angle of single neurons in a particularmodel.

The histograms to the right and above each scatter plot show the

marginal distribution of preferred azimuth and elevation angles,

respectively, across the population. From the scatter plots and

histograms it is clear that the translation preferences of NNMF

model units (Figure 9H) exhibit the greatest consistency with

those of MSTd neurons (Figure 9I). A key characteristic of MSTd

preferences for translational azimuth angle is the relative paucity

of neurons that prefer fore-aft self-motion directions (90◦, 270◦)

compared to lateral directions (0◦, 180◦; Figure 9I). While few

units in the CNN and MLP models prefer≈90◦ azimuth (forward)

translation, many units in these models possess ≈270◦ (backward)
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FIGURE 7

3D translation tuning profiles for four randomly selected neurons (rows) in each model (columns). Translation directions are expressed respect to

azimuth and elevation angle (◦). Warmer colors correspond to stronger activation to specific combinations of azimuth and elevation angles and

cooler colors correspond to weaker activation. The translation tuning profiles for two MSTd neurons from Takahashi et al. (2007) are depicted in the

rightmost column. Copyright 2007 Society for Neuroscience. The bottom-right diagram schematizes the translation direction coordinate system.

A B C D

E F G

FIGURE 8

Population translation tuning profiles for each model. (A–G) Same plotting conventions and coordinate system as Figure 7.

azimuthal preferences, a departure from the MSTd data. The

exceptions are the models with the non-negativity constraint

(CNN_++, CNN_L1++), in which most neurons prefer forward

or leftward translation, respectively. The preference for backward

translation in the CNN, MLP, MLP_MT_PRE, CNN_L1 models

is consistent with their population tuning profiles (Figures 8A–

D). None of the models other than NNMF capture the symmetric

preference for large elevation angles.

Interestingly, even though the distributions of preferred

translation azimuth and elevation in the CNN model mismatch

the MSTd data (compare Figures 9B and I), the percentage of

neurons that have preferences within 30◦ of the lateral, fore-

aft, and vertical axes of translation exhibit a high degree of

consistency with the neural data of Takahashi et al. (2007)

(Table 4). The neurons in the CNN_++ and NNMF models

demonstrated a similar qualitative pattern whereby there is a
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FIGURE 9

The 3D translation direction preferences of single neurons in each model. (A) Schematic depicting the coordinate system, which is the same as in

Figure 7. (B–H) The preferred direction of each neuron is expressed as its preferred combination of azimuth and elevation angles. The bar charts on

top and to the right of each scatter plot depict histograms (12 bins, bin width: 30◦), showing the marginal distribution of neurons with di�erent

preferred azimuth and elevation angles, respectively. (I) 3D translation direction preferences of MSTd neurons from Takahashi et al. (2007). Copyright

2007 Society for Neuroscience.

TABLE 4 The percentage of neurons in each model with preferred translation directions within 30◦ of the lateral (leftward-rightward), fore-aft

(forward-backward), and vertical (upward-downward) axes.

Study/Model Lateral (0◦, 180◦) Fore-Aft (90◦, 270◦) Vertical (-90◦, 90◦)

Takahashi et al. (2007) 57/307 (19%) 20/307 (7%) 76/307 (25%)

CNN 300/2,383 (13%) 195/2,383 (8%) 591/2,383 (25%)

MLP 1/86 (1%) 19/86 (22%) 33/86 (38%)

MLP_MT_PRE 1/39 (3%) 2/39 (5%) 19/39 (49%)

CNN_L1 4/137 (3%) 3/137 (2%) 100/137 (73%)

CNN_++ 459/1,094 (42%) 35/1,094 (3%) 390/1,094 (36%)

CNN_L1++ 8/27 (30%) 8/27 (30%) 11/27 (41%)

NNMF 64/896 (7%) 4/896 (0.4%) 392/896 (44%)

Each bold entry shows the closest percentage to that reported by Takahashi et al. (2007) for MSTd.

relative paucity of neurons within 30◦ of the fore-aft axis

of translation.

In summary, the NNMF model best approximates MSTd

translation preferences. While the translation tuning profiles of the

CNNs with the non-negativity constraint most closely resemble

those of NNMF (Figures 7, 8), these CNNs do not reproduce

the pattern of 3D translation preferences across the population

(Figure 9). The other neural network models deviate from MSTd

preferences due to the predominance of units that prefer backward

translation.
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FIGURE 10

Translation tuning width at half maximum of each model neuron. (A) Schematic of coordinate system, which is di�erent than in Figure 9 to facilitate

comparison between model tuning widths (B–G) and MSTd data from Gu et al. (2010) (H). Filled curves on the top and right side represent the

marginal kernel density estimates. As depicted in (H), scatter plots show neurons with preferred heading within 45◦ of straight-ahead and tuning

widths < 115◦ in orange. Panel (H) reprinted from Gu et al. (2010) with permission from Elsevier.

Translation tuning width

The preceding analysis characterizes the translation direction

that elicits the maximal response in each unit, but it does not

capture the spatial extent of the tuning. Figure 10 plots the tuning

width at half maximum for single units in eachmodel (seeMaterials

and Methods). As indicated in Figure 10A, we adopt a different

coordinate system to facilitate comparison with MSTd translation

tuning width data from Gu et al. (2010) (Figure 10H). In this

coordinate system, the –90◦ and 90◦ correspond to leftward and

rightward translation, respectively, and 0◦ and ±180◦ correspond

to forward and backward translation, respectively. The kernel

density estimates on the top of each scatter plot show bimodal

distributions in all the models except for the CNNs with the

non-negativity constraint (CNN_++, CNN_L1++). The peaks in

NNMF distribution (Figure 10G) peaks appear at ±90◦, which

most closely matches in the MSTd data (Figure 10H). The kernel

density estimates reflect the aforementioned backward bias in

CNN, MLP, MLP_MT_PRE, and CNN_L1 translation preferences

(±180◦). Neurons in the CNN model demonstrate the most

variability in their tuning widths, particularly among those tuned

to backward translation. NNMF, CNN, and CNN_L1, but not

the MLPs, contained a cluster of neurons tuned within 45◦ of

the straight-ahead that showed narrower tuning widths (orange

markers). However, only the NNMFmodel exhibits the tendency of

MSTd neurons for the minimum tuning widths to be at least 45◦,

regardless of the preferred direction.

Heading discriminability and strength of
tuning

While MSTd neurons across the population exhibit lateral

(leftward and rightward) bias in their translation preference, they

possess peak discriminability for straight-ahead, and to a lesser

extent, backwards headings (Gu et al., 2010) (Figure 11H). To

assess the extent to which the models reproduce this tendency, we

computed the heading at which each model units demonstrates

maximal discriminability (see Material and Methods). The

CNN, MLPs, and CNN_L1 models yield qualitatively similar

distributions, with peak discriminability at backward headings

(≈ ± 180◦). While a large subpopulation of MSTd neurons

does exhibit peak heading discriminability to backward headings,

most neurons exhibit peak heading discriminability to forward

headings (Figure 11H). While the NNMF model yields a peak

close to straight-ahead and lesser peaks at greater eccentricities

(Figure 11G), its four distinct peaks are punctuated by sharp drops

in peak discriminability at the cardinal axes (0◦, 90◦, ±180◦), a

pattern that does not appear in the MSTd data (Figure 11H).
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FIGURE 11

Histograms (18 bins, width: 20◦) showing peak heading discriminability of units in each model (A–G). Optic flow stimuli involve translation in the

horizontal plane without variations in elevation or rotation. Coordinate system of Figure 10 is used. (H) Peak heading discriminability of MSTd neurons

from Gu et al. (2010). Panel (H) reprinted from Gu et al. (2010) with permission from Elsevier.

A B C D

GFE

FIGURE 12

Histograms (10 bins) showing the heading tuning index (HTI) of units in each model. (A–G) The values above each plot show the median HTI across

the population as well as its standard deviation. The dashed vertical line corresponds to the median HTI.

Figure 12 shows the heading tuning index (HTI) computed on

the TestProtocolT diagnostic dataset (see Materials and Methods).

The HTI quantifies the strength of a unit’s heading tuning and

ranges between 0 and 1 (Gu et al., 2006). A value of 0 indicates

weak heading tuning while a value of 1 indicates strong heading

tuning (i.e. unit selectively activates to only a single heading). Gu

et al. (2006) obtained a mean HTI of 0.48 ± 0.16 SD for their

MSTd population. Due to the differences in the HTI distribution

shapes, we report median HTIs for each model population. The

CNN (median ± SD, 0.53 ± 0.21), CNN_++ (0.53 ± 0.17) and

NNMF (0.55 ± 0.11) demonstrate the best agreement with the

MSTd HTIs. The variability in the CNN_++ (0.17) is closest to

the MSTd population (0.16). Consistent with their narrow tuning

widths (Figures 10C, D) and concentrated peak activations across
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the population (Figures 8B, C), MLP and MLP_MT_PRE neurons

are more heading selective (respective 95% CIs: [0.82, 0.90]; [0.58,

0.73] ) than the CNN [0.52, 0.54] and CNN_L1 [0.03, 0.10]. Neural

populations in CNN_L1 [0.03, 0.10] exhibit notably weaker overall

heading selectivity.

In summary, the correspondence between the models and

MSTd heading discriminability and strength of tuning is mixed.

While the CNN, CNN_++, and NNMF models capture key

aspects of MSTd heading selectivity (Figure 12), there is poor

correspondence with with respect to peak heading discriminability

(Figure 11).

Rotation direction preferences

Next we focus on model tuning to rotational optic flow. Since

we compare model properties to the MSTd data of Takahashi

et al. (2007), we once again adopt their coordinate system (see

Figure 13 lower left; Figure 9). Analogous to the procedure used

for translation, we generated each heatmap by considering the

neural responses of a single model unit to 514 rotational optic

flow stimuli with regularly spaced azimuths and elevations (11.25◦

steps) from the TestProtocolR diagnostic dataset (see Materials and

Methods). Each pair of preferred azimuth and elevation angles

now indicate the direction about which visual rotation induces

the maximal activation. Figure 13 shows a sample of the diverse

rotation tuning profiles derived from the single unit activations to

the TestProtocolR diagnostic dataset alongside MSTd exemplars

(Figure 13, right column). It is noteworthy that NNMF and the

CNNs with the non-negativity constraint tend to profile unimodal

rotational tuning profiles, which is a key characteristic of the

MSTd neurons from Takahashi et al. (2007). By contrast, the

CNN, MLPs, and CNN_L1 model yield multimodal profiles in a

number of instances, which do not resemble the MSTd neurons.

These characteristics are also apparent at the population level

tuning profiles, shown in Figure 14. As is the case with translation

(Figure 8), the population rotation profiles of the CNN_++ and

CNN_L1++ neural network models bear the closest similarity to

NNMF— in this case, this involves increased population activation

to rotation about the higher elevation angles.

Figure 15 presents the preferred azimuth and elevation about

which neurons in each model prefer rotational optic flow.

We determined the rotation preference of each neuron using

population vector decoding from the activations garnered on the

TestProtocolR diagnostic dataset. Consistent with Beyeler et al.

(2016) and MSTd rotation preferences (Figure 15I), the most

neurons in the NNMF model population peak at around 0/360◦

(left) and 180◦ (right) in azimuth preferences. The marginal

histograms for azimuth and elevation garnered by the CNN model

resemble those from the neural data (compare Figures 15B and I).

Unlike the MSTd population, however, CNN rotation preferences

are broadly dispersed in azimuth and elevation, whereas both

the MSTd population and NNMF possess few neurons tuned

to 90◦ and 270◦ azimuths. The CNN_++ model possesses the

MSTd-like bimodal distribution of elevation angle preferences and

preponderance of neurons tuned to 180◦ azimuths, yet it lacks

many neurons tuned to 0/360◦ azimuths. The other models do not

demonstrate consistency with the rotation tuning preferences in

the MSTd population. Overall, rotation preferences in the NNMF

and CNN models produce the best agreement with those of MSTd

neurons.

Table 5 summarizes the number of neurons that exhibit

rotation tuning within 30◦ of the cardinal yaw, pitch, and roll axes.

Approximately one quarter of neurons in the neurophysiological

study of Takahashi et al. (2007) exhibited rotation preferences close

to the yaw and pitch axes and almost none exhibited a preference

close to the roll axis. While a number of models possessed a similar

percentage along one axis, none captured the tuning pattern across

all axes of rotation.

Di�erence between translation and
rotation preference

Figure 16 shows the difference in each model unit’s preferred

translation and rotation angle. With the exception of CNN_L1, all

the models yield median differences of≈90◦, consistent withMSTd

neurons from Takahashi et al. (2007) (Figure 16H). However, there

is considerable variability among the neurons within each model.

Similar to MSTd, NNMF neurons exhibit a more distinct, albeit

wider, peak at≈90◦ (Figure 16G). CNN_L1++ does as well, though

the overall number of neurons that contribute is quite small.

Rotation tuning index

Figure 17 shows the rotation tuning index (RTI) of each model

unit. The RTI measures the strength of a neuron’s rotation tuning

on a scale between 0 and 1.We compute RTI in the sameway asHTI

(Equation 10), except activations correspond to the TestProtocolR

diagnostic dataset that contains rotation-only optic flow samples

and the labels in Equation 10 now correspond to rotation. Figure 17

reveals that the rotation tuning is weakest in the CNN_L1 model

(median 95% CI: [0.05, 0.09]). The CNN [0.34, 0.35], CNN_++

[0.24, 0.27], CNN_L1++ [0.12, 0.31] models exhibit more moderate

rotation tuning. NNMF neurons exhibited comparatively stronger

rotation tuning [0.54, 0.56]. Interestingly, while the MLPs produce

broad RTI distributions, both models contain a subpopulation with

exquisitely selective neurons (RTI≈1).

In summary, the CNN marginal distributions of rotation

azimuth and elevation preferences (Figure 15B) demonstrate

consistency with the MSTd data (Figure 15I), though the overall

3D distribution bears less similarity. The CNN diverges from

the neural data in the prevalence of multimodal tuning profiles

(Figures 13, 14) and the high variability in the differences

between translation and rotation preferences. The CNN with

the non-negativity constraint (CNN_++) produces MSTd-like

unimodal tuning profiles and reproduces key characteristics of

the 3D distribution MSTd rotation preferences, but yields a

broad distribution of differences between translation and rotation

preferences. The NNMF model reproduces most of the key

rotation tuning characteristics of MSTd neurons out of the models

simulated.
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FIGURE 13

3D rotation tuning profiles for four randomly selected neurons (rows) in each model (columns). Same format and coordinate system as Figure 7. The

rotation tuning profiles for four MSTd neurons from Takahashi et al. (2007) are depicted in the rightmost column. Copyright 2007 Society for

Neuroscience.

A B C D

E F G

FIGURE 14

Population rotation tuning profiles for each model. (A–G) Same plotting conventions and coordinate system as Figure 8.

Sparseness

Beyeler et al. (2019) propose that sparseness may represent a

defining property of optic flow encoding in area MSTd. Following

Beyeler et al. (2016), we computed sparseness metrics based on

the model activations to optic flow samples in the TR360 test set

(Vinje and Gallant, 2000). The population sparseness measures

the proportion of neurons that activate to a single stimulus. The

lifetime sparsenessmeasures the proportion of stimuli in the dataset

to which a single neuron activates. Both metrics range from 0 to

1. Zero indicates a dense code where a stimulus activates every

neuron. One indicates a localist code where a stimulus activates

only a single neuron—a grandmother cell representation. Hence,

an intermediate value indicates a sparse code wherein a subset of

neurons activate to a stimulus. Figure 18A shows that the CNNs

and NNMF models possess comparably moderate sparseness in

activations to optic flow in the TR360 test set according to both

metrics. It is notable that both MLPs possesses a considerable

degree of sparseness, which indicates a more localist code.

We examined another phenomenon that promotes sparseness

in deep neural networks that use the common ReLU activation

function as we do here. Because neurons that implement the

ReLU activation function output zero activation when their

input is subthreshold, it is possible throughout the course of

training for a neuron’s afferent weights to be set so that even

the largest possible inputs cannot activate the neuron. This is
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FIGURE 15

The 3D rotation direction preferences of single neurons in each model. Same format as Figure 9. (A) Schematic depicting the the coordinate system.

(B–H) The rotation azimuth and elevation angle preference of each model neuron. (I) 3D rotation direction preferences of MSTd neurons from

Takahashi et al. (2007). Copyright 2007 Society for Neuroscience.

TABLE 5 The percentage of neurons in each model with preferred rotation directions within 30◦ of the vertical (yaw), lateral (pitch), and depth (roll) axes.

Study Yaw Pitch Roll

Takahashi et al. (2007) 36/127 (28%) 27/127 (21%) 1/127 (1%)

CNN 736/2,337 (31%) 214/2,337 (9%) 109/2,337 (5%)

MLP 17/66 (26%) 1/66 (2%) 8/66 (12%)

MLP_MT_PRE 17/56 (30%) 4/56 (7%) 4/56 (7%)

CNN_L1 92/134 (69%) 2/134 (1%) 0/134 (0%)

CNN_++ 404/991 (41%) 93/991 (9%) 41/991 (41%)

CNN_L1++ 15/22 (68%) 2/22 (9%) 0/22 (0%)

NNMF 448/896 (50%) 75/896 (8%) 4/896 (0.4%)

Each bold entry shows the closest percentage to that reported by Takahashi et al. (2007) for MSTd.

known as the “dying ReLU” (Lu et al., 2019). While this is often

referred to as a “problem” in the machine learning literature,

this phenomenon may confer benefits, such as forcing the neural

network to encode stimuli in a subset of available neurons. This

may encourage sparseness, simplicity, and efficiency in the stimulus

encoding (Glorot et al., 2011). Figure 18B shows the proportion

of unresponsive neurons in each model, which we define as the

proportion of neurons that never activate to any optic flow stimulus

in the TR360 test set. It is striking that only 7% of the neurons in

the CNN model were unresponsive to the TR360 test set stimuli,

whereas in other neural network models, more than 50% of the

neurons were unresponsive. A large percentage of neurons were

unresponsive in theMLP (94% ) andMLP_MT_PRE (85%)models,

which is consistent with their sparseness metrics (Figure 18A). The

CNN_L1 and CNN_L1++ models both possess larger percentages

of unresponsive neurons, 98% and 99%, respectively, than
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FIGURE 16

Di�erence between each neuron’s translation and rotation preference. (A–G) The values above each plot show the median di�erence across the

population as well as its standard deviation. (H) Di�erence in translation and rotation preference in MSTd population from Takahashi et al. (2007).

Copyright 2007 Society for Neuroscience. The dashed vertical line corresponds to the median di�erence in preference.

A B C D

E F G

FIGURE 17

Histograms (10 bins) showing the rotation tuning index (RTI) of units in each model. (A–G) Same format as Figure 12.

CNN_++ (53%), which suggests that the L1 regularization values

used in the accuracy-optimized models promote sparseness in the

optic flow encoding. Interestingly, all the neurons in the NNMF

responded to at least one stimulus—it contains no unresponsive

neurons. This likely stems from the computational goal of NNMF:

to learn a small set of basis vectors that may be used to reconstruct

the stimulus dataset.

Motion tuning in early convolutional layer

The search to optimize each CNN model selected a single

convolutional layer with relatively small 2×2 filter sizes (Table 3).

This filter size corresponds to ≈12◦ RF sizes, which is common in

area MT (Tanaka et al., 1986). Given that optic flow tuned MSTd

neurons receive substantial input from area MT (Maunsell and
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A B

FIGURE 18

Measures of sparseness in the computational models computed on the TR360 test set. (A) Population and lifetime sparseness metrics. Error bars

show 95% confidence intervals on the mean sparseness across neurons (population) or stimuli (lifetime) in each model. (B) The proportion of

neurons that did not elicit responses to any of the stimuli in the TR360 test set.

FIGURE 19

Activation of 20 exemplar filters from the first layer of CNN model to the optic flow patterns depicted in the left column. (A–D) Within each panel,

individual heatmaps show spatial activations of single filters to the corresponding optic flow pattern. Each activation map is normalized and warmer

colors indicate higher activation within corresponding regions of the optic flow field. The same 20 filters are shown between panels (e.g., top-left

heatmap in each panel corresponds to Neuron 1).

Van Essen, 1983), this raises the intriguing possibility that neurons

in the early convolutional layer of the CNNs may develop MT-

like uniform direction tuning within the RF (Born and Bradley,

2005). Another possibility is that early neurons could learn to

detect the motion singularity (Figure 2), a local property of the

optic flow field that would, in some cases, be predictive of the

self-motion direction (Gibson, 1950). To explore this, we examined

how individual convolutional filters in each model responded

to radial and circular optic flow test patterns. Figure 19 shows

the responses of 20 exemplar filters from the CNN model to

different locations of the four optic flow patterns. A strikingly

consistent pattern emerged whereby each filter responds maximally
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to localized regions at the border of the test patterns. These

activations do not coincide with the motion singularity, which

appears at the center of the test optic flow patterns. Rather,

each filter responds to a preferred local motion direction within

the RF, consistent with direction tuning in MT. For example,

Neuron 1 (top-left heatmap in Figures 19A–D) prefers –45◦

planar motion because its maximal activation tracks the position

of down-and-rightward motion where ever it appears in the

optic flow field—the bottom-right region of the radial expansion

pattern (Figure 19A), the top-left of the radial contraction pattern

(Figure 19B), etc.

Discussion

Inspired by the success of accuracy-optimized CNNs at

modeling neural properties of the primate ventral stream, we

investigated whether neurons in CNNs that are optimized to

accurately estimate self-motion effectively model optic flow tuning

properties in primate MSTd. While CNN neurons reproduce some

characteristics of MSTd neurons, there are important differences.

Most model neurons demonstrate peak discriminability for

backward headings (Figure 11), whereas the discriminability of

forward and backward headings is much more balanced in the

MSTd population of Gu et al. (2010). The CNN approximates well

the percentages of neurons that have translation preferences around

the cardinal axes (Table 4), however, the model exhibits bias toward

backward self-motion and horizontal elevations, both of which do

not reflect MSTd translation tuning holistically (Figure 9). While

the CNN model population yields a heading tuning index that is

commensurate to that of MSTd (Figure 12), CNN neurons exhibit

greater variability in their tuning widths (Figure 10) than MSTd

neurons.

The correspondence between the CNN model variants and

MSTd is also inconsistent when it comes to rotational optic flow

tuning. The rotational tuning profiles of numerous CNN neurons

are multimodal, which does not resemble the unimodal profiles of

MSTd neurons (Figure 13). The CNN yields marginal distributions

of rotational azimuth and elevation preferences that qualitatively

resemble those of the MSTd population, but the model does not

reproduce the virtually absent preference for the forward and

backward axes of rotation in the MSTd data (Figure 15). Taken

together, these findings indicate that the correspondence between

the CNN model and primate MSTd is mixed. By contrast, our

simulations show that tuning properties emerge within the NNMF

model that better align with MSTd in almost every analysis.

None of the CNN model variants inspired by NNMF that we

examined offer a model that is nearly as compelling as NNMF

overall.

The computational objective of MSTd
What could account for the disparity in how well CNNs and

NNMF emulate MSTd optic flow tuning? One major difference

is their computational objective—the CNN model and all the

variants that we simulated are optimized to accurately estimate

the observer’s translational and rotational velocity, possibility

subject to one or more NNMF-inspired constraints. In contrast,

NNMF performs dimensionality reduction for the purpose of

reconstructing its motion inputs. Because NNMF imposes a non-

negativity constraint, the reconstruction must arise through solely

additive combinations of parts of the input signal (Lee and Seung,

1999). In the NNMF model each MT input a MSTd unit receives

must exert a positive influence on that MSTd unit’s response

(Beyeler et al., 2016); none of the MT subunits may contribute

inhibition. Even though the CNNs use the ReLU activation to

prevent negativity in the neuronal activations, the accuracy-

based objective alone does not preclude weights that combine

these activations to take on negative values. This allows for the

possibility of subtractive interactions (i.e., inhibition), unlike in

NNMF. Introducing the non-negative weight constraint within the

CNN_++ and CNN_L1++ models results in an additive, parts-

based decomposition within the CNN paradigm. Interestingly, this

gives rise to more MSTd-like tuning profiles than the other models

simulated, particularly in the case of rotation (Figure 13). Given the

broader discrepancy between the CNN_++ andNNMFmodels, our

simulations suggest that not every parts-based decomposition is

compatible with MSTd optic flow tuning properties. This raises the

intriguing possibility that the computational objective of NNMF

may be more compatible with that of MSTd than the accuracy-

oriented objective of the CNN. This is surprising given that

CNNs optimized to accurately classify natural images represent the

leading models of neural primate ventral stream (Yamins et al.,

2014; Schrimpf et al., 2018; Serre, 2019; Lindsay, 2021).

One possibility for reconciling our findings with those that

pertain to the ventral stream is that information could be

encoded differently among neurons to best support the overarching

computational goals of the dorsal and ventral streams. The ventral

stream has long been associated with object recognition (Mishkin

et al., 1983; Dicarlo and Cox, 2007) and perhaps the task of

accurately classifying natural images onwhich leading CNNmodels

of the ventral stream are trained align well with the objective

subserved by the pathway. Indeed, while CNNs classify images

more accurately than humans on the ImageNet natural image

dataset (Russakovsky et al., 2015), human misclassification errors

are remarkably small, only ≈5% of images. On the other hand,

even if self-motion perception is central to the computational

objectives of the dorsal stream, many naturalistic scenarios may

not demand a readout with veridical accuracy, which could

shape the accuracy with which the pathway encodes self-motion

from optic flow. While psychophysical studies show that humans

are capable of judging their heading from optic flow to within

≈1◦, the optic flow displays in these studies consist of pure

translation over a limited range (Warren et al., 1988; Crowell

and Banks, 1993; Sun et al., 2020)—typically within ≤ 30◦ of the

straight-ahead and yoked to the horizontal axis. These conditions

are less complex than even the BenHamedT dataset explored

here on which both CNNs and NNMF accurately estimated the

simulated self-motion direction. Indeed, errors reach ≈15◦ when

humans judge heading from optic flow over a 360◦ range in the

horizontal plane (Cuturi and Macneilage, 2013). When humans

judge heading from optic flow that contains combinations of

translation and rotation, errors reach ≈10–15◦ when heading

is only within 6◦ of the straight-ahead (Royden et al., 1994;

Grigo and Lappe, 1999). Taken together, the pattern of human

self-motion judgments from optic flow is compatible with a
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neural representation that does not encode self-motion with

near-veridical accuracy.

Accuracy of self-motion estimation on the TR360
and Ben Hamed datasets

Estimating self-motion from the TR360 optic flow fields used

in our study is substantially more challenging than those used

in human psychophysical studies. On this dataset, we found that

the CNN variants decoded self-motion on the TR360 test set

with much higher accuracy than NNMF (Figure 5). This sizable

gap in accuracy largely vanished when we tested the models

on the BenHamedT and BenHamedR datasets (Figure 6), which

have been previously used to evaluate the decoding accuracy of

NNMF (Beyeler et al., 2016). The BenHamedT and BenHamedR

datasets consist of pure forward translation and pure yaw rotation,

respectively, which is far simpler than the complex combinations

of translation and rotation that are present in the TR360 dataset.

This suggests that while NNMF better captures MSTd optic tuning

properties, the model only supports the accurate decoding of

self-motion in simplistic novel self-motion scenarios. We find it

unlikely that the sparse representations in NNMF alone hinder

generalization (Spanne and Jörntell, 2015), since our simulations

show that the self-motion estimates obtained from PCA are

no more accurate than NNMF, despite not having a sparse

representation. It is also possible that NNMF may struggle to

encode the complexity of the TR360 dataset with only 64 basis

vectors. However, increasing the number of basis vectors to several

hundred in our testing did not overcome this issue. Regardless

of its basis, the discrepancy in accuracy between the CNN and

NNMF models offers a neurophysiological prediction that could

help improve our understanding of MSTd. We are not aware

of an existing neurophysiological study that reports the accuracy

with which translation and rotation may be decoded from MSTd

for optic flow stimuli as complex as those in the TR360 dataset.

Accurate decoding of self-motion from MSTd would be consistent

with the accuracy-driven mechanisms in the CNN, whereas poor

accuracy would further strengthen the case for the NNMF model.

Nonnegativity and sparseness constraints
What is the computational goal of MSTd if it is not

accurate self-motion estimation? Beyeler et al. (2019) argue that

nonnegativity and sparseness represent computational principles

that give rise to a wide range of neural properties, including

optic flow tuning in MSTd. The CNN variants that incorporate

these computational constraints through nonnegative weights

and L1 regularization (CNN_L1, CNN_++, CNN_L1++) do not

produce more effective models of optic flow tuning in MSTd than

NNMF. This suggests that these computational constraints are not

sufficient for capturing optic flow tuning in MSTd. Given that

the CNN_L1 and CNN_L1++ models have higher proportions of

unresponsive neurons compared to the other CNNs (Figure 18),

the L1 regularization in these models appears to be promoting

the expected sparseness effect. Despite this, it is noteworthy that

the hyperparameters of these models were selected to achieve the

highest self-motion estimation accuracy. This does not rule out

the possibility that modifying the CNN cost function to prioritize

sparseness over self-motion motion accuracy may produce more

MSTd-like tuning (Kashyap et al., 2019; Layton and Fajen, 2022).

However, even when the hyperparameter search process yields

networks with sparser representations, as is the case for MLP

(Figure 16), they do not produce optic flow tuning that is better

aligned with MSTd.

We find that the non-negativity weight constraint alone

does not consistently yield more MSTd-like tuning across most

measures. The translation direction preferences of neurons in the

CNNs with the non-negativity constraint (CNN_++, CNN_L1++)

are markedly different from MSTd (Figure 9). The CNN_L1++

model that implements both sparseness and non-negativity

constraints does not approximate the translation and rotation

tuning characteristics of MSTd better than the CNN_++model that

incorporates only the non-negativity constraint. This suggests that

the two factors may not act synergistically. It is, however, worth

noting the nonnegativity constraint may encourage unimodal and

structured translation and rotation tuning profiles that are more

similar to NNMF than the other networks which have multimodal,

scattershot profiles (Figures 8, 14).

Convolution and encoding of optic flow
We simulated MLPs to better understand the potential role

of convolution on the encoding of optic flow. Recall that the

MLPs possess the same architecture as the CNNs, except they lack

the convolution stack early in the neural network (Figure 4A).

While the MLP models do not differ substantially from the CNNs

with respect to the accuracy of self-motion estimates, many MLP

neurons demonstrate exceptional selectivity to certain translational

optic flow patterns. This is evident from the subpopulation of

neurons with HTI values close to 1.0 (Figure 12) and the emergence

of “point” tuning profiles wherein a neuron only responds to

a single optic flow pattern (e.g., Figure 7; MLP Neurons 2 and

3), analogous to grandmother cell selectivity. By contrast, the

CNN, CNN_++, and CNN_L1++ models produce broader, more

extended tuning profiles. It is noteworthy that this pattern emerged

in both the MLP and MLP_MT_PRE models that were optimized

independently, which suggests that the fully connected pattern

of connectivity promotes localist coding. Interestingly, NNMF

implements the same kind of dense connectivity, yet it yields

entirely different tuning characteristics.

Recall that the MLP and MLP_MT_PRE models differ in

the format of their motion inputs — the CNNs and the

MLP model both process optic flow whereas MLP_MT_PRE

processes the same MT-like motion signal that NNMF does.

Across our analyses, it is remarkable that these two motion

input representations made little difference in the resulting optic

flow tuning.

Additional mechanisms and training protocol
The insufficiency of the CNNs, even with NNMF-inspired

constraints, may result from the omission of an important

yet-to-be-identified mechanism. Maus and Layton (2022) found

that accuracy-optimized CNNs do not match the accuracy of
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human heading perception from optic flow in important scenarios

including in the presence of independently moving objects, scenes

that produce sparse optic flow fields, and in the presence of

visual rotation. Processing optic flow over time with recurrent

connections improved the consistency with human self-motion

judgments, so the inclusion of this mechanism might also yield

more MSTd-like tuning properties. It is noteworthy, however, that

NNMF achieves much better consistency with MSTd than the

CNNs without processing optic flow over time.

Alternatively, the discrepancy between the CNNs and MSTd

may stem from assumptions within the selected deep learning

framework. Training CNNs on a dataset with a large number of

labels using a supervised learning paradigm may align well with

the computational objectives of ventral stream (Khaligh-Razavi and

Kriegeskorte, 2014), but perhaps not those of the dorsal stream.

For example, it has been argued that the self-supervised learning

paradigm represents a more biologically plausible learning method

since it relies on stimulus-derived predictions to drive learning

in lieu of ground truth labels (Rao and Ballard, 1999; Mineault

et al., 2021; Halvagal and Zenke, 2023). Another possibility is that

supervised learning based neural networks may be compatible with

the dorsal stream, but the goal is something other than achieving

accurate self-motion estimation, as we assumed here. For example,

MSTdmay participate in a larger system that optimizes perception-

action objectives that subserve successful dynamic interactions with

the environment, such as navigation toward goals (Page et al., 2015;

Page and Duffy, 2018; Alefantis et al., 2022).

Conclusion

Our findings indicate that CNNs that are optimized to

accurately estimate the observer’s translational and rotational self-

motion from optic flow do not effectively capture the collection

of MSTd optic flow tuning properties examined here. The NNMF

model that performs dimensionality reduction on its motion inputs

resulted in tuning that more consistently emulates MSTd tuning

characteristics. Incorporating a sparseness constraint inspired

by NNMF into the CNNs did not produce more compelling

models of MSTd overall, while incorporating a nonnegativity

constraint did improve correspondence with MSTd across some

measures (e.g., rotational tuning). We conclude that additional

architectural constraints or computational goals beyond sparsity

and nonnegativity are necessary for the emergence of MSTd-like

tuning characteristics.
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