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The neuromechanical of
Beta-band corticomuscular
coupling within the human
motor system

Jiazheng Peng†, Talifu Zikereya†, Zhongshu Shao and

Kaixuan Shi*

Physical Education Department, China University of Geosciences Beijing, Beijing, China

Beta-band activity in the sensorimotor cortex is considered a potential

biomarker for evaluating motor functions. The intricate connection between

the brain and muscle (corticomuscular coherence), especially in beta band,

was found to be modulated by multiple motor demands. This coherence

also showed abnormality in motion-related disorders. However, although

there has been a substantial accumulation of experimental evidence, the

neural mechanisms underlie corticomuscular coupling in beta band are not

yet fully clear, and some are still a matter of controversy. In this review,

we summarized the findings on the impact of Beta-band corticomuscular

coherence to multiple conditions (sports, exercise training, injury recovery,

human functional restoration, neurodegenerative diseases, age-related changes,

cognitive functions, pain and fatigue, and clinical applications), and pointed

out several future directions for the scientific questions currently unsolved. In

conclusion, an in-depth study of Beta-band corticomuscular coupling not only

elucidates the neural mechanisms of motor control but also o�ers new insights

and methodologies for the diagnosis and treatment of motor rehabilitation and

related disorders. Understanding these mechanisms can lead to personalized

neuromodulation strategies and real-time neurofeedback systems, optimizing

interventions based on individual neurophysiological profiles. This personalized

approach has the potential to significantly improve therapeutic outcomes and

athletic performance by addressing the unique needs of each individual.
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1 Introduction

Beta-band corticomuscular coherence (Beta-CMC) is a crucial aspect of sensorimotor

integration, reflecting the interaction between the brain and muscles during movement.

This introduction provides a focused overview of Beta-CMC, emphasizing its significance

and relevance to motor control and sensorimotor functions.

Neural oscillations, particularly within the Beta-frequency band (12–30Hz), are

prominent in sensorimotor-related cortical and subcortical regions (Whittington

et al., 2000; Kilavik et al., 2013). These oscillations are key features of neural

activity and can be measured non-invasively in humans (Sherman et al., 2016;

Wang et al., 2023). Beta-CMC, the coherence of Beta-band activity between the

brain and muscles, is observed during isometric output and varies with the

regulation of force and task precision (Koelewijn et al., 2008; Davis et al.,

2012; Heinrichs-Graham et al., 2017). Beta-CMC is integral to motor planning,
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execution, and regulation (Kristeva et al., 2007; Mehrkanoon et al.,

2014). It is modulated by peripheral inputs, highlighting the

complex relationship between the brain and muscles (Riddle and

Baker, 2005; Witham et al., 2011; Budini et al., 2014; Mehrkanoon

et al., 2014). Understanding Beta-CMC provides insights into

motor skill learning, control, and functional recovery in motor

system disorders (Choi et al., 2020).

Understanding the interplay between neural oscillations and

sensorimotor systems is pivotal for deciphering human motor

control and its dysfunctions. Variations in research paradigms have

so far obscured the clear delineation of this relationship, with the

complexity of interactions between the cerebral cortex and motor

systems still largely elusive (Khanna and Carmena, 2017).

This review aims to summarize findings on the dynamics

of Beta-band oscillations and Beta-CMC in the sensorimotor

system, focusing on their role in corticomuscular coupling

and modulation during different motor phases and conditions.

By integrating multisensory information, this review seeks to

understand Beta-oscillations in motor control under both normal

and pathological states. It will discuss recent research on

pharmacological approaches and advanced brain stimulation

techniques to uncover themechanisms of Beta-band activity during

sensorimotor tasks (Barone and Rossiter, 2021). The outcomes of

this review aim to enhance our understanding of sensorimotor

dysfunctions, leading to more precise and effective therapeutic

interventions. This research benefits not only those with motor

disorders but also athletes, offering insights to improve training

and rehabilitation. Ultimately, this work promises to revolutionize

neurology and rehabilitation treatments, benefiting patients and

athletes alike by bridging clinical and performance contexts.

2 Band origin and mechanisms of
neural oscillations in the beta
frequency band

Beta oscillations, typically ranging from 13 to 30Hz, are

observed in numerous perceptual, cognitive, and motor processes

(Brovelli et al., 2004; Witham et al., 2007). These oscillations are

involved in diverse behavioral paradigms, including sensorimotor

integration, coordination, idle-state processing, motor preparation,

and attention. Given the intricate nature of Beta-oscillation activity,

their origins are likely rooted in complex and varied mechanisms

(Pfurtscheller et al., 1997; Kilavik et al., 2013; Shin et al., 2017;

Spitzer and Haegens, 2017; Betti et al., 2021).

2.1 Distribution of beta oscillations across
key brain regions

Beta-band neural oscillations are predominantly found in

brain regions associated with the sensorimotor system, notably

in the precentral gyrus (Hari and Salmelin, 1997), supplementary

motor area, cingulate cortex, and dorsolateral prefrontal cortex

(Sochurková et al., 2006). These oscillations are also observed in the

sensorimotor and premotor cortices, parietal lobes, and cerebellum

(Fujioka et al., 2015), basal ganglia as well as in the various muscle

locations (Baker, 2007; De Marchis et al., 2015; Rana et al., 2015;

Reyes et al., 2017), the spinal cord (as evidenced in primates)

(Oya et al., 2020), the dorsal root ganglia (Baker et al., 2006), and

peripheral motor units (Blenkinsop et al., 2017). Beta oscillations

are involved in all motor control-related systems, indicating their

significant role in the overall functionality of the motor system.

Typically, beta oscillations are present during stable motor

states and decrease during movement. The variations in beta

oscillations during motor-related neurophysiological processes

are often attributed to the synchronized activity of neurons in

specific local areas of the motor cortex (Espenhahn et al., 2017;

Barone and Rossiter, 2021). This phenomenon has been observed

in multiple studies, where motor-related beta decrease (MRBD)

and post-movement beta rebound (PMBR) are considered classic

examples of event-related desynchronization/synchronization

(ERD/S) (Stancák and Pfurtscheller, 1995; Byrne et al., 2017).

Figure 1 illustrates PMBR/MRBD. These phenomena reflect

the complex neural regulatory mechanisms involved in motor

execution and control. The stability of these changes appears

consistent across different effectors, types of movement, speeds,

complexities of movement, and age groups (Kilavik et al., 2013).

2.2 Regional characteristics and
mechanisms of beta oscillations in EEG

Beta oscillations in EEG signals can be categorized into

Rolandic beta and Frontal beta, each exhibiting distinct regional

characteristics and functional associations. Frontal beta rhythm

generally displays maximal power in the frontal lobe areas and

is associated with cognitive tasks such as stimulus evaluation

and decision-making (Stoll et al., 2015; Schmidt et al., 2019). In

contrast, Rolandic beta rhythm exhibits its greatest power in the

sensorimotor regions and is linked with tasks involving motor

imagery, motor preparation, and motor execution (Pfurtscheller

and Solis-Escalante, 2009; Brinkman et al., 2014; Nijhuis et al.,

2021). Often termed the Rolandic beta indicates a “resting state”

of brain activity (Pfurtscheller et al., 1996a; Fairhall et al., 2007;

Ritter et al., 2009), where its presence during rest negatively

correlates with heart rate variability (Triggiani et al., 2016). This

rhythm becomes particularly active during motor preparation and

execution, showing a negative correlation with the timing of motor

decisions (Jo et al., 2016).

2.3 Types and mechanisms of beta
oscillations

Initial studies identified two main types of Beta-oscillations:

one associated with the µ-rhythm, ∼22–24Hz, showing

desynchronization (Event-Related Desynchronization, ERD)

before and during movement, and slow synchronization

recovery post-movement. The other type, post-movement

beta synchronization (PMBS), starts to desynchronize shortly

before movement and rapidly resynchronizes afterward, lasting

about 1–2 s, predominantly within the 12–26Hz frequency

range and showing contralateral dominance (Pfurtscheller, 1981;
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FIGURE 1

Temporal dynamics of beta oscillations during movement execution. (A) Schematic representation of Beta activity dynamics during motor tasks. The

light blue shaded area indicates the period of Movement-Related Beta Desynchronization (MRBD) occurring before and during movement execution.

The light purple shaded area represents the Post-Movement Beta Rebound (PMBR), which increases swiftly after task completion and slowly returns

to baseline levels. (B) Spatial features of MRBD (top) and PMBR (bottom) in an individual participant. Adapted from Seedat et al. (2020). (C)

Time-frequency spectra extracted at peak locations during a 5% Maximum Voluntary Force (MVF) isometric wrist flexion task, depicting MRBD (top)

and PMBR (bottom). Adapted from Fry et al. (2016).

Pfurtscheller et al., 1997). Differential Beta frequencies in cortical

hand and foot areas suggest variations in neural network structures

and interconnectivity across specific sensorimotor cortical regions,

indicating that different Beta oscillations may be specific to

different motor areas (Pfurtscheller et al., 2000; Neuper and

Pfurtscheller, 2001). Current research often divides Beta-band

oscillations into lower and higher frequency bands, using 20Hz

as a demarcation line (Engel and Fries, 2010; Saleh et al., 2010;

Schmidt et al., 2019).

Beta oscillations, particularly Beta1 (≈15Hz) oscillations, were

first identified in experimental and modeling studies within the

association area of the cerebral cortex in rats (Kramer et al., 2008).

These rhythms are thought to form through the interaction and

temporal coordination between deep and superficial cortical cells,

becoming prominent after transient excitatory (sensory) inputs are

removed (Roopun et al., 2008). The sustainability of this rhythm

does not depend on synaptic plasticity but is determined by the

cells’ response to inhibitory rebound, allowing these assemblies to

sustain themselves by responding to both familiar and novel stimuli

(Whittington et al., 2000).

Beta2 (20–30Hz) oscillations are thought to originate within

non-synaptic networks of layer V pyramidal cells, which contribute

to the corticospinal tract. These oscillations rely on gap junction

coupling and can persist even when layer IV is removed, suggesting

they do not depend on apical dendritic electrogenesis (Roopun

et al., 2006). M-type K+ currents are believed to determine the

oscillatory period, suggesting that cortical network oscillations

under normal conditions may predominantly arise from non-

synaptic mechanisms.

Furthermore, the experimental models illustrate that beta

activity can facilitate inter-layer and intra-layer interactions, where

groups of neurons synchronized within the beta band can coexist

with other cell groups (Kilavik et al., 2013). Beta oscillations

have complex generation mechanisms and unique anti-dynamics

properties (Donoghue et al., 2022), allowing them to persist long

after excitatory inputs have decayed (Kopell et al., 2011). This

diverse neural oscillatory rhythm is likely closely related to broader

endogenous top-down processing and sensorimotor integration, as

discussed by Barone and Rossiter (2021). Additionally, in motor

control processes, there is a quantifiable relationship between

local concentrations of gamma-aminobutyric acid (GABA) and

beta amplitude (Hall et al., 2011; Muthukumaraswamy et al.,

2013; Rossiter et al., 2014), with high-frequency beta2 oscillations

possibly playing a significant role. The generation of sensorimotor

beta oscillations is thought to be regulated by phase-locked

GABA-mediated interneuronal inputs associated with the activity

of layer V pyramidal cells (Baker, 2007; Gaetz et al., 2011).

Computational neural models suggest that layer V pyramidal

cells exhibit alternating depolarization and hyperpolarization, an

interaction that triggers sensorimotor beta oscillations (Baker,

2007; Bhatt et al., 2016; Wischnewski et al., 2022). Therefore,

subsequent research often links changes in motor cortex beta

oscillations with variations in GABA, and associated changes in

cortical inhibition and plasticity.

Firstly, beta oscillations play a crucial regulatory role in motor

control by coordinating neuronal synchronization, which ensures

the precise transmission and execution of motor commands.

Secondly, the relationship between local gamma-aminobutyric

acid (GABA) concentrations and beta amplitude indicates that

GABA significantly influences motor function, directly affecting

motor control and coordination. Additionally, beta oscillations are

involved in sensorimotor integration, suggesting that the brain

utilizes these oscillations to coordinate sensory input and motor

output, thereby ensuring the accuracy and fluidity of movements.

In terms of neural plasticity, beta oscillations are associated with

changes in cortical inhibition and plasticity, which are essential for

motor learning and adaptation, particularly in the acquisition of

new motor skills. Finally, computational neural models propose

that alternating depolarization and hyperpolarization of layer

V pyramidal cells trigger sensorimotor beta oscillations. This
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mechanism provides a theoretical foundation for understanding

the neural processes underlying motor control and may contribute

to the development of novel treatments for motor disorders.

2.4 Mechanisms of abnormal beta
oscillations

In Parkinson’s disease, beta frequency oscillations in the basal

ganglia and cortex may originate from inhibitory interactions

between medium spiny neurons in the striatum. McCarthy et al.

(2011) found through mathematical modeling and experimental

observations that amplification of striatal network dynamics could

enhance beta frequency oscillations. When a cholinergic agonist

was injected into the striatum of normal, awake animals, significant

beta frequency oscillations were observed, aligning with model

predictions. These oscillations were linked to synaptic GABAa

currents and intracellular M currents, promoting collective beta

frequency oscillations (Shimono et al., 2000; Deffains and Bergman,

2015; Kondabolu et al., 2016).

The mechanisms underlying beta oscillations are not fully

understood, with hypotheses proposing both cortical and

subcortical origins. Cortical genesis theories, supported by in vitro

studies, suggest potential pathways involving transmission from

superficial to deep layers of pyramidal cells (Bollimunta et al.,

2008). These studies indicate that the activation of deep pyramidal

cell layers or synchronized hyperpolarization across layers can

induce Beta-oscillations (Weiler et al., 2008; Bhatt et al., 2016).

Biophysical modeling predicts that high-amplitude beta bursts in

human motor and sensory cortices may originate from temporally

aligned excitatory synaptic drives across deep and superficial layers

(Bonaiuto et al., 2021). Different mechanisms of beta generation

are illustrated in Figure 2.

Subcortical theories focus on the basal ganglia, particularly

the STN-GPe loop within the striato-thalamo-cortical circuitry

(Holgado et al., 2010). Chronic dopamine depletion in Parkinson’s

disease may reorganize the cortico-basal ganglia-thalamo-cortical

(CBGT) circuit. However, these models, which involve changes

in connections from the cortex to subthalamic nuclei and from

the STN to the external globus pallidus, have not yielded

unanimous results. Liu et al. (2020) proposed a dual-oscillator

system encompassing the BG-Th network and the cortex, capable

of generating high or low-frequency Beta1 or Beta2 oscillations

depending on the structure of the oscillators, suggesting a possible

theory for the multiple origins of Beta-oscillations.

3 Functional roles of beta oscillations

Neural oscillations are a hallmark of brain network information

processing (Han et al., 2021a,b), yet a consistent one-to-one

mapping between these oscillations and brain network activities

does not seem to exist (Doelling and Assaneo, 2021; Lundqvist and

Wutz, 2022). Although many studies have observed correlations

between neural activity and other physiological signals, beta

oscillations appear to be specifically related to task-relevant

information (Spitzer and Haegens, 2017). This includes the

generation of motor goals (Fischer et al., 2017), maintenance and

monitoring of tasks and states (Shin et al., 2017; Little et al.,

2018), and learning and adaptation to motor-related errors (Pollok

et al., 2014; Wang et al., 2019). Complex brain network activities

in different states affect the amplitude, frequency, timing, and

distribution of beta oscillations (Schmidt et al., 2019).

3.1 Functional roles of beta oscillations
and task-specific information processing

Historically, some researchers believed that beta oscillations

might reflect a concept where the motor system is in an “idling”

state (Pfurtscheller et al., 1996a; Kilavik et al., 2013), representing

the processing of motor-related sensory information (Salmelin and

Hari, 1994). However, increasing evidence suggests that the “idling”

concept does not fully explain the function of beta oscillations

in sensorimotor activities. Instead, beta oscillations are likely

involved in maintaining the current sensorimotor or cognitive state

(Pfurtscheller et al., 1996b; Fairhall et al., 2007), rather than merely

reflecting the motor system’s idle state. For instance, Cassim’s study

showed that ischemia-induced reduction in incoming sensory

feedback led to the disappearance of beta oscillations, broadening

our understanding of their role in the sensorimotor system beyond

merely “idling” (Cassim et al., 2001). Beta oscillations not only

facilitate the stabilization of movements but also influence the

generation of new movements (Engel and Fries, 2010). They are

more pronounced in processing unattended stimuli and during

motor-related anticipatory processes, such as when compensating

for expected disturbances or maintaining a specific motor state

(Caetano et al., 2007). This reflects top-down control signals used

to suppress irrelevant information or disturbances and regulate the

motor system (Gilbertson et al., 2005).

3.1.1 Gating mechanisms of beta oscillations in
sensorimotor processing

As proposed by Jensen and Mazaheri, the “gating theory”

suggests that information is transmitted by functionally blocking

pathways unrelated to the task at hand. Through inhibitory gating,

beta oscillations primarily involve gating in the somatosensory

cortex by suppressing upcoming sensorimotor transformations

across different cortical activity bands (Jensen and Mazaheri, 2010;

Talsma et al., 2010). Stevenson et al. viewed beta oscillations as a

form of local cortical gating aimed at facilitating complex neural

activities, such as information processing. In some circumstances,

local neurons may reduce beta amplitude to accommodate

more complex neural activities, as observed by Schulz et al.,

where motor-related beta suppression (ERD) coincided with

enhanced muscle coupling within the alpha band, and beta

rebound (ERS) was associated with reduced muscle coupling.

This confirms that enhancements in Beta-band oscillations reflect

stabilization or inhibitory mechanisms of the motor system,

hindering the activation or selection of new motor behaviors

(Schulz et al., 2013). Consistent findings have been observed in

human magnetoencephalography during attention tasks and in

local field potentials in mice performing execution detection tasks,

indicating that an increase in beta oscillations signals reduced
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FIGURE 2

Beta oscillations in the sensorimotor system. (A) Illustration of the mechanisms underlying beta oscillation generation. On the left, beta oscillations

are depicted as arising from recurrent interactions within deep cortical layers (Lacey et al., 2014), involving pyramidal neurons (represented as red

triangles) and interneurons (depicted as green circles). GABA (gamma-aminobutyric acid) is shown as circles, with GABAa receptors forming the

annular structure of a central ion channel (purple), and AMPA receptors, also forming a central ion channel structure (red), primarily facilitate rapid

excitatory transmission, while GABAa receptors are mainly responsible for rapid inhibitory transmission. At the center, a laminar model displays beta

generation facilitated by pyramidal neurons located in both supragranular (layers 2/3) and infragranular layers (layer 5), influenced by dual external

excitatory inputs, predominantly from the thalamus (Sherman et al., 2016). Additionally, beta bursts are generated by a model incorporating a broad

proximal excitatory synaptic drive synchronized with a strong distal synaptic drive (Bonaiuto et al., 2021). (B) Hypotheses regarding the generation of

beta rhythms in the basal ganglia pathways, involving inhibitory and excitatory circuits: (1) STN-GPe Rhythm Hypothesis: Beta oscillations originate

from the network interactions between the subthalamic nucleus (STN) and the external globus pallidus (GPe). (2) Cortical Origin Hypothesis: In

Parkinson’s disease (PD) patients, beta oscillations are thought to originate from the cortical-basal ganglia-thalamocortical loop. (3) Striatal Origin

Theory: Enhanced beta rhythms result from increased inhibitory interactions among striatal neurons. (4) Integrated Neural Circuit Changes Theory:

Excessive beta rhythms are hypothesized to arise from a composite e�ect of inherent neuronal properties within the cortical-basal

ganglia-thalamocortical loop and its associated circuits (not listed).

efficiency in information transmission (Shin et al., 2017). This

also explains why extensive studies have noted motor-related

beta decrease (MRBD) before movement, and post-movement

beta rebound (PMBR) associated with suppressed somatosensory

processing and sensory input to motor actions (Stevenson et al.,

2011; Limanowski et al., 2020). According to this hypothesis, more

complex neural activities, such as motor planning and execution,

monopolize neural resources. Similar phenomena occur during

imagined and observed movements (Kilavik et al., 2013; Buchholz

et al., 2014).
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3.1.2 Cognitive processing and beta oscillations
in motor actions

Motor processes are dynamically regulated through

coordination between cognitive processing in the brain and

the motor system (Brisswalter et al., 2002). Complex motor actions

involve cognitive decisions and judgments, and brain regions

associated with these functions have also been reported to exhibit

beta oscillation activity (Koelewijn et al., 2008; Alayrangues

et al., 2019). Lundqvist et al. (2011, 2016, 2018) reported an

increase in theta and gamma power with increased working

memory load, alongside a decrease in alpha/beta power, indicating

the involvement of beta oscillations in cognitive functions,

particularly working memory. Experiments on motor anticipation

and selection of specific objects have revealed the potential

role of beta oscillations in flexibly controlling working memory

(Lundqvist et al., 2018). The functionality of beta oscillations

related to working memory in the prefrontal cortex (PFC) has been

extensively discussed, highlighting their significance in cognitive

control mechanisms (Schmidt et al., 2019).

It is noteworthy that, during sustained isometric contraction

tasks, the short “burst” characteristics of neural oscillations and

connectivity between the brain and muscles have been observed

(Echeverria-Altuna et al., 2022). Analyzing neural oscillations as a

series of transient burst events rather than continuous oscillatory

activities offers an exciting new perspective (van Ede et al., 2018;

Doelling and Assaneo, 2021; Rayson et al., 2023). The intermittent,

transient, high-power burst events observed during various neural

activities are also significant; analyzing these events across different

dimensions of time, spectrum, and space presents challenges

and is crucial for accurately describing event characteristics and

revealing their interactions (Zich et al., 2020; Doelling and

Assaneo, 2021). This approach enhances our understanding of

brain dynamics across different tasks and cognitive states, enabling

the capture of non-periodic features of the brain that aid in

elucidating its role in various cognitive functions such as attention,

memory, and consciousness. This advancement further propels our

understanding of neural oscillations. Further insights into beta

oscillations during the stages of information encoding, retrieval,

and selective deletion have been provided by previous studies.

Cross-regional interaction studies have highlighted the crucial role

of beta oscillations in coordinating brain networks during both

task execution and resting states, with additional discussions on

their involvement in cognitive processing (Lundqvist et al., 2024).

Investigating the neural circuit origins of beta bursts, their shared

mechanisms in cognition and action stopping, and the potential

of beta burst analysis to enhance the diagnosis and treatment of

neurological diseases remain pivotal areas for future research.

The activity in the beta frequency band holds significant
biomarker potential within the sensorimotor system, particularly
in pathological contexts. Given the complex composition of the

motor system, the effects of different motor parameters on beta
oscillations and their role in brain-muscle communication require

further investigation and validation. The modulation of brain

oscillation power may be closely related to the degree of spike

synchronization and the balance between excitatory and inhibitory

signals within the neuronal network (Buzsáki and Draguhn,

2004; Han et al., 2023b). Therefore, oscillations at different

frequencies might reflect distinct states of neuronal clusters or

networks. To establish a strong link between oscillations and

behavior, it is essential to explore how these oscillations reflect

and drive underlying neural activity (Kirschstein and Köhling,

2009). This deeper understanding will not only enhance our

comprehension of the functional dynamics within the sensorimotor

system but also improve our ability to effectively address motor

system dysfunctions.

4 Beta oscillations in the context of
corticomuscular coherence

4.1 Characteristics and functions of beta
oscillations within the CMC context

The study of functional connectivity between the cerebral

cortex and muscles during motor states effectively models changes

in brain networks (Schulz et al., 2013). Motor commands issued

from the motor cortex lead to muscle contractions through efferent

motor pathways and are modulated by afferent somatosensory

pathways (Schomburg, 1990; Rijntjes et al., 1999). The functional

coupling of electrophysiological signals between the cortex and

muscles, known as corticomuscular coupling, is typically measured

using corticomuscular coherence (CMC). serves as a biomarker

for corticomuscular connectivity, providing insights into cortical

control of muscle function (Fauvet et al., 2021).

Electrophysiological techniques such as EEG, MEG, ECoG, and

intracranial electrode recordings offer millisecond-level temporal

resolution, advancing our understanding of neural oscillations

(Kirschstein and Köhling, 2009; Baillet, 2017; Han et al.,

2022, 2023a; Lin et al., 2024; Wang B. et al., 2024). These

technologies enable real-time tracking of neural signals, revealing

the dynamics of neural activity (Lundqvist and Wutz, 2022). CMC

reflects the activity of sensorimotor networks during dynamic

movements and isometric contractions, useful for diagnosing and

rehabilitating movement disorders (Airaksinen et al., 2015; Liu

et al., 2019a). A key challenge in neurophysiology is understanding

the synchronization between EEG and EMG signals, which

constitutes CMC (Kasuga et al., 2018). Conway et al. (1995, 2004)

discovered significant beta band coherence (13–35Hz) between

cortical activity and EMG of contralateral hand muscles, indicating

synchronized cortical neuronal activity relates to motor unit firing.

CMC is most commonly observed during isometric contractions

and is associated with stable force output, primarily in the

beta frequency band (15–30Hz). This coupling of information

between the cortex and muscles, predominantly found in the

beta frequency band (15–30Hz) (Mima et al., 2002; Engel and

Fries, 2010; Mehrkanoon et al., 2014). The pathways mediating

corticomuscular coupling are illustrated in Figure 3.

4.2 Coherence measurement and
analytical techniques in beta-CMC

Coherence measures the linear connection between two signals

in the frequency domain. In CMC, it assesses the synchrony

between brain activity, recorded via electroencephalography (EEG),
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FIGURE 3

Example descending (blue) and ascending (yellow) pathways which could mediate corticomuscular coherence.

and muscle activity, recorded via electromyography (EMG). The

coherence between EEG and EMG signals is calculated using the

normalized cross-spectrum density:
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f
)

) is the cross-power spectrum of the EEG and

EMG signals at frequency (f ), and (PEEG
(

f
)

) and (PEMG

(

f
)

) are

the power spectra of the EEG and EMG signals at frequency f ,

respectively. Coherence values range from 0 to 1, with higher values

indicating a stronger correlation between the two signals (Mima

et al., 1999). High coherence at specific frequencies suggests robust

neural communication from the cortex to the muscles, indicating

effective corticospinal pathways.

CMC is crucial for understanding motor control mechanisms,

particularly in movement disorders and rehabilitation strategies.

It dynamically adjusts with muscle contraction patterns, reflecting

top-down motor information transmission (Baker et al., 1997;

Brown et al., 1998; Mima et al., 1999; Ushiyama et al., 2012;

Boonstra, 2013).

Initial methods for CMC analysis involved Fourier coherence

and partial directed coherence (Grosse et al., 2002; Schelter

et al., 2006; Yao et al., 2007). Both methods handle non-

stationary signals; however, wavelet coherence, with its fixed

window size, adapts better to the frequency of oscillatory

signals, providing more accurate results. Partial directed coherence

evaluates the direction of neural information flow, offering insights

into the functional connection between cortical and muscular

signals. Wavelet coherence has become widely adopted due to

its ability to handle non-stationary signals and provide time-

frequency localized information (Yang et al., 2010; Xi et al.,

2021).

To further advance CMC analysis, researchers have explored

various dimensions such as local frequency bands, cross-frequency

coupling, time delays, and multiscale characteristics. Functional

corticomuscular coupling (FCMC), essentially another term for

CMC, was first introduced by Yang et al. (2009). Functional

corticomuscular coupling (FCMC) probes multi-level information

communication in the sensorimotor system (Ibáñez et al., 2021).

Traditional methods like canonical coherence (caCOH) have been

used to measure FCMC between multivariate signals at a single

scale (Vidaurre et al., 2019).
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Recent advancements propose multiscale canonical coherence

(MS-caCOH) to disentangle complex multi-layer information

across multiple scales, demonstrating enhanced coupling detection

and lower pattern recovery errors (Sun et al., 2024). Similarly,

composite multiscale coherence (CMSC) models explore FCMC

in motor control systems, showing stability at high time scales

and capturing multiscale characteristics with higher coherence

in alpha and beta bands (Chen et al., 2023). These methods

extend FCMC research by offering robust and detailed multiscale

interaction analysis. In addition to these methods, advanced

techniques such as multiscale transfer entropy (MSTSE) have been

introduced to describe multi-layer neural information transfer

between coupling signals (Xi et al., 2022). MSTSE is more robust

and effective in detecting coupling properties compared to single-

scale methods, allowing for the analysis of FCMC at various scales

and frequencies, providing a comprehensive understanding of the

multi-scale characteristics of FCMC (Sun et al., 2024).

Studies have also revealed nonlinear properties in the

sensorimotor control loop. Linear coupling is primarily driven by

descending motor pathways, while afferent sensory feedback

contributes to nonlinear coupling patterns (Myers et al.,

2003; Yang et al., 2018; Liang et al., 2020). The integration

of nonlinear coupling algorithms and advanced modeling

techniques continues to enhance our understanding of the neural

mechanisms underlying CMC, facilitating the identification of

factors affecting CMC.

There is ongoing debate regarding the rectification of

EMG in CMC calculations (Yoshitake and Shinohara, 2013;

McClelland et al., 2014). While rectification is often used to

maximize information about action potential timing and suppress

information related to motor unit action potential (MUAP) shape,

some studies suggest that it does not enhance the detection of

CMC. Rectification can distort the EMG spectrum and obscure

genuine CMCdetection in some cases (Neto et al., 2010). Therefore,

it is argued that coherence analysis should be performed using

unrectified EMG to avoid these issues (McClelland et al., 2012).

This perspective highlights the need for careful consideration

of preprocessing steps in CMC analysis to ensure accurate and

reliable results.

4.3 Beta-CMC in di�erent motor tasks

4.3.1 Beta-CMC in stable motor states
In this section, the term “stable motor states” refers specifically

to motor conditions designed to minimize interference from

electromyographic (EMG) noise. These stable conditions include

single-joint movements, isometric contractions, and other

controlled motor tasks that reduce muscle activity artifacts. By

focusing on these stable states, researchers can better isolate

and study the underlying neural mechanisms of Beta-band

corticomuscular coherence (CMC) without the confounding

effects of more complex, multi-joint movements. This approach

ensures that the observed CMC reflects true corticospinal

communication rather than extraneous muscle activity.

Beta-CMC disappears before the start of a movement and

increases during isometric contractions with low-level static

force adjustments, potentially stabilizing corticospinal information

exchange (Chakarov et al., 2009). During dynamic force output,

it is replaced by transient synchronization in the alpha and

gamma bands, with phase synchronization in different frequency

bands indicating incoming and outgoing corticospinal interactions

(Mehrkanoon et al., 2014). Changes in Beta-CMC under different

motor tasks or states are summarized in Table 1. Bottom-up

Beta-band activity may facilitate steady isometric contractions by

effectively transmitting sensory feedback from the finger muscles

to the sensorimotor cortex (Lim et al., 2014). Changes in CMC

phase induced by cooling the arm (Riddle and Baker, 2005) and

ischemia-induced reductions in afferent nerve capability (Pohja

and Salenius, 2003) have demonstrated the role of incoming

peripheral sensory signals in sensorimotor communication. Thus,

CMC is considered to be regulated by top-down motor commands

and feedback signals from proprioceptors, which alsomodulate this

(Budini et al., 2014). Interestingly, pharmacological studies have

shown that enhancements in EEG signals by benzodiazepines do

not modulate the amplitude of CMC (Baker and Baker, 2003),

while various types of GABAergic medications produce diverse

modulations of cortical activity and CMC amplitude (Barone and

Rossiter, 2021).

What is the connection between widely observed Beta-CMC

and movement during stable motor processes? Prior to the

initiation of movement, a reduction in beta power is associated with

faster autonomous movements (Gilbertson et al., 2005; Shin et al.,

2017). When the amplitude of Beta-CMC increases, the generation

of new movements is delayed (Matsuya et al., 2013), and prolonged

elevated beta oscillations have been observed in Parkinson’s disease,

associated with difficulties in initiating and controlling movements

(Brown, 2006; Asadi et al., 2022).

These findings suggest that the mechanisms underlying CMC

are complex and not merely a simple unidirectional transmission

phenomenon. Instead, they involve a complex interplay of motor

commands and sensory feedback. This coherence relates to

sensorimotor integration functions (Kilavik et al., 2013), indicating

a comprehensive and mutually regulatory relationship between

motor commands and sensory feedback (Witham et al., 2011).

4.3.2 Beta-band CMC across dynamic motor
states

Significant Beta-CMC has been observed in human standing

tasks, highlighting the cerebral cortex’s role in maintaining balance

and responding to changes in mechanical and sensory conditions

(Jacobs et al., 2015). However, due to the subtle and unstable

nature of EEG signals, few studies have explored limb CMC during

large-amplitude movements (Gennaro and De Bruin, 2018; Zhao

et al., 2022a). This section focuses on the role of Beta-Band CMC

across various dynamic motor states, emphasizing the impact of

large-amplitude movements on EEG signals.

Jensen et al. (2019) investigated CMC during treadmill walking,

finding significant beta and gamma band coherence between EEG

and EMG signals from the tibialis anterior and soleus muscles

during the stance and propulsion phases of gait. Directional

analysis showed EEG activity led EMG activity during the support

phase and forward propulsion (Jensen et al., 2019). Similarly,
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TABLE 1 Summary of Beta-band corticomuscular coherence (Beta-CMC) changes under di�erent conditions.

Condition Beta-CMC changes References

Stable motor states

Isometric contraction tasks Significant Beta-CMC observed, indicating the cerebral cortex’s role in
maintaining balance and stability

Jacobs et al., 2015; Liu et al., 2019b

Isokinetic contraction tasks CMC differences disappear, suggesting a shift from feedforward to feedback
regulation in motor control

Liu et al., 2019b; Suzuki and
Ushiyama, 2020

Di�erent motor states

Large amplitude movement states Few studies due to the subtle and unstable nature of EEG signals, limiting
exploration of limb CMC

Gennaro and de Bruin, 2020;
Kenville et al., 2020; Xi et al., 2022

Treadmill walking Significant beta and gamma band coherence between EEG and EMG signals
from the tibialis anterior and soleus muscles during stance and propulsion
phases

Jensen et al., 2019; Gennaro and de
Bruin, 2020

Ground walking during double-support
phase

Higher Beta-CMC observed, with EEG signals preceding EMG signals,
indicating cortical activity leads muscle activity

Roeder et al., 2018

Periodic bilateral ankle movements Increased coherence near 20Hz, primarily in brain regions directly
controlling the tibialis anterior and soleus muscles; coherence enhanced
with external rhythmic guidance

Yoshida et al., 2017

Different task conditions and force
levels

CMC exhibits different patterns; decreases with increased contraction
intensity during intermittent elastic tasks, but differences disappear in
sustained isometric tasks

Suzuki and Ushiyama, 2020

Sensorimotor integration

External sensory feedback (visual,
auditory)

Changes in sensory feedback (e.g., reduced visual feedback) lower
Beta-CMC peak frequency, indicating the influence of sensory inputs on
CMC

Chung et al., 2017; Chen et al., 2023

Roeder et al. (2018) reported higher CMC during the double-

support phase of ground walking, with EEG signals preceding EMG

signals. These findings suggest a crucial role for Beta-CMC in

coordinating complex motor tasks.

In neuromuscular coupling research during gait, involving both

healthy individuals and those with neuromuscular or nervous

system diseases, the synchronicity between EEG and EMG signals,

defined as Neuromuscular Connectivity (NMC), has been explored

(Zhao et al., 2022b). While NMC holds significant potential

for assessing brain-muscle interactions, there is a need for

standardizing research methodologies to enhance comparability

and reproducibility (Zhao et al., 2022b; Seynaeve et al., 2024).

Yoshida et al. found that during periodic bilateral ankle

movements, brain regions controlling movement showed increased

coherence near 20Hz with the tibialis anterior and soleus muscles.

This coordination intensified with external rhythmic guidance,

enhancing focus on movement (Yoshida et al., 2017). Beta-band

activity dynamically adjusts to motor task demands, indicating that

neural synchronization and connectivity may involve brief “bursts”

rather than continuous states (Mirzaei et al., 2017).

The generation of beta oscillations varies with different

activities. Khanna and Carmena noted that beta activity is

commonly produced in the striatum during significant external

stimuli, adjusting internally planned actions. During static

isometric contractions, beta activity relates to autonomous

contractions, involving pyramidal tract neurons discharging in the

beta range, which increases motor neuron activity and muscle force

production (Khanna and Carmena, 2017). Thus, beta oscillations

are linked to action planning, muscle coordination, and force

production, reflecting how the brain regulates these processes

(Iwama et al., 2022), and physiologically reflect how the brain

regulates coordination among different muscles.

While these findings provide valuable insights, there are

limitations. The instability of EEG signals poses challenges in

studying large amplitude movements. Future research should

focus on standardizing NMC methodologies and exploring

new techniques to overcome these limitations. Understanding

the dynamic interactions between cortical regions and muscles

across various motor tasks will enhance our knowledge of

sensorimotor integration and inform more precise interventions

for motor disorders.

4.3.3 Beta-band CMC in force control and
precision movements

Beta-CMC is prominently observed during stable isometric

contractions. While some studies suggest that Beta- does not

significantly vary with motor parameters such as movement speed

and accuracy (Kilavik et al., 2013; Dal Maso et al., 2017), other

research indicates a positive correlation between Beta- amplitude

and movement precision. For instance, during a pinch grip

task, Beta- reflects a synergistic control strategy, integrating task-

relevant motor neurons into functional units (Reyes et al., 2017).

Studies have shown a positive correlation between Beta-CMC

amplitude and movement precision. Under dual-task conditions,

where attentional resources are divided, CMC amplitude decreases,

yet higher-frequency Beta-CMC is associated with greater precision

in motor tasks (Kristeva-Feige et al., 2002; Kristeva et al., 2007).

Conversely, Johnson found that additional tasks reduce

Beta-CMC, highlighting the impact of divided attention on
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corticomuscular coupling (Johnson et al., 2011). Further research

has indicated that internal focus during tasks can decrease Beta-

CMC and impair force accuracy and stability (Parr et al., 2023a).

For example, when one hand is engaged in medium strength

contractions, the other hand shows increased CMCdue to extensive

bilateral cortical connections (Zheng et al., 2016). This suggests that

attentional demands significantly influence Beta-CMC.

Divekar explored differences between wrist flexors and

extensors, finding that frequent use and lower perceptual difficulty

of wrist flexors lead to better adaptation and lower CMC levels

during isometric tasks (Divekar, 2013). Precise motor control is

linked to bilateral supplementary motor area (SMA) activity, with

SMA projections to the corticospinal tract becoming significant

for high-precision tasks (Matsuya et al., 2013). Desmyttere’s

study reported that co-activation of synergistic muscles decreases

Beta-CMC, while antagonist muscle activation increases it,

suggesting a role in fine motor control (Desmyttere et al., 2018).

Averbeck hypothesized that coherent oscillations between neurons

reflect dynamic information flow, with steady-state CMC being

suboptimal under unpredictable force conditions (Averbeck and

Lee, 2004; Mendez-Balbuena et al., 2012).

Ushiyama found that CMC decreases with increasing

contraction intensity during intermittent elastic tasks but not

in sustained isometric tasks, indicating context-dependent

modulation (Suzuki and Ushiyama, 2020). These findings suggest

that Beta-CMC reflects a shift from feedforward to feedback

regulation in motor control, influenced by factors such as force

magnitude, attention, and task complexity (Lattari et al., 2010).

The information highlights the complexity and context-

dependency of Beta-CMC. Beta-CMC is crucial for maintaining

stable muscle force during isometric contractions, but its

relationship with motor parameters like movement speed and

accuracy is less consistent. Attention significantly affects Beta-

CMC, with divided attention reducing its amplitude, while

higher-frequency Beta-CMC is linked to greater motor precision.

Beta-CMC’s dynamic adjustment underscores the complexity of

corticomuscular connections. It exhibits different patterns under

varying task conditions and force levels. For example, Beta-CMC

decreases with increased contraction intensity during intermittent

elastic tasks, but this difference disappears in sustained isometric

tasks. This context-dependent modulation suggests Beta-CMC

reflects a shift from feedforward to feedback regulation in motor

control. Additionally, sensory feedback and common inputs are

crucial for CMC, requiring further experimental validation.

Future research should explore the interactions between

different cortical regions and muscle groups across various motor

tasks, incorporating both intermuscular coherence (IMC) and

CMC to understand broader neural network dynamics. This will

provide insights into how the brain controls muscle activity and

adapts to different motor demands, potentially leading to more

precise interventions for motor disorders.

4.3.4 Beta-band CMC in sensorimotor integration
The sensorimotor cortex continuously processes dynamic

stimuli from the environment, crucially regulating autonomous

movements (Hohlefeld et al., 2011; Piitulainen et al., 2021).

Primates can spontaneously synchronize with environmental

rhythms, and these stimuli modulate Beta-CMC (Lattari et al., 2010;

Piitulainen et al., 2015; Wang G. et al., 2024). This modulation

occurs in areas such as the basal ganglia, cerebellum, SMA, pre-

SMA, and PMC, dynamically adjusting to external stimuli (Saleh

et al., 2010; Fujioka et al., 2012). Varlet et al. (2020) found that

Beta-CMC plays a role in the synchronization of movements with

2Hz audio-visual sequences, indicating its potential mechanism for

movement synchronization.

Rhythmic structure perception in the brain extends beyond

auditory areas to involve the sensorimotor cortex, basal ganglia,

and hippocampus. During metronome listening, non-phase-locked

beta oscillations synchronize across bilateral auditory cortices and

motor-related areas, forming a functional sensorimotor network

where beta oscillations play a key role (Haenschel et al., 2000;

Abbasi and Gross, 2020; Gourévitch et al., 2020). Even in passive

auditory conditions, beta oscillations dynamically configure the

sensorimotor network, reflecting functional coordination between

auditory and motor systems (Fujioka et al., 2012, 2015). Auditory

feedback has been shown to reduce alpha spectrum in the ipsilateral

sensorimotor area and beta spectrum bilaterally, decreasing Beta-

CMCwhile enhancingmotor precision (Guo et al., 2022). Similarly,

optimal noise conditions improve motor accuracy and enhance

motor spectral power (SP) and Beta-CMC (Trenado et al., 2014).

These findings suggest that stochastic resonance enhances motor

performance, consistent with increases in motor SP and CMC

(Mendez-Balbuena et al., 2012; Trenado et al., 2014).

Beta-CMC is modulated by various external sensory signals.

For instance, reduced visual feedback decreases the peak

frequency of Beta-CMC and increases its amplitude, accompanied

by a reduction in EEG Beta-band power (L’Abbate et al.,

2022). Increased tactile feedback leads to right occipital cortex

Beta-ERD and smaller motor errors (Lin et al., 2012). High

visual gain conditions result in more pronounced Beta-band

desynchronization, superior motor performance, and fewer motor

errors, with enhanced connectivity between the parietal and motor

cortices (Chung et al., 2017). Older adults show higher correlations

between visual feedback and CMC (Watanabe et al., 2020).

Currently, few studies confirm that sensorimotor feedback

alters Beta-CMC. Exploring CMC changes under various

conditions using multimodal, multisensory stimuli may help to

deepen our understanding of communication between the cerebral

cortex and muscles during different motor processes, revealing the

complexity of the motor system with its unique functional features.

5 The influencing factors of Beta band
corticomuscular coherence

Research on Beta-CMC has significantly advanced our

understanding, yet several key challenges remain in areas

such as mechanistic insights, personalized interventions, long-

term effects, and practical applications. Addressing these

challenges requires leveraging advanced technologies, emphasizing

individual differences, conducting long-term follow-up studies,

and translating laboratory findings into clinical applications. By

overcoming these challenges, we can deepen our understanding

of CMC, develop new strategies for improving motor function

and treating neurological disorders, and ultimately enhance
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both scientific research and patient health outcomes. Below is a

summary of potential influencing factors on Beta-CMC, with a

brief overview provided in Figure 4.

5.1 Age-related changes in Beta-band
CMC

Age significantly impacts the motor system, with changes in

Beta-CMC reflecting developmental and aging processes. During

childhood, motor development relies on the formation and

integration of neuronal networks within the sensorimotor system

(Müller et al., 1991; Paus et al., 1999).

• Infants and children: Ritterband-Rosenbaum et al. (2017)

observed significant increases in CMC within the 20–40Hz

frequency band between 9–25 weeks in infants, suggesting a

sensitive period for corticospinal connection development.

• Adolescents and adults: beta-CMC increases with age,

particularly around 20Hz between ages 8–12 (James et al.,

2008). Adults (20–30 years) exhibit higher CMC strength than

children (8–10 years), primarily due to increased descending

connections (Beck et al., 2021).

• Elderly: in the elderly, CMC increases under cognitive

task conditions, but Beta-CMC declines in frequency while

increasing in amplitude. However, older adults show a decline

in M1’s beta activity and CMC frequency, with an increase in

amplitude (Johnson and Shinohara, 2012; Kamp et al., 2013).

Bayram’s et al. (2015) study showed significantly weakened

CMC at all tested force levels in older adults.

Further research is needed to understand these age-related

variations, particularly in older adults, to improve interventions

aimed at mitigating motor decline associated with aging (Roeder

et al., 2020; Yokoyama et al., 2020).

5.2 Individual di�erences in Beta-band
CMC

Beta-CMC exhibits significant individual variability. Ushiyama

et al. (2011) found substantial differences in the strength of

oscillatory coupling between the motor cortex and spinal motor

neurons among individuals.

• Force variability: the maximum value of CMC (CMC-max)

positively correlates with the coefficient of variation of muscle

force (Force-CV) and the power spectral density of muscle

force output (Force-PSD) in various frequency bands.

• Types of contractions: during different types of muscle

contractions (isometric, concentric, and eccentric), CMC and

spinal excitability exhibit various changes (Glories et al., 2021;

Glories and Duclay, 2023). Spinal inhibitory mechanisms

may regulate Beta-band CMC, acting as a neural “filter”

by modulating motor neuron activity (Williams and Baker,

2009; Williams et al., 2010; Matsuya et al., 2017). Sensory

feedback variability and gain modulation at low and high beta

frequencies also contribute to individual differences in CMC

(Baker and Baker, 2003; Khademi et al., 2018).

5.3 Motor skill learning and control

Learning can enhance both CMC and motor performance.

Méndez-Balbuena et al. (2012) showed that participants with and

without pre-intervention CMC exhibited increases in CMC and

motor performance after learning.

• Visuomotor skills: Perez et al. (2006) found that learning

visuomotor skills increases Beta-CMC between cortical-spinal

transmission and spinal motor neurons.

• Rhythmic patterns: learning to produce rhythmic musical

patterns enhances corticomuscular communication (Lapenta

et al., 2022).

• Strength training: 3 weeks of maximal strength training

significantly increased muscle strength and improved motor

coordination, associated with a reduction in antagonist muscle

activation and CMC (Elie et al., 2021).

Exploring the impact of different exercise modalities on Beta-

CMC can deepen our understanding of how exercise influences

brain function and motor control.

5.4 Training status

Physical training engages multiple biological mechanisms,

leading to significant changes in CMC and muscle coordination.

Training status, especially in elite athletic groups, involves

influences beyond motor skill learning. These influences include

various behavioral and demographic factors that contribute to

neurobiological differences. For example, elite athletes often have

enhanced proprioception, muscle memory, and refined motor

control, which are products of both intensive training and

genetic predispositions.

• Athletes: long-term trained athletes like ballet dancers and

weightlifters exhibit suppressed oscillatory coupling between

the sensorimotor cortex and spinal motor neurons (Ushiyama

et al., 2010). Strength trainers have the highest CMC strength

and frequency, particularly in antagonist muscles (Dal Maso

et al., 2017; Hortobágyi et al., 2021).

• Sports injuries: ACL injuries cause continuous imbalances

in leg muscle strength. Patients with ACL reconstruction

show decreased quadriceps strength and stability compared to

uninjured controls (Sherman et al., 2023).

Similarly, the process of rehabilitation and the restoration

of motor function post-injury can be seen as a specialized

training status. This rehabilitation involves not just regaining lost

strength and coordination but also adapting the brain-muscle

communication to compensate for altered or damaged neural

pathways. For instance, anterior cruciate ligament (ACL) injuries

cause continuous imbalances in leg muscle strength, and patients
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FIGURE 4

The influencing factors of Beta band corticomuscular coherence.

with ACL reconstruction show decreased quadriceps strength and

stability compared to uninjured controls. Standardizing participant

selection and exploring CMC indices during sport adaptation can

provide insights into the dynamic relationships between the brain

and muscles post-injury.

5.5 The abnormal state of the Beta band
CMC

Pain and muscle fatigue impact CMC and motor performance.

• Pain: both noxious and non-noxious sensory inputs modulate

the functional coupling between the motor cortex and

muscles. Pain reduces CMC, increases EEG frequency, and

decreases force stability (Burns et al., 2016; Poortvliet et al.,

2019).

• Fatigue: muscle fatigue leads to reduced information flow

in descending pathways and weakens Beta-band brain-

muscle signal coupling (Tecchio et al., 2006; Yang et al.,

2009). Increased cortical drive may help maintain motor

performance in fatigue states but could also exacerbate central

fatigue (Gandevia, 2001).

Future research should aim to optimize neuromuscular

interactions to improve fatigue management and recovery

strategies. This includes enhancing CMC during fatigue through

targeted training programs, neuromodulation techniques, and
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optimized recovery protocols. By focusing on the brain-muscle

interplay under conditions of pain and fatigue, researchers can

develop interventions to sustain motor performance and reduce

injury risk, thereby enhancing athletic performance and well-

being. Personalized approaches considering individual variability

in pain perception and fatigue response can lead to more effective

management strategies.

5.5.1 Neurodegenerative diseases related to the
Beta band of CMC changes

Understanding corticomuscular interactions in various states

is crucial for diagnosing movement disorders and developing

effective treatments. Neurodegenerative diseases, characterized by

neuronal loss and disrupted glial cell homeostasis, often feature

altered beta oscillations.

• Parkinson’s disease (PD): PD patients exhibit excessive beta

activity in basal ganglia circuits and reduced cortical beta

activity due to dopaminergic neuron loss in the substantia

nigra. This imbalance leads to enhanced and synchronized

beta oscillations linked to motor dysfunctions (McCarthy

et al., 2011; Little and Brown, 2014; Cole et al., 2017). Reduced

CMC in PD patients correlate with motor symptom severity

(Zokaei et al., 2021). Beta-CMC changes serve as biomarkers

for PD, with increased low-frequency (∼10Hz) and decreased

∼30Hz CMC during stable contractions (McKeown et al.,

2006). Levodopa modulates abnormal Beta-CMC, indicating

its potential as a pathological marker (Hirschmann et al.,

2013).

• Primary lateral sclerosis (PLS) and amyotrophic lateral

sclerosis (ALS): in patients with primary lateral sclerosis

(PLS), significant Beta-CMC was detected in the ipsilateral

primarymotor cortex (M1). PLS primarily affects uppermotor

neurons, whereas amyotrophic lateral sclerosis (ALS) impacts

both upper and lower motor neurons. PLS patients exhibit

significant differences in CMC across various frequency

bands, which extend beyond primary sensory-motor networks

(Bista et al., 2023). ALS patients show reduced CMC and

increased cortical-cortical coherence, highlighting cortical

network impairments (Proudfoot et al., 2018).

• Multiple sclerosis (MS): MS patients exhibit motor system

disorders and higher CMC frequency without significant

amplitude differences, linked to functional connectivity

changes (Tomasevic et al., 2013).

• Dystonia: characterized by sustained muscle contractions and

abnormal movements, dystonia shows aberrant Beta-CMC

modulation, suggesting distinct sensory-motor processing

abnormalities (McClelland et al., 2020). Sensory tricks can

improve sensory-motor integration in dystonia (Lee et al.,

2021).

• Cerebral palsy (CP): CP patients exhibit higher Beta-CMC

compared to healthy controls, unaffected by measurement

time windows (Riquelme et al., 2014). Muscle fatigue

impacts CMC similarly in CP and neurotypical adults, but

CP patients show baseline deficiencies in cortical-muscle

coherence (Forman et al., 2022).

Despite the significant potential of Beta-band cortico-muscular

coherence (Beta-CMC) in diagnosing and assessing treatment

efficacy for neurodegenerative diseases, current research faces

several challenges and limitations. In Parkinson’s disease (PD),

patients exhibit a marked imbalance in beta oscillations; while

Levodopa can modulate Beta-CMC, it does not address the

progressive neuronal loss. The complexity of CMC changes in

primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis

(ALS) is not fully understood, complicating treatment strategies.

Multiple sclerosis (MS) patients show elevated CMC frequencies,

but the underlying mechanisms of these functional connectivity

changes remain unclear. In dystonia, abnormal Beta-CMC

modulation indicates sensory-motor processing abnormalities that

require further investigation. Cerebral palsy (CP) patients exhibit

elevated Beta-CMC levels, yet the baseline deficits in cortico-

muscular coherence warrant additional exploration. Most studies

are constrained by small sample sizes and specific experimental

conditions, limiting the generalizability of the findings. Future

research should aim to validate these results in larger, more diverse

populations and focus on long-term neuroplasticity and functional

recovery mechanisms through longitudinal studies. Relying solely

on Beta-CMC measurements may not fully capture the complex

neurophysiological processes; integrating multiple biomarkers

could provide a more comprehensive assessment. Moreover, the

clinical application faces challenges such as device portability, ease

of use, and real-time data analysis. Thus, developing user-friendly

and reliable measurement and analysis tools is essential to advance

the clinical utility of Beta-CMC.

5.5.2 Changes in Beta-band CMC resulting from
motor system injuries

Motor system injuries, such as those from sports and strokes,

significantly impact CMC and brain-muscle communication.

• Sports injuries: repetitive impacts, such as heading in soccer,

can cause brain injuries. Studies show enhanced Beta-CMC

in real environments but not in VR, possibly due to sensory

input differences (Parr et al., 2023b). This compensatory

mechanismmay indicate a risk of long-term brain injury while

demonstrating the brain’s adaptive strategies (Campus et al.,

2012; Chipaux et al., 2013). While such adaptations could

indicate a risk of long-term brain injury, they also demonstrate

the brain’s strategy to cope with challenges.

• Stroke: stroke-induced motor impairments are linked to brain

network reorganization. Stroke patients show widespread

CMC peaks, including contralateral hemisphere peaks

(Rossiter et al., 2013; Krauth et al., 2019). Changes in CMC

correlate more with post-stroke duration than with motor

recovery degree (von Carlowitz-Ghori et al., 2014). Motor

performance improvement post-stroke is associated with

increased Beta-CMC over time (Larsen et al., 2017). Another

study reported that as motor ability gradually recovered

post-stroke, Beta-CMC increased over time, surpassing levels

seen in healthy controls (Krauth et al., 2019).

• Spinal cord injuries (SCI): SCI patients exhibit higher muscle

co-activation and lower frequency CMC, particularly in
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intermuscular coupling (Zu et al., 2023). Despite unchanged

cortical efficacy, SCI patients increase muscle activation to

compensate for reduced cortico-muscular communication

(Cremoux et al., 2013).

In neurobiology, changes in beta-band cortico-muscular

coherence (Beta-CMC) resulting from motor system injuries

exhibit several commonalities. The brain demonstrates significant

adaptive mechanisms to cope with injuries such as sports injuries,

strokes, and spinal cord injuries, reorganizing brain-muscle

communication pathways. For instance, enhanced Beta-CMC in

real environments for sports injuries indicates adaptation to

sensory inputs, while in stroke patients, Beta-CMC increases over

time, reflecting cortical reorganization. Similarly, spinal cord injury

patients compensate for reduced cortico-muscular communication

by increasing muscle activation. Furthermore, Beta-CMC serves

as a potential biomarker for recovery and adaptation. In stroke

patients, Beta-CMC progressively increases with motor recovery,

eventually surpassing healthy controls. Changes in Beta-CMC in

sports and spinal cord injury patients also reflect their adaptive

mechanisms, aiding in assessing rehabilitation progress and

designing personalized strategies. These commonalities provide

insights into the functional connectivity between the brain and

muscles post-injury and highlight Beta-CMC’s potential as a

biomarker for guiding rehabilitation therapies.

Although beta-band cortico-muscular coherence (Beta-

CMC) shows potential in assessing recovery following motor

system injuries, several limitations remain. Current research

predominantly involves small sample sizes and specific

experimental conditions, which may limit the generalizability

of findings. Future studies should aim to validate these results

across larger and more diverse patient populations. Additionally,

while existing studies primarily focus on short-term recovery, there

is a significant gap in understanding the mechanisms underlying

long-term neuroplasticity and functional recovery. Longitudinal

studies are needed to address this gap. Moreover, Beta-CMC as a

solitary biomarker may not adequately capture the multifaceted

processes involved in motor function recovery. Integrating

multiple biomarkers could provide a more comprehensive

assessment. Furthermore, the clinical application of Beta-CMC

faces practical challenges, including the portability of measurement

devices, ease of operation, and real-time data analysis. To

facilitate its clinical use, it is essential to develop user-friendly and

reliable measurement and analysis tools. Therefore, despite its

promise, future research should prioritize expanding sample sizes,

investigating long-term effects, combining multiple biomarkers,

and developing practical clinical tools to advance this field.

6 Beta band of CMC in clinical
rehabilitation, and the application
prospect in the field of competitive
sports

Beta-CMC has significant potential to revolutionize clinical

rehabilitation and enhance performance in competitive sports.

Techniques like transcranial Direct Current Stimulation (tDCS),

transcranial Alternating Current Stimulation (tACS), and

Neuromuscular Electrical Stimulation (NMES) have shown

promising results in enhancing CMC, thereby improving motor

function and aiding in recovery from conditions such as stroke

and multiple sclerosis (Bao et al., 2019; Padalino et al., 2021;

Kudo et al., 2022). However, the effects of these techniques

can vary significantly among individuals, indicating a need for

personalized approaches (Schilberg et al., 2018; Ibáñez et al., 2023).

Personalized approaches should consider factors such as individual

neurophysiological profiles, optimal stimulation parameters, and

the integration of multimodal feedback systems.

In competitive sports, understanding and optimizing Beta-

CMC can provide critical insights into fatigue management, injury

prevention, and skill refinement, leading to superior athletic

performance. Future research should focus on the specific impacts

of different exercise modalities and intensities on CMC (Pan et al.,

2018; Xu et al., 2018; Koseki et al., 2021). Studies should also

explore the interplay between CMC and various forms of athletic

training to determine the most effective methods for enhancing

performance. Advancements in non-invasive brain stimulation

and neuroimaging techniques are expected to further our

understanding of Beta-CMC mechanisms, facilitating personalized

rehabilitation strategies tailored to individual neural dynamics.

Interdisciplinary research is crucial to fully leverage the potential

of Beta-CMC in both clinical and athletic contexts, refining current

practices and developing innovative approaches for enhancing

motor function and recovery. See Table 2 for a summary of changes

in Beta-band CMC in clinical rehabilitation and competitive sports.

7 Future directions

This review underscores the integral role of Beta-CMC

in advancing motor control. Future studies should explore

individualized neuromodulation strategies, incorporating real-

time neurofeedback to optimize CMC modulation based on

personal neurophysiological profiles (Ding et al., 2023). By

understanding the mechanistic basis of Beta-CMC across different

motor tasks and its modulation via neuromodulation techniques,

personalized medicine approaches can be developed to customize

interventions according to individual cortical rhythms and motor

profiles. Addressing the variability and dynamics of Beta-CMC

through targeted research will enhance the efficacy of therapeutic

interventions and athletic training programs.

7.1 Individual variability in CMC responses

Existing research indicates significant variability in the

effectiveness of personalized approaches, which is likely attributable

to differences in individual neurophysiological characteristics.

However, the specific mechanisms underlying these differences

remain unclear. Investigating these mechanisms is crucial for

optimizing personalized treatment strategies and improving

outcomes. Below are some rigorous examples that discuss the

causes of individual differences:

1. Neuroanatomical differences:
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TABLE 2 Changes in Beta-band CMC in clinical rehabilitation and competitive sports.

Application area Findings and changes References

Clinical rehabilitation

tDCS and tACmS Immediate enhancements in CMC and MEPs, particularly in stroke and MS
patients, showing greater recovery effects

Bao et al., 2019; Padalino et al., 2021;
Kudo et al., 2022

Individual differences Effects of tACS on CMC vary among individuals; 20Hz tACS modulates MEP
amplitude in some studies but has unclear effects on Beta-CMC

Schilberg et al., 2018; Ibáñez et al., 2023

NMES NMES at beta frequencies impacts CMC and voluntary motor output correlation;
combined with exercise training shows significant rehabilitation effects.

Pan et al., 2018; Xu et al., 2018; Koseki
et al., 2021

BCI and neurofeedback Enhances Beta-CMC control, especially in chronic stroke patients; real-time
CMC feedback training improves motor function.

von Carlowitz-Ghori et al., 2015;
Belardinelli et al., 2017; Khan et al.,
2020; Khademi et al., 2022

Competitive sports Future direction

Fatigue management Optimizing CMC provides critical insights into fatigue management, injury
prevention, and skill refinement

Søgaard et al., 2006; Yang, 2008; Yang
et al., 2009; Tomasevic et al., 2013; Liang
et al., 2021

Athletic performance Specific impacts of different exercise modalities and intensities on CMC need
further study

Dal Maso et al., 2012, 2017

Personalized training Understanding and optimizing CMC can lead to superior athletic performance
and training outcomes

Ushiyama et al., 2010; Elie et al., 2021

• Case study: Schilberg et al. (2018) found significant

differences in the effects of tACS among individuals,

potentially related to neuroanatomical variations. Some

individuals exhibit stronger neuronal synchronization at

specific frequencies, while others do not. These differences

may stem from factors such as cortical thickness and gray

matter density.

2 Neurophysiological state:

• Experimental study: Ibáñez et al. (2023) found that baseline

neural activity levels significantly influence the effectiveness

of tDCS. Individuals with higher baseline neural activity

levels showed more pronounced improvements in CMC

with the same stimulation intensity. This indicates that the

neurophysiological state of an individual is a crucial factor

affecting treatment outcomes.

3. Individualized neurofeedback systems:

• Empirical evidence: Koseki et al. (2021) demonstrated

that sensory inputs based on individual CMC frequencies

significantly affect the relationship between CMC and

voluntary motor output. This suggests that personalized

sensory feedback systems are essential for optimizing

treatment outcomes.

4. Long-term adaptive changes:

• Longitudinal study: Xu et al. (2018) found that

long-term exercise training combined with sensory

stimulation significantly enhances CMC, with substantial

individual differences. This indicates that athletes

experience adaptive changes in their nervous systems

over time, reflecting different adaptive mechanisms

among individuals.

Investigating these individual differences will provide

important references for optimizing personalized treatment

strategies, thereby improving therapeutic outcomes and

athletic performance.

8 Summary

Beta-band corticomuscular coherence holds significant

potential in clinical rehabilitation and competitive sports.

Future research should prioritize exploring individualized

neuromodulation strategies, incorporating real-time

neurofeedback to optimize CMC modulation based on personal

neurophysiological profiles. By understanding the mechanistic

basis of Beta-CMC across different motor tasks and its modulation

through neuromodulation techniques, personalized medicine

approaches can be developed to customize interventions

according to individual cortical rhythms and motor profiles. This

personalized approach could significantly improve therapeutic

outcomes and athletic performance by addressing the unique needs

of each individual.
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