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Background: Decision-making under risk is a common challenge. It is known 
that risk-taking behavior varies between contexts of reward and punishment, 
yet the mechanisms underlying this asymmetry in risk sensitivity remain unclear.

Methods: This study used a monetary task to investigate neurochemical 
mechanisms and brain dynamics underpinning risk sensitivity. Twenty-eight 
participants engaged in a task requiring selection of visual stimuli to maximize 
monetary gains and minimize monetary losses. We modeled participant trial-
and-error processes using reinforcement learning.

Results: Participants with higher subjective utility parameters showed risk 
preference in the gain domain (r =  −0.59) and risk avoidance in the loss domain 
(r =  −0.77). Magnetic resonance spectroscopy (MRS) revealed that risk avoidance 
in the loss domain was associated with γ-aminobutyric acid (GABA) levels in the 
ventral striatum (r =  −0.42), but not in the insula (r =  −0.15). Using functional 
magnetic resonance imaging (fMRI), we  tested whether risk-sensitive brain 
dynamics contribute to participant risky choices. Energy landscape analyses 
demonstrated that higher switching rates between brain states, including the 
striatum and insula, were correlated with risk avoidance in the loss domain 
(r =  −0.59), a relationship not observed in the gain domain (r =  −0.02).

Conclusions: These findings from MRS and fMRI suggest that distinct 
mechanisms are involved in gain/loss decision making, mediated by subcortical 
neurometabolite levels and brain dynamic transitions.
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1 Introduction

Performance of decision making amidst uncertainty is crucial to survive in unknown 
environments for humans and other animals. We frequently learn values of choices through 
trial and error in everyday activities, such as business scenes, investments, and purchasing 
behaviors. In general, risk and uncertainty are distinguished in economics (Knight, 1921). Risk 
is a situation where the probability that an outcome will occur is known, whereas uncertainty 
is a situation where its probability is unknown. Although properly assessing and acting on risk 
is crucial to maximize expected profits, human decision-making often involves interesting 
behaviors. For example, it is well known that individuals assess their gain and loss perspectives 
in an asymmetric manner (Kahneman and Tversky, 1979). Given two options, each with 
certain and probabilistic outcomes that have the same expected value, people tend to avoid 
risks when gain is expected, but are likely to take risks when loss is expected. This behavior 
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reflects biased information processes under risk situations. However, 
neural mechanisms for this asymmetric risk sensitivity are 
poorly understood.

Prospect theory assumes that people give subjective weights to 
values, i.e., subjective utility, and weights for losses are larger than 
those for gains, i.e., loss aversion (Kahneman and Tversky, 1979). This 
theory was refined and developed to provide formal mathematical 
models for a value function and a probability weighting function 
(Tversky and Kahneman, 1992). Based on prospect theory, previous 
studies have investigated neural responses in decision-making under 
risk (De Martino et al., 2006; Tom et al., 2007). Nilsson et al. (2011) 
used a hierarchical Bayesian method to estimate model parameters in 
prospect theory and showed that loss aversion can be predicted by a 
lower subjective utility for a gain domain than for a loss domain. 
Prospect theory explains decision-making under risk, but may 
be silent when values must be learned from experience. Learning of 
values from experience is often described by reinforcement learning 
models (Sutton and Barto, 2018). Such models with subjective utility 
can explain individual differences of risk preference (Niv et al., 2012; 
Oba et al., 2021). In order to enhance well-being, we need to examine 
biological factors of individual-level risk-taking propensity. The 
present study integrates prospect theory, namely, subjective utility, 
with a reinforcement learning model to identify the process by which 
risk attitudes are formed through experience.

Many researchers have focused on experience-based choices to 
investigate brain functions of risk sensitivity in terms of reward 
valence, e.g., expectation, outcome, and evaluation (Liu et al., 2011). 
Information on probabilistic outcomes is not always available. 
Learning progresses when outcomes differ from expectations 
(Fouragnan et  al., 2018). Functional magnetic resonance imaging 
(fMRI) studies have demonstrated that reward valence is encoded by 
the ventral striatum (STR; Knutson et al., 2001; Ballard and Knutson, 
2009; Talmi et al., 2009; Niv et al., 2012) and the orbitofrontal cortex 
(OFC; Breiter et al., 2001; Knutson et al., 2003). In addition, previous 
studies have shown different effects of reward and loss on activation 
of brain regions, such as the STR, OFC, anterior cingulate cortex 
(ACC), and insula (INS; Small et al., 2005; Taylor et al., 2006; Wächter 
et al., 2009; Palminteri et al., 2012; Kim et al., 2015). A recent meta-
analysis study indicates that the positive valence network encompasses 
the ventral STR and ventromedial prefrontal cortex (PFC), whereas 
the negative valence network includes the anterior INS and ACC 
(Fouragnan et al., 2018). Specifically, the INS is a pivotal part of neural 
architecture underlying the loss aversion (Paulus et al., 2003; Canessa 
et  al., 2013, 2017). We  hypothesized that different mechanisms 
depending on gain and loss domains are involved in risk-
taking propensity.

We used computational, neurochemical, and brain-dynamic 
approaches to examine what factors are associated with decision 
making for gain and loss domains. In this experiment, participants 
chose visual meaningless stimuli, i.e., fractal patterns, to maximize 
their monetary rewards and minimize their losses (Oba et al., 2019, 
2021). The trial-and-error process for each participant can be modeled 
by reinforcement learning (Niv et  al., 2012). Thus, reinforcement 
learning parameters probably reflect individual differences in risk 
sensitivity to decision making. We constructed three kinds of models 
to formulate algorithms of trial-and-error processes.

Next, we  assessed resting-state levels of γ-aminobutyric acid 
(GABA) in brain regions using magnetic resonance spectroscopy 

(MRS). The GABAergic system is critical in several brain functions, 
such as regulating sensitivity of neurons and orienting focus of 
attention (Tadin and Blake, 2005). Specifically, MRS studies have 
demonstrated that GABA levels in the ACC are related to performance 
of reward-related learning tasks (Scholl et al., 2017; Bezalel et al., 
2019). In addition, GABA levels in the ACC and PFC are correlated 
with performance of Go/No-go tasks (Silveri et al., 2013; Koizumi 
et al., 2018; Takacs et al., 2021). GABA levels in the left PFC contribute 
to selective and sustained attention (Kihara et al., 2016; Kondo et al., 
2023). The personality trait of lower impulsivity is associated with 
higher GABA levels in the right PFC (Boy et al., 2011). However, it is 
still unknown how subcortical GABA levels are linked not only with 
risk sensitivity, but also with cognitive abilities. On the basis of 
neuroimaging findings, we postulated that STR and INS GABA levels 
differ in their involvement in gain and loss domains.

Finally, we  investigated dynamics of brain activity as a bridge 
between behaviors and neurometabolites. A functional-connectivity 
fMRI study demonstrated that the STR response to monetary reward 
and loss modulates fronto-parietal activations related to cognitive 
control (Cubillo et al., 2019). As mentioned above, many brain regions 
are associated with decision making, but it is still poorly understood 
how changes in activity patterns contribute to risk-taking propensity. 
We  examined brain states using a novel approach called energy 
landscape analysis (Ezaki et al., 2017). The advantage of this method 
lies in a data-driven approach without a priori behavioral information, 
by inferring parameters of the Ising model from given fMRI data. 
Neuroimaging studies using energy landscape analysis have 
demonstrated that dynamic transitions of brain states can predict 
individual differences in perception, attention, and personality traits. 
For example, transition rates between brain states of the frontal and 
visual areas are associated with spontaneous switching in visual 
bistable perception (Watanabe et al., 2014). Furthermore, transition 
rates between brain states of frontal and parietal areas are correlated 
with fluctuations of sustained attention (Kondo et al., 2022). Another 
study showed that people with autism spectrum disorder, relative to 
healthy people, have infrequent transitions between minor brain states 
(Watanabe and Rees, 2017). In order to estimate the energy landscape 
of risk-sensitive networks, we  chose regions of interest (ROIs) as 
follows: the STR, INS, OFC, ACC, amygdala (Amg), and globus 
pallidus (GP). Brain dynamics were displayed as a series of stays and 
transitions between different brain states on the energy landscape. 
We hypothesized that individual differences in risk sensitivity are 
mediated by brain dynamics based on STR and INS neurotransmission.

2 Materials and methods

2.1 Participants

Twenty-nine participants were recruited for these experiments. 
Sample size (N = 29) was based on an a priori power analysis with a 
power of 0.8 (α-level = 0.05) to detect significant correlations (effect 
size: r = 0.5, bivariate normal model). We computed sample size 
using G*Power software (ver. 3.1.9.2; Faul et al., 2009). For technical 
reasons, data from one participant were excluded, leaving 28 
participants (13 men and 15 women; mean ± SD 
age = 26.4 ± 4.8 years, range 20–35 years). They were right-handed 
with normal or corrected-to-normal vision. None had any history 
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of neurological or psychiatric disorders. This study was approved 
by the Ethics Research Committee of Chukyo University (approval 
no. RS18-023) and the Safety Committee of ATR-Promotions 
(approval no. AN18-052). Experimental procedures were 
implemented in accordance with Ethical Guidelines for Medical 
and Biological Research Involving Human Subjects. All participants 
gave written informed consent after experimental procedures were 
fully explained to them. Participants were compensated 6,000 yen 
for their participation.

2.2 Behavioral tasks

Participants performed a behavioral task outside the scanner after 
imaging data acquisition (Figure 1A). Employing stimuli and task 
procedures used in previous studies (Oba et  al., 2019, 2021), 
we conducted a psychological experiment. The task consisted of gain 
and loss domains. The order of the two domains was counterbalanced 
among participants. Each domain included 10 fractal images as visual 
stimuli. Different outcomes were randomly assigned to these images.

The gain domain contained three sure options with fixed 
outcomes (0, 10, and 20  yen) and one variable risky option with 
random outcomes (0 or 20 yen). Similarly, the loss domain contained 
three sure options (0, –10, and –20 yen) and one variable risky option 
(0 or  –20 yen). In the risky options, each outcome was randomly 
chosen with a 50% probability. Each option was paired with the other. 
All pairs appeared 20 times, except a pair of the risky option and sure 
option with the same expected value, i.e., 10 yen in the gain domain 
and –10 yen in the loss domain (Figure 1B). The trial types of 10 yen 
vs. Risk or –10 yen vs. Risk were presented 30 times to investigate 
participant risk preference and avoidance. The order of trial types was 
randomized across participants. They were instructed to maximize 
monetary rewards and reduce monetary losses. Since participants 
were not provided with any information about outcome probabilities, 
they had to learn stimulus-outcome associations throughout the task. 
Participants received the amount of money earned after 
the experiment.

For each trial, after a fixation cross disappeared, two fractal images 
were presented side-by-side on the screen for 1.5 s. Participants were 
instructed to choose one of the two images with a key press. A red bar 
was displayed under the chosen image. Feedback regarding outcomes 
was shown for 1 s after a 0.5-s blank screen. When participants failed 
to respond within the time window of stimulus presentation, a penalty 
of –20 yen was imposed. The stimulus position, i.e., right or left, was 
not related to outcomes. Stimulus presentation and data collection 
were controlled by a PC with PsychoPy v1.80 (Peirce, 2009). The 
experiment lasted approximately 30 min.

2.3 Behavioral data analyses

We performed a repeated-measure analysis of variance (ANOVA) 
on learning performance, in which the Greenhouse–Geisser 
correction was employed to compensate for violations of the sphericity 
assumption, if needed. For correlation analyses, we  computed 
Pearson’s correlation coefficients with 95% confidence interval (CI). 
For multiple comparisons of correlation coefficients, we estimated the 
probability of obtaining the correlation by a random projection of 
these values. The probability was determined by permuting value 
vectors 10,000 times and establishing the proportion of random 
correlations that were higher than the one obtained empirically (pperm; 
Kondo et al., 2017). Statistical analyses were carried out with R.1

2.3.1 Reinforcement learning models
We used reinforcement learning models to understand the 

learning process of estimating values of risky options. All models were 
designed to assign an action value to each action for making decisions. 
Here, we consider a stimulus i on trial t for the action value Q it ( ). The 
action value for a chosen action was updated based on the following 
equation (Equation 1):

1 https://www.r-project.org/

FIGURE 1

Task design and trial types. (A) Schematic representation of a gain trial in a decision-making task. (B) Pairs of options and number of trials for gain and 
loss domains. Risk options yielded random outcomes: 0 or 20  yen in the gain domain and 0 or –20  yen in the loss domain.
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Q i Q it t t+ ( ) = ( ) +1 εδ

 (1)

 
δt t tr Q i= − ( )  (2)

where ε  is the learning rate that determines the speed of updating 
the value. The outcome value rt codes 1 for a gain of 10 yen, 2 for a gain 
of 20 yen, −1 for a loss of 10 yen, −2 for a loss of 20 yen, or 0 for no 
gain or loss on trial t. δt represents the prediction error (PE; 
Equation 2). Learning proceeds with a decision on each action 
according to these values, and probabilities of choosing an action are 
calculated by the softmax function (Equation 3):
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where β is a free parameter, inverse temperature, that represents 
randomness of choice. We refer to this reinforcement learning model 
as the standard model.

In addition to the standard model, we used two models with 
additional contributions from (i) a different learning rate between 
positive and negative PEs and (ii) nonlinearity of subjective values 
for the outcomes. The former is a separate learning rate model that 
accommodates different learning rates for positive PE and negative 
PE (Equation 4):
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In this model, if an individual has a larger learning rate for positive 
PE than for negative PE, one tends to choose risky options (Niv 
et al., 2012).

The latter is a subjective utility model that contains an additional 
parameter κ, controlling nonlinearly for large outcomes (Equation 5):
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When the subjective utility parameter is less than 1, risk tends to 
be avoided in the gain domain, but accepted in the loss domain (Niv 
et al., 2012).

2.3.2 Model fitting and comparison
We used a hierarchical type-II maximum likelihood estimation 

to fit RL models to the data. The fitting procedure was the same as 
that used in a previous study (Huys et al., 2011). In this method, the 
marginal likelihood is maximized by the expectation–maximization 
algorithm in order to estimate hyper parameters of population-level 
normal distributions. Parameters of learning rate and inverse 
temperature for each individual were transformed to sigmoid and 

exponential scale, respectively. We used the Rsolnp package in R2 
to optimize likelihood functions at the Expectation-step. In the 
Maximization-step, posterior distributions were estimated by the 
Laplace approximation to update hyper parameters.

We evaluated the trade-off between parsimony and goodness of fit 
using integrated Bayesian information criterion (iBIC; Huys et al., 
2011). The iBIC assesses the complexity of an evaluated model in terms 
of the degree of freedom and penalizes more complex models. Smaller 
iBIC estimates indicate a better fit to the data. We randomly picked up 
parameter values from population-level distributions and averaged 
likelihoods of samples for each participant. Averaged likelihoods were 
transformed to log scale and then summed for all participants.

2.4 Imaging data analyses

MRS and fMRI data were obtained at a fixed time between 1:00 and 
3:00 p.m. to minimize confounding factors affecting neurometabolite 
levels. Participants were scanned on a 3-T MRI scanner (MAGNETOM 
Prisma, Siemens) using a body coil as a transmitter and a 20-channel 
head coil as a receiver. Small comfortable, elastic pads were placed on 
both sides of a participant’s head to minimize head motion. Three-
dimensional anatomical images of the whole brain were first acquired 
with a T1-weighted magnetization-prepared rapid gradient echo 
(MPRAGE) sequence: repetition time (TR) = 2,250 ms; echo time 
(TE) = 3.06 ms; inversion time = 900 ms; flip angle = 9°; 208 sagittal 
slices; matrix size = 256 × 256 mm; isotropic voxel size of 1 mm3.

MRS sessions were conducted before fMRI sessions to avoid 
gradient-induced frequency drifts (Harris et  al., 2014). An MRS 
session consisted of two runs for the 20 × 20 × 30 mm3 voxels, 
positioned in the left STR and right INS (Figure 2). Locations of the 
two voxels did not overlap. The STR voxel included the accumbens 
nucleus, whereas the INS voxel covered the anterior and posterior 
insular cortices. Voxels were individually tilted to maximize inclusion 
of gray matter (GM) and minimize white matter (WM) and 
cerebrospinal fluid (CSF). Using a FASTEST map sequence (Gruetter, 
1993; Gruetter and Tkáč, 2000), we performed manual shimming (5 
to 10 min) of the magnetic field in the voxel to avoid line broadening. 
The MEGA-PRESS technique (Mescher et  al., 1998) was used to 
obtain GABA-edited spectra from single-voxel acquisitions: TR/
TE = 2000/68 ms; 384/64 measurements, i.e., 192/32 on–off pairs, 
with/without water suppression; spectral bandwidth of 2 kHz with a 
sampling rate of 2048 points; editing pulses applied at 1.9 ppm (edit-
on) and 7.5 ppm (edit-off). We assessed GABA+ due to co-edited 
macromolecule contamination. An MRS session lasted 
approximately 50 min.

In the resting-state fMRI paradigm, 600 volumes were acquired 
from each participant with closed eyes. The functional images 
consisted of 45 consecutive slices parallel to the plane of the anterior–
posterior commissure and covered the whole brain. A T2*-weighted 
multiband gradient-echo echo-planar imaging (EPI) sequence was 
used with the following parameters: TR/TE = 1000/30 ms; flip 
angle = 50°; multiband acceleration factor = 3; matrix size = 64 × 64; 
voxel size = 3 × 3 × 3 mm3. The fMRI session lasted 10 min.

2 https://cran.r-project.org/package=Rsolnp
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2.5 MRS data analysis

We analyzed MRS data using Gannet 3.0 software (Edden et al., 
2014). Preprocessing steps were performed as follows: zero-filling, 
3-Hz exponential line broadening, and frequency and phase 
correction using the spectral registration. We  subtracted edit-off 
spectra from edit-on spectra and used a Gaussian model to estimate 
neurometabolite measures of a single GABA+ peak at 3.00 ppm. The 
MRS voxels were segmented into GM, WM, and CSF fractions. For 
voxel tissue fractions, we  corrected institutional units (i.u.) for 
GABA+/H2O by calculating relaxation of water signals in GM, WM, 
and CSF (Harris et al., 2015). After spatial normalization to Montreal 
Neurological Institute (MNI) standard space, we  computed the 
overlap of MRS voxels across participants using SPM123 and in-house 
codes, implemented in MATLAB R2020b (MathWorks, Natick, MA, 
United  States). The criterion of fitting errors (Cramér–Rao lower 
bounds) was set at less than 20%. Based on an outlier analysis, MRS 
data of three participants were excluded from subsequent analyses 
(N = 25).

2.6 fMRI data analysis

2.6.1 Data preprocessing
We analyzed resting-state fMRI data using SPM12 and DPABI 

V3.1/DPARSF V4.44 (Verbruggen and Logan, 2008). The 10 initial 
volumes were discarded from the analysis to achieve steady-state 
equilibrium between radio-frequency pulsing and relaxation. The 
remaining 590 volumes were preprocessed. Functional images were 

3 http://www.fil.ion.ucl.ac.uk/spm

4 http://rfmri.org/dpabi

calibrated to correct slice acquisition timing and realigned to 
correct head movement. Movement on the x, y, and z axes was less 
than 1 mm within each run. Nuisance covariate regression in native 
space was conducted to minimize head movements using the 
Friston 24-parameter model (Friston et al., 1996). WM, CSF, and 
global signals were regressed out to reduce effects of noise caused 
by cardiac and respiratory cycles and scanner drifts. Functional 
images were normalized by diffeomorphic anatomical registration 
using exponentiated Lie algebra (DARTEL), resampled to a voxel 
size of 3 × 3 × 3 mm3, and smoothed with an isotopic Gaussian 
kernel of 4-mm full-width at half-maximum. Data were band-pass 
filtered at 0.01 to 0.1 Hz. We extracted blood oxygen level dependent 
(BOLD) signals from the automated anatomical labeling atlas 
(Tzourio-Mazoyer et al., 2002). On the basis of our hypotheses, 
we focused on data of the following eight ROIs: the OFC, medial 
OFC, INS, ACC, Amg, caudate (Cd), putamen (Pu), and GP. The 
Cd and Pu are included in the STR. Averaged data of both 
hemispheres for each participant were used in the 
subsequent analyses.

2.6.2 Energy landscape analysis
We performed the energy landscape analysis in essentially the 

same way as a previous study (Ezaki et al., 2018). We binarized BOLD 
signals for each ROI. Appearance probabilities of brain activity 
patterns were fitted with the pairwise maximum entropy model, i.e., 
Boltzmann distribution. Using “energy” values defined in the fitting 
function, we  constructed the energy landscape representation of 
activity patterns. On the basis of the energy landscape, we divided 
activity patterns into discrete states, each of which corresponds to a 
basin of a local minimum. Finally, using the list of activity patterns in 
each discrete state, we obtained a coarse-grained representation of the 
original time series. We describe these procedures in detail in the 
following subsections.

FIGURE 2

Size and location of MRS voxels (N  =  28). Centroids of the 20  ×  20  ×  30 mm3 voxels are positioned in MNI coordinates (−16, 2, −3) for the left STR and 
(35, 8, −3) for the right INS. Each voxel contains gray matter, white matter, and cerebrospinal fluid: 43.2%, 55.0%, and 1.8% for the STR; 68.4%, 16.7%, 
and 14.9% for the INS.
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2.6.3 Pairwise maximum entropy model
For each participant and each ROI, we computed the average 

value of the BOLD signal, which was then used as a threshold to 
binarize the signal into −1 or + 1, i.e., inactive or active. For each 
volume, the brain state was represented by an activity pattern 
� � �� �� � �1 2 8, , ,  where σ i  i � �� �1 8, ,  denotes the activity of 
ith ROI (inactive: � i � �1, active: � i �1). We  computed the 
appearance probability of each of 2 256

8 �� � activity pattern in these 
data. This empirical probability distribution was fitted with the 
pairwise maximum entropy model (Equation 6):

 
P

E
E

�� � �
� � �� �
� � �� ��

exp

exp

�

��  
(6)

where E h Ji ii ij i jji�� � � � �� ��� ��� � �
1

8

1

8

1

8  denotes an 

energy value defined for each activity pattern. We tuned parameters 
of the model, i.e., hi and Jij using the gradient ascent algorithm to 
maximize the likelihood function (Ezaki et al., 2017). The accuracy of 
fitting (rD) was sufficiently high (rD = 0.98). We use the energy value 
defined for each activity pattern, E �� � , in the following analyses.

2.6.4 Construction of the energy landscape
Here we  define two activity patterns � ��� �  and � ��� �  as 

neighbors, if these two patterns differ at a single ROI, that is, if the 
Hamming distance between these activity patterns is equal to 1. Thus, 
each of the 256 activity patterns has eight neighbors. The energy 
landscape was constructed as follows. (i) We selected an activity pattern. 
(ii) We moved to one of its neighboring activity patterns, which had a 
minimum energy value in the neighbors and the original activity pattern. 
(iii) We  repeated (ii) until it was trapped in a local minimum. (iv) 
We recorded this path. (v) Procedures (i) to (iv) were repeated over all 
initial activity patterns. The resultant paths defined sets of activity 
patterns belonging to basins of local minima. This way, for each activity 
pattern, a single local minimum to which it belongs was identified. Note 
that if equally steep paths were found in (ii), activity patterns could fall 
into more than one local minimum, but this did not occur in our analysis.

3 Results

3.1 Behavioral results

We first checked participant learning performance in trials of 
surely better options: 0 vs. 10, 0 vs. 20 yen, and 10 vs. 20 yen for the 
gain domain; 0 vs. −10 yen, 0 vs. −20 yen, and −10 vs. −20 yen for the 
loss domain (Figure 1B). Learning curves for each domain are shown 
in Figure 3A. A trend test demonstrated that learning performance 
increased gradually over time: Jonckheere–Terpstra test, TJT = 9.43, 
p < 0.01 for the gain domain; TJT = 9.74, p < 0.01 for the loss domain. 
We performed a 2 (domain) × 3 (trial type) ANOVA on learning better 
choices. These results showed that the proportion of better choices 
(mean ± SD) did not differ between the gain (0.856 ± 0.182) and loss 
(0.850 ± 0.158) domains: F(1, 27) = 0.06, p =  0.80, ηp

2 = 0.002. The 
proportion of better choices was greater for the trials of 0 vs. 20 yen 
and 0 vs. −20 yen (0.923 ± 0.101) than for the other two trial types; 0 
vs. 10 yen and 0 vs. −10 yen (0.853 ± 0.167); 10 vs. 20 yen and − 10 vs. 
−20 yen (0.782 ± 0.199); F(2, 54) = 11.57, p < 0.001, ηp

2 = 0.30. After 

Bonferroni correction, for all trial types, the proportion of better 
choices was greater than chance level (50%): t > 6.87, p < 0.001, Cohen’s 
d > 1.30. The interaction between domain and trial type was not 
significant: F(2, 54) = 2.08, p = 0.16, ηp

2 = 0.07. Thus, participants 
succeeded in learning better choices, regardless of domains.

Next, we investigated the learning performance on risky options: 
0 yen vs. Risk, 20 yen vs. Risk, and 10 yen vs. Risk for the gain domain; 
0 yen vs. Risk, −20 yen vs. Risk, and −10 yen vs. Risk for the loss 
domain. We conducted a 2 × 3 ANOVA on choosing risky options. 
Overall risk preference did not differ between the gain domain 
(0.461 ± 0.326) and the loss domain (0.449 ± 0.269): F(1, 27) = 0.13, 
p = 0.71, ηp

2 = 0.01. The main effect of trial types was significant: 0 yen 
vs. Risk (0.466 ± 0.349) and ± 10 yen vs. Risk (0.484 ± 0.232) > ±20 yen 
vs. Risk (0.414 ± 0.303), F(2, 54) = 4.09, p = 0.03, ηp

2 = 0.13. The 
interaction was also significant: F(2, 54) = 127.16, p < 0.001, ηp

2 = 0.82. 
In the gain domain, we found the following pattern of risk preference: 
0 yen vs. Risk (0.781 ± 0.128) > 10 yen vs. Risk (0.434 ± 0.270) > 20 yen 
vs. Risk (0.167 ± 0.204). We  found the reverse pattern in the loss 
domain: −20 yen vs. Risk (0.662 ± 0.136) > −10 yen vs. Risk 
(0.534 ± 0.179%) > 0 yen vs. Risk (0.152 ± 0.162). These results indicate 
that participants could accurately assess risk options in this task 
because expected values of the risk option were 10 yen for the gain 
domain and −10 yen for the loss domain.

3.2 Model selection

We conducted a model selection analysis at the population level. 
In the gain domain, iBIC estimates were smaller for the subjective 
utility model (2952.72) than for the standard model (3002.78) and 
separate learning rate model (2960.07). In the loss domain, iBIC 
estimates were smaller for the subjective utility model (3435.17) than 
for the standard model (3491.75) and separate learning rate model 
(3499.87). These results indicate that a participant decision is well 
explained by nonlinear evaluation of outcomes to guide his/her own 
choices during the risky trials. The subjective utility parameter was 
correlated with the proportion of risky choices: r = 0.59, p = 0.004, 95% 
CI [0.30, 0.82] for the gain domain; r = −0.77, p < 0.001, 95% CI 
[−0.90, −0.59] for the loss domain (Figure 3B). The subjective utility 
parameter also showed significant correlations with sure options with 
small and large outcomes: r = 0.51, p = 0.006, 95% CI [−0.75, −0.14] 
for the gain domain; r = −0.59, p < 0.001, 95% CI [−0.80, −0.25] for 
the loss domain. The learning curve yielded by the subjective utility 
model was in good agreement with the population average for most 
cases, including the better options (Figure 3C).

3.3 MRS results

We obtained neurometabolite measures from MRS voxels for each 
participant (Figure 2). GABA+ levels (mean ± SD) were 2.95 ± 0.65 i.u. 
for the STR; 3.42 ± 0.62 i.u. for the INS. Using Shapiro–Wilk tests, 
we  determined that MRS data followed a normal distribution: 
W > 0.949, p > 0.24. Smirnov–Grubbs tests did not indicate any outliers 
of MRS data. Fitting errors for GABA+ levels were 9.6 ± 3.9% for the 
STR; 8.1 ± 2.2% for the INS. Thus, the quality of MRS data 
was satisfactory.

We investigated whether neurometabolite measures were 
associated with risk sensitivity during the learning task (Figure 4). For 
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the gain domain, there was no correlation between the proportion of 
risky choices and GABA+ levels: r = −0.13, p = 0.52, 95% CI [−0.50, 
0.28] for the STR; r = 0.14, p = 0.51, 95% CI [−0.27, 0.51] for the 
INS. However, we found an intriguing pattern of correlations for the 
loss domain. The proportion of risky choices was negatively correlated 
with GABA+ levels in the STR (r = −0.42, p = 0.038, 95% CI [−0.70, 
−0.03]), but not with those in the INS (r = −0.15, p = 0.47, 95% CI 
[−0.52, 0.26]). When we performed multiple comparisons of four 
correlation coefficients, the correlation between risky loss choices and 
STR GABA+ levels was marginally significant: pperm = 0.089. Thus, 
GABA+ levels in the STR are involved in risk preference/avoidance, 
particularly in the loss domain.

3.4 fMRI results

Computation of the energy landscape was motivated to bridge 
behavioral and neurometabolite factors. Construction of an energy 
landscape resulted in 256 possible activity patterns being classified 

into four basins, i.e., brain states (Figure  5A). Two synchronized 
activity patterns appeared most frequently in these data and 
constituted major brain states in the energy landscape (states I/IV in 
Figure  5B). The other two minor brain states were also found as 
asynchronized patterns between the OFC/medial OFC and other ROIs 
(states II/III in Figure 5B). We calculated switching rate between two 
major states. It should be noted that this switching rate between brain 
states is a commonly used measure in the literature of energy 
landscape analysis (Ezaki et  al., 2018). These suggest coordinated 
dynamics among the ROIs. We focused on brain dynamics involving 
the two major basins with synchronized activity patterns. 
We  investigated whether risk sensitivity for each participant was 
explained by the switching rate between active and inactive states. For 
the loss domain, we  found a negative correlation between risk 
preference and switching rate: r = −0.59, p = 0.002, 95% CI [−0.80, 
−0.25] (Figure 5C). Specifically, the subjective utility parameter κ was 
correlated with switching rate: r = 0.67, p < 0.001, 95% CI [0.38, 0.84]. 
Correlations between the other parameters and switching rate did not 
reach statistical significance: r = 0.30, p = 0.14, 95% CI [−0.10, 0.62] for 

FIGURE 3

Behavioral results of gain and loss domains. (A) Learning curves of choosing better options. Dots indicate individual data (N  =  28). (B) Correlations 
between subjective utility parameters and the proportion of risky choices. (C) Learning performance derived from experimental and simulated data. 
Solid lines indicate the proportion of better choices averaged across participants. Shaded areas represent 95% confidence intervals of the prediction 
based on the subjective utility model. ***p  <  0.001, **p  <  0.01.
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the learning rate ε ; r = −0.37, p = 0.069, 95% CI [−0.67, 0.03] for the 
inverse temperature β. No correlation was found for the gain domain: 
r = −0.02, p = 0.94, 95% CI [−0.41, 0.38] (Figure 5C). These results 
indicate that dynamic transitions of brain states, including the STR 
and INS, reflect individual propensity for risk learning process, 
particularly in the loss domain.

4 Discussion

We showed mechanisms of risk sensitivity at the computational, 
neurochemical, and brain dynamic levels. Participant trial-and-error 
processes were successfully modeled by reinforcement learning. 
Specifically, the subjective utility model better accounted for 
participant learning performance than the standard and separate 
learning rate models. MRS results demonstrated that participants with 
higher GABA+ levels in the STR had a risk-avoidance propensity in 
the loss domain. Energy landscape analyse were performed to 
characterize multivariate dynamics of risk-sensitive brain activations. 
These results revealed that frequent switching between dominant 
brain states was associated with risk avoidance in the loss domain. 
We discuss these issues in turn.

The subjective utility model better fit the obtained data than the 
other models. Experience-based decision-making under risk is related 
to signed PEs (Niv et al., 2012; Lefebvre et al., 2017; Moeller et al., 
2021). Specifically, previous studies demonstrated a significant 
correlation between subjective utility parameters and individual risk 
sensitivity (Niv et al., 2012; Oba et al., 2021). Our results showed that 
the subjective utility model predicted not only individual risk 
sensitivity, but also learning performance of choice between sure 
options with large and small outcomes. This is because the subjective 
utility parameter is the weight for the large outcome across the risky 
and sure options. In contrast, the separate learning rate model 
represents differences in the effect of PE on value updating, and in the 

current learning task, differences in the effect of PE occur only in the 
risk option; thus, the extent to which it can predict learning 
performance was limited in the separate learning rate model. 
Therefore, we believe that the subjective utility model was superior in 
explaining both sure and risky choices.

GABA+ levels in the STR were negatively correlated with the 
proportion of risky options in the loss domain, but was not in the gain 
domain. The asymmetry of these results may reflect a general tendency 
that people usually take risks in the loss domain, but not in the gain 
domain (Kahneman and Tversky, 1979). Gain-related learning is 
supported by the reward system, which is based on dopaminergic 
projections from brainstem nuclei to the STR and frontal areas (Conio 
et al., 2020). An early study demonstrated that the phasic activity of 
dopamine neurons encodes the reward PE signal in reinforcement 
learning (Schultz et  al., 1997). A value function of learning is 
represented as neural plasticity, i.e., synaptic strength, that is regulated 
by released dopamine (Reynolds et al., 2001; Yagishita et al., 2014). On 
the other hand, neural mechanisms of loss-related learning are still 
unclear. Our results suggest that GABA+ levels in the STR can shape 
individual risk sensitivity to monetary loss.

Neuroimaging studies have demonstrated that the anterior part of 
the INS is activated during anticipation of pain (Chua et al., 1999; 
Ploghaus et al., 1999), but also during risky choice in games (Paulus 
et al., 2003; Canessa et al., 2013; Cui et al., 2022). However, we did not 
find a significant correlation between GABA+ levels in the INS and 
risk sensitivity. Thus, the INS may have functional dissociations 
between neurometabolite and brain activity levels. A few substantial 
MRS studies have investigated whether GABA+ levels in the dorsal 
part of the ACC affect probabilistic learning performance. Using a 
reward-related learning paradigm, higher Glx (glutamate–glutamine) 
and lower GABA+ levels were independently linked with better 
learning performance (Scholl et al., 2017). In contrast, another study 
showed that GABA+ levels were positively correlated with monetary 
gain and loss in auditory discrimination learning, but Glx levels were 
not (Bezalel et al., 2019). This discrepancy may be due to differences 

FIGURE 4

Correlations between neurometabolite and risk sensitivity. Scatter plots for the relationship between GABA+ levels and the proportion of risky choices. 
Circles indicate individual data, whereas solid lines represent linear regression fits. i.u., institutional unit *p  <  0.05.
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in cognitive demand and task complexity (Li et al., 2022). However, it 
should be noted that risk sensitivity observed in this study is not 
intrinsically related to good or bad performance, but rather to risk 
preference or avoidance for each individual.

Our energy landscape analysis classified activity patterns of the 
eight ROIs into two major and two minor brain states. Intriguingly, 
activity patterns differed between the OFC and the other regions, 
including the STR, INS, and ACC. Each brain region has been 
identified as relevant to decision-making and learning under risk, but 
may have separate functions. For instance, it is assumed that STR 
activity codes PE signals (Niv et al., 2012) and OFC activity represents 
action values (O'Doherty et al., 2021). Thus, representations integrated 
by different activities of ROIs may represent non-linear, subjective loss 
values. The switching rate between the two major states was negatively 
correlated with the proportion of risky options in the loss domain 
(r = −0.59). This large effect size indicates that even activity patterns of 
some ROIs could represent essential parts of whole-brain activity in 
risk learning. Specifically, the switching rate was closely linked to the 
subjective utility parameter κ in the loss domain (r = 0.67). This 
suggests that dynamic transitions of brain states are directly involved 
in nonlinearity of the subjective value of money.

Previous studies using energy landscape analysis have revealed 
that dynamic transitions of brain states can predict individual 
differences in perception and attention. Perceptual switching in a 
structure-from-motion illusion was associated with the switching rate 
to frontal-area or visual-area major states (Watanabe et al., 2014). In 
addition, fluctuations of attention levels were correlated with the 
switching rate between different brain states derived from the dorsal-
attention and default-mode networks (Kondo et al., 2022). Taking 
these findings into account, different ROIs may also have different 
energy landscapes that are compatible with the gain domain. 
We provide the first evidence that brain dynamics of ROIs can predict 
individual variability of risk preference and avoidance, particularly in 
the loss domain.

This research identified differences in risk-learning brain 
functions between gain and loss domains: (i) the subjective utility 
model explains participant propensity for risk sensitivity; (ii) 
GABA+ levels in the STR are correlated with risk preference/
avoidance in the loss domain; and (iii) frequent switching between 
subcortical brain states is associated with risk avoidance in the loss 
domain. Our findings suggest a close linkage between decision 
making under risk, risk-sensitive brain dynamics, and striatal 

FIGURE 5

Results of energy landscape analysis. (A) BOLD signals obtained from eight ROIs were binarized. Appearance probability of each binarized state, i.e., 
activity pattern, was fitted by pairwise maximum entropy model. Using the energy value in the fitted function, an energy landscape was constructed. 
Activity patterns were categorized into basins of local minima. The brain state at each volume was characterized by a basin in the energy landscape. 
(B) Constructed disconnectivity graph. The switching rate between brain states was derived from activity patterns of active and inactive ROIs. 
(C) Correlations between the proportion of risky choices and the switching rate.
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GABA levels. However, we  were unable to determine which 
neurometabolite levels are involved in the gain domain. Previous 
studies indicate that the dopaminergic system contributes to risk 
sensitivity in the gain domain. Thus, future studies should further 
investigate neural mechanisms related to gain and loss domains by 
coupling behavioral analyses with multimodal neuroimaging, 
namely, fMRI and MRS. However, it should be  noted that the 
present results show a stable propensity in the loss domain for each 
individual. Exploration of mechanisms underlying risk-taking 
tendencies and decision-making processes is crucial not only for 
the treatment of addiction and anxiety disorders, but also for 
marketing strategies (Opris et al., 2020).
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