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Networks of interconnected neurons communicating through spiking signals 
offer the bedrock of neural computations. Our brain’s spiking neural networks 
have the computational capacity to achieve complex pattern recognition and 
cognitive functions effortlessly. However, solving real-world problems with 
artificial spiking neural networks (SNNs) has proved to be difficult for a variety 
of reasons. Crucially, scaling SNNs to large networks and processing large-scale 
real-world datasets have been challenging, especially when compared to their 
non-spiking deep learning counterparts. The critical operation that is needed of 
SNNs is the ability to learn distributed representations from data and use these 
representations for perceptual, cognitive and memory operations. In this work, 
we introduce a novel SNN that performs unsupervised representation learning 
and associative memory operations leveraging Hebbian synaptic and activity-
dependent structural plasticity coupled with neuron-units modelled as Poisson 
spike generators with sparse firing (~1  Hz mean and ~100  Hz maximum firing 
rate). Crucially, the architecture of our model derives from the neocortical 
columnar organization and combines feedforward projections for learning 
hidden representations and recurrent projections for forming associative 
memories. We evaluated the model on properties relevant for attractor-based 
associative memories such as pattern completion, perceptual rivalry, distortion 
resistance, and prototype extraction.
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1 Introduction

The human brain has long captivated scientists and engineers across disciplines, serving 
as a wellspring of inspiration for advancements in artificial intelligence, robotics, computing 
paradigms, and algorithmic designs. The brain’s remarkable efficiency, robustness, and parallel 
processing capabilities continues to act as a blueprint for developing sophisticated computing 
systems. Conventional computing paradigms, characterized by their sequential execution of 
instructions and rigid separation of memory and processing units, are increasingly being 
challenged by the growing demands of emerging applications such as real-time data analytics, 
autonomous systems, and cognitive computing. The brain seamlessly integrates memory and 
computation, operates in a massively parallel fashion, and exhibits remarkable fault tolerance 
and energy efficiency – all features that modern computing systems strive to achieve.

The potential of brain-like computing is evident in the realm of SNNs with the aim to 
reduce the energy cost. Notably, this energy efficiency of the brain is not attributed to a small 
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network size; rather, the human brain packs in billions of neurons and 
trillions of synapses. SNNs have been shown to efficiently process real-
time data streams through sparse and asynchronous event-based 
communication paradigms (Marković et al., 2020; Roy et al., 2019; 
Schuman et al., 2022; Zenke and Neftci, 2021). However, despite their 
potential, SNNs currently face several limitations. Notably, they lack 
robust mechanisms for learning sparse distributed internal 
representations from real-world data, a capability essential for real-
world pattern recognition tasks, as deep learning has demonstrated. 
Moreover, in the spirit of human-like perceptual functionality, SNNs 
should be  able to learn these representations in an unsupervised 
manner and utilize it for associative memory function, a hallmark 
feature of neural computations in the brain. Addressing these 
challenges is crucial for unlocking the full potential of SNNs and their 
neuromorphic implementations.

In this work, with the ambition to systematically tackle the 
aforementioned challenges, we introduce and evaluate a novel SNN 
model grounded in our previous work on non-spiking brain-like 
computing architectures (Ravichandran et al., 2023a; Ravichandran 
et al., 2024, 2021, 2020; Ravichandran et al., 2023b). Our earlier work 
derived from the Bayesian Confidence Propagation Neural Network 
(BCPNN) framework (Lansner and Ekeberg, 1989) and showed 
capacity to learn sparse distributed representations and employ these 
representations for associative memory function. Here, our spiking 
neuron model is a stochastic Poisson spike generation process and 
operates at low firing rates recapitulating the characteristics of in vivo 
cortical pyramidal neurons. We have incorporated several brain-like 
features into our model to enhance its biological plausibility (O’Reilly, 
1998; Pulvermüller et al., 2021; Ravichandran et al., 2024): (1) Hebbian 
plasticity: online synaptic learning leveraging only localized 
correlational information from pre- and post-synaptic spikes, (2) 
structural plasticity: an activity-dependent rewiring algorithm that 
learns a sparse (<10%) patchy connectivity matrix, (3) sparsely spiking 
activities: neuronal firing with Poisson statistics and around 1 Hz 
mean and 100 Hz maximum firing rate, (4) neocortical columnar 
architecture: functional hypercolumn modules with minicolumns 
competing in a soft-winner-takes-all manner, and (5) cortex-like 
network architecture: feedforward, recurrent, and feedback 
projections. Crucially, our feedforward projections are responsible for 
extracting sparse distributed hidden representations from data and the 
recurrent projections facilitate robust and reconstructive associative 
memory functions through attractor dynamics.

Based on the results from our previous research (Ravichandran 
et al., 2024, 2021, 2020; Ravichandran et al., 2023b), here in this work 
we have tested the following hypothesis: the sparsely spiking Poissonian 
neurons integrated within our brain-like network architecture achieve 
the same performance as non-spiking rate-based networks in terms of 
learning representations and associative memory functionality. To this 
effect, we  designed models with feedforward-only and full 
architectures (Ff and Full; Figure  1A), each with three different 
activations (Figure  1B): rate-based (Rate), spiking (Spk; 1,000 Hz 
maximum firing rate), and sparsely spiking (Spspk; 100 Hz maximum 
firing rate). In effect, we have compared the following six models:

 1 RateFf: rate-based activation in a feedforward network (without 
recurrent projections).

 2 RateFull: rate-based activation in a full network (with 
recurrent projections).

 3 SpkFf: spiking activation in a feedforward network.
 4 SpkFull: spiking activation in a full network.
 5 SpspkFf: sparsely spiking activation in a feedforward 

network, and
 6 SpspkFull: sparsely spiking activation in a full network.

We have evaluated our models on the widely used MNIST hand-
written digits dataset and made the following key observations: (1) the 
sparsely spiking model closely approximates the spiking (densely 
spiking) and rate-based models in terms of representation learning 
and associative memory function; (2) the previous published rate-
based BCPNN model can be  recast entirely as a sparsely spiking 
model with minimal modifications, and a synaptic short-term filtering 
( z -traces) is sufficient and necessary for this procedure; (3) the 
addition of recurrent projections enable the model to perform 
associative memory function and render it more robust compared to 
a feedforward-only model.

2 Related works

2.1 Models of associative memory and their 
limitation when learning correlated 
memories

The synaptic connections in the brain, especially in the neocortex, 
are found to be  predominantly recurrent in nature (Douglas and 
Martin, 2007). Yet their precise role in cortical information processing 
remains unclear (Kar et al., 2019; Kietzmann et al., 2019; Spoerer et al., 
2017; van Bergen and Kriegeskorte, 2020). One prominent hypothesis 
suggests that extensive recurrence facilitates associative memory, 
wherein distributed assemblies of coactive neurons reinforce each 
other (Lansner, 2009; Palm, 1980; Willshaw et al., 1969). This concept 
of cell assembly, known variously as associative memory (Harris, 2005; 
Hebb, 1949; Lansner et al., 2003), attractor (Amit, 1989; Hopfield, 
1982; Khona and Fiete, 2022), ensemble (Yuste et al., 2024), avalanche 
(Plenz and Thiagarajan, 2007), cognit (Fuster, 2006) among others, is 
hypothesized to serve as the internal representations of memorized 
objects. Several theoretical and computational studies have shown that 
recurrently connected neuron-like binary units with symmetric 
connectivity can implement attractor dynamics: the network is 
guaranteed to converge to attractor states corresponding to local 
energy minima in analogy with statistical physics (Amit, 1989; 
Hopfield, 1982). Learning memories in such networks typically 
follows Hebbian synaptic plasticity, i.e., the synaptic connections 
between neurons are strengthened when they are coactive (and 
weakened otherwise). Subsequent work showed recurrent modular 
networks where each module can be in one of many possible discrete 
states have increased storage capacity compared to non-modular 
networks (Gripon and Berrou, 2011; Kanter, 1988; Knoblauch and 
Palm, 2020).

Associative memories functionally reflect the Gestalt nature 
of perception of the whole form rather than just a collection of 
isolated parts (Wagemans et  al., 2012) and the reconstructive 
nature of memory discussed in psychology (Anderson et  al., 
1973; Bartlett and Kintsch, 1995). We describe four key functions 
of associative memories (Lansner, 2009; Palm, 1980; Rolls and 
Treves, 2012):
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Prototype extraction relates to psychological studies on concept 
formation and categorical knowledge representation where concepts 
are stored as a set of descriptors of a prototype and novel examples are 
judged to be  category members based on their closeness to this 
prototype (Rosch, 1988). The concept representations engage large-
scale patterns of neural activity distributed across the neocortex and 
hippocampus (Fernandino et al., 2022; Handjaras et al., 2016; Kiefer 
and Pulvermüller, 2012).

Pattern completion involves reconstructing a complete memory 
pattern when cued with partial patterns. As a memory related 
phenomenon, it is particularly associated with the hippocampus and 
neocortex in humans (Horner et  al., 2015; Liu et  al., 2016). 
Interestingly, in human visual perception tasks with partially occluded 
objects, behavioral choices as well as neuronal dynamics show delayed 
responses (ca. 50–100 ms) compared to when whole objects are 

presented, which suggests the involvement of recurrent and top-down 
processing (Tang et al., 2018, 2014). Mice studies have shown that 
optogenetic stimulation of a specific subset of neurons belonging to 
an ensemble gives rise to the recall of the whole pattern (Carrillo-Reid 
et al., 2016) and causally trigger behavioral responses even in the 
absence of visual stimulation (Carrillo-Reid et al., 2019).

Pattern rivalry corresponds to scenarios where multiple 
conflicting pattern cues (typically two) are simultaneously presented 
and only one of these competing patterns “wins over” as a percept. 
Pattern rivalry phenomena is studied in the psychological domain 
such as the Necker cube and face-vase illusions where multiple distinct 
object representations compete for perceptual awareness (Carter et al., 
2020). In binocular rivalry, two dissimilar images simultaneously 
presented to each eye compete for perceptual awareness (Blake and 
Logothetis, 2002; Lumer et al., 1998).

FIGURE 1

Conceptual schematic of functional roles of the different architectures and neuron-unit activation types investigated in this work. (A) In the 
feedforward-only network (Ff), the representations in the input space are highly correlated and data from distinct categories and with different features 
are entangled in complex non-linear relationships (shown as purple triangles, red star, and blue squares). The feedforward projections learn to map 
these data into the hidden space where the data points are less correlated and grouped together based on the feature similarity making them more 
linearly separable. The Full architecture that includes the recurrent projection utilizes the uncorrelated nature of the representations in the hidden 
space to form effective associative memories and group similar data points into attractors (attractor boundaries or basins of attraction shown as 
dashed circles and attractor states as symbol with golden border). (B) The activation function denoting the signal computed and communicated by 
each neuron-unit can be one of either Rate (non-spiking), Spk (spiking), or Spspk (sparsely spiking). The rate-based activation codes for the probability 
of the presence of a feature that the neuron-unit represents (“confidence”) and takes continuous values in the interval [0, 1]. The Spk activation is 
generated as stochastic binary samples from the underlying firing rate which can reach biologically implausible levels up to 1,000 Hz. The Spspk 
activation is generated as stochastic binary samples, but with firing rate scaled down to biologically realistic values with the maximum of 100 Hz.
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Distortion resistance implies the capability of the network to 
reconstruct the original pattern even if presented with a distorted cue, 
e.g., due to noise, limited viewing angle, poor contrast or illumination 
(Geirhos et al., 2018; Ghodrati et al., 2014; Wichmann et al., 2017).

While associative memory networks have been successful in 
modeling cortical dynamics and memory phenomena, they have 
primarily been trained on artificially generated orthogonal or 
random patterns (Hopfield, 1982; Rolls and Treves, 2012). 
Attractor networks struggle to reliably store overlapping 
(non-orthogonal) patterns, typical of real-world datasets, as they 
cause memory interference, so-called crosstalk, and lead to the 
emergence of spurious memories (Amit et al., 1987). This is a 
severe issue for considering associative memory networks as 
models of brain computation since the brain deals with high-
dimensional sensory input with complex correlations. 
Consequently, attractor networks have not really been combined 
with high-dimensional correlated input and the problem of 
extracting suitable representations from real-world data has not 
received much attention in the context of associative memory. 
The associative memory systems in the brain (higher-order 
cortical associative areas and hippocampus, for instance) 
evidently use highly transformed representations. It is 
hypothesized that desirable neural representations in the brain are 
extracted from sensory input by feedforward cortical pathways 
(DiCarlo et al., 2012; Felleman and Van Essen, 1991; Fuster, 2006).

2.2 Representation learning algorithms and 
issues in transferring them to the spiking 
domain

The question of the nature of representations to be extracted from 
data has been studied under the topic of representation learning in the 
brain and in computational models (Bengio et al., 2013). Biological 
inspiration has been loosely adopted in deep neural networks (DNN) 
developed for pattern recognition on complex datasets, e.g., natural 
images, videos, audio, natural languages (LeCun et al., 2015). The 
success of deep learning in solving various real-world pattern 
recognition benchmarks has showcased the importance of learning 
distributed internal representations.

Compared to deep learning models SNNs still lack in their 
representation learning capacity. Building such SNNs has been 
typically addressed either by converting a (non-spiking) deep neural 
network model trained with gradient descent into a SNN, or by 
modifying supervised backprop-based gradient descent algorithms to 
accommodate spiking neurons (Cramer et al., 2022; Eshraghian et al., 
2023; Roy et al., 2019; Wunderlich and Pehle, 2021; Zenke and Neftci, 
2021). This approach has the advantage of exploiting the powerful 
gradient-based optimization techniques that have been developed 
extensively for DNNs. However, it is not straightforward to convert 
gradient-based backprop learning to a spiking domain, since spiking 
activation does not comply well with continuous differentiable 
activation function that backprop builds on. Several recent works have 
shown how the spiking activation can be  smoothened into an 
activation function suitable for backprop and these models have 
demonstrated considerable success (Cramer et al., 2022). However, 
these methods typically carry many of the limitations of deep learning 
such as being predominantly supervised in their training, long 

training iterations, sensitivity to out-of-training noise, etc. Another 
critical issue with this approach is that it does not shed light on the 
learning in the brain and loses out on the impressive qualities that 
accompany a brain-like approach.

One prominent brain-like approach to learn hidden 
representations is to use biologically plausible spiking neuron 
activations and a localized form of learning rules. Early studies showed 
individual non-spiking neurons can develop selectivity to specific 
features when the hidden layer employs winner-takes-all competition 
(Bell and Sejnowski, 1995; Linsker, 1988; Rozell et al., 2008; Rumelhart 
and Zipser, 1985; Sanger, 1989). Later work incorporated spiking 
neurons and spike-timing-dependent plasticity (STDP) for learning 
and applied it to image recognition benchmarks (Diehl and Cook, 
2015; Masquelier and Thorpe, 2007). The aforementioned models 
were restricted to hidden layers with a global winner-takes-all 
competition which makes each neuron learn exclusive features from 
the data, typically prototype clusters, and form localist coding. 
However, for a fully distributed spiking representation where neurons 
code for non-exclusive local features from the data, the hidden layer 
constituting multiple modules each with winner-takes-all competition 
was shown to learn distributed representations and perform well on 
machine learning benchmarks (Pfeiffer and Pfeil, 2018; Ravichandran 
et al., 2023c; Roy and Basu, 2017; Taherkhani et al., 2020; Tavanaei 
et al., 2019).

2.3 Complex network architectures 
integrating feedforward and recurrent 
projections

Neural network models can have complex architectures that 
combine the capacity of feedforward models to learn sparse distributed 
representations and employ them in a recurrent setting to form 
associative memory functions. Such architectures have been explored 
recently and benchmarked on machine learning datasets (Wyatte 
et al., 2012; O’Reilly et al., 2013; Tang et al., 2018, 2023; Kar et al., 2019; 
Kietzmann et al., 2019; Sa-Couto and Wichert, 2020; Ravichandran 
et al., 2023a; Sacouto and Wichert; 2023; Simas et al., 2023; Salvatori 
et al., 2024). O’Reilly et al. (2013) modelled a multi-layer network with 
feedforward, feedback, and recurrent (local inhibition) connections 
which were trained with a supervised error-driven learning and tested 
on a synthetic 3D object (CU3D-100) images dataset (O’Reilly et al., 
2013; Wyatte et  al., 2012). Their model showed that top-down 
connections can fill in missing information in partially occluded 
images and recurrent connections improved the robustness of the 
model for high levels of occlusion.  Sacouto and Wichert (2023) 
created sparse distributed codes of images (MNIST and F-MNIST 
dataset) suitable for encoding into a Willshaw network with binary 
recurrent weights and use it storing and recalling images (Sacouto and 
Wichert, 2023; Sa-Couto and Wichert, 2020; Simas et  al., 2023). 
Salvatori et  al. (2021, 2024) and Tang et  al. (2023) focused on 
combining predictive coding models aimed at associative memory 
tasks. The learning process is governed by a covariance-based 
predictive coding rule termed covPCN, which explicitly encodes the 
precision (covariance) matrix. Ravichandran et  al. (2023b) used 
projections employing Hebbian-Bayesian learning with structural 
plasticity for feedforward and recurrent projections to create 
associative memories and showed recurrence improved the robustness 
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of the model to distortions of various kind (Ravichandran et  al., 
2023b). Traditional deep learning models, such as convolutional 
neural networks, have been augmented with recurrent connections 
(Hopfield network) in their penultimate layer to improve their 
robustness as well as to capture neural dynamics of the mammalian 
visual cortex and behavioral performance (Kar et al., 2019; Kar and 
DiCarlo, 2021; Kietzmann et al., 2019; Tang et al., 2018).

3 Model description

3.1 Architecture

The network constitutes three populations, INP, HID, and INPRC 
where the INP population is connected to the HID population with 
a feedforward projection to perform representation learning. The 
units in the HID population are recurrently connected to perform 
associative memory function, and the INPRC population receives 
feedback projection from the HID population for reconstructing 
the inputs.

Each population is modularized into hypercolumns and 
minicolumns following the columnar organization of the mammalian 
neocortex (Bastos et al., 2012; Douglas and Martin, 2004; Fransen and 
Lansner, 1998; Hubel and Wiesel, 1962; Mountcastle, 1997, 1957). The 
brain’s cortical minicolumn comprises around 80–100 tightly 
interconnected neurons having functionally similar response 
properties (Buxhoeveden and Casanova, 2002; Hubel and Wiesel, 
1962) and we abstract them into a single functional unit in this work. 
The minicolumn units (shown as white circles in Figure 2) locally 
compete within the hypercolumn module (shown as filled squares 
enclosing the white circles in Figure 2) operationally defined as the 
extent of local lateral inhibition. Thus, each population is composed 

of several identical hypercolumn modules, each of which in turn 
comprises many minicolumn units.

3.2 Hebbian-Bayesian learning

The learning rule changes the synaptic strength of connections 
using Bayesian-Hebbian synaptic plasticity. Our learning rule makes 
use of the local information available spatiotemporally at the synapse, 
making the learning mechanism and its underlying synaptic plasticity 
Hebbian, localized, and online. We indicate the pre- and post-synaptic 
population for each projection with the subscript i  and j , 
respectively. From the pre- and post-synaptic spike trains, s si j, �� �0 1,
, the learning rule involves calculating a cascade of terms accumulating 
the short- and long-term statistics of pre-, post-, and pre-post joint 
spiking activity. All the spike and trace variables are time dependent 
(time index is dropped for notation brevity).

The z -traces compute the short-term filtered signals from the 
pre- and post-synaptic spikes (Equation 1). The zi -trace is modelled 
after the rapid calcium influx initiated by opening of the NMDA and 
AMPA channels with short time-constants (τ zi

 ≈ 5–100 ms). The z j
-trace is modelled after the post-synaptic depolarization event and 
backpropagating action potential time-constants (τ z j

 ≈ 5–100 ms). 
Each spike event is scaled by a spike scaling factor, �spk � �f tmax , 
where fmax  is the hyperparameter controlling the maximal firing-
rate and ∆t  is the timestep ( ∆t  = 1 ms).
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FIGURE 2

Schematic of the network architecture. The input (INP), hidden (HID), and input reconstruction (INPRC) populations follow the columnar/modular 
architecture, i.e., they are modularized into hypercolumns, which in turn constitute minicolumn units locally competing through softmax 
normalization. The feedforward projections connect the INP with the HID populations, recurrent projections connect the HID units with other HID 
units, and the feedback projections connect the HID population with the INP population.
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The z -traces provide the coincidence detection window between 
pre- and post-synaptic spikes for subsequent plasticity induction. The 
z -traces are further transformed into p -traces, pi , pj , and pij , 
with long time-constants τ p  (seconds to hours) reflecting the long-
term synaptic plasticity process (Equation 2).
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The p -traces are finally transformed to bias and weight 
parameters of the synapse corresponding to terms in classical artificial 
neural networks. The bias term represents the self-information (or 
surprisal, or log prior) of the post-synaptic minicolumn unit, and the 
weight term – the point-wise mutual information between pre- and 
post-synaptic minicolumn units:

 

b p
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j j

ij
ij

i j

=

=

log ,

log
 

(3)

As a crucial departure from traditional backprop based DNNs, the 
learning rule above is local, correlative, and Hebbian, i.e., dependent 
only on pre- and post-synaptic activities.

Synaptic plasticity is grounded in the BCPNN framework, which 
integrates probabilistic inference into biologically plausible neural and 
synaptic operations. Our previous work with rate-based models showed 
that this learning rule is equivalent to the expectation maximization 
algorithm on a discrete mixture model where each minicolumn codes for 
a discrete mixture component (Ravichandran et al., 2024, 2021).

3.3 Spiking activation

The population in our network constitutes neurons producing 
spiking output where the firing rate reflects the confidence, i.e., probability 
of the presence of feature conditioned on the pre-synaptic population 
activity. The total synaptic input for neuron j  is updated to be  the 
weighted sum of incoming filtered spikes. The membrane voltage, v j ,  is 
updated as the total synaptic input with a time constant τm  as follows:
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(4)

where I j
ext  denotes the external current input and cij  is the 

binary connection variable, cij�� �0 1, , indicating the presence of an 
active or silent connection (learned by the structural plasticity 
mechanism described in Section 3.4). The spiking probability of the 
neuron j , π j , is computed as a softmax function over the membrane 
voltage, which induces a soft-winner-takes-all competition (lateral 
inhibition) between the neurons within the hypercolumn module. The 
output of the softmax function reflects the posterior belief probability 
of the minicolumn unit according to the BCPNN formalism.

 

� j
j

j
M

j

v

vj
�

� �
� ��� ��

exp

exp
,

1  

(5)

In the non-spiking (rate based) BCPNN model, this activation π j  
acts as the firing rate and can be  directly communicated as the 
neuronal signal. For our spiking model, we  formulate the 
instantaneous firing rate as the posterior belief probability (π j ) scaled 
by the spike scaling factor ( µspk ) and draw independent binary 
samples, s j ,  with a spike probability (event with value of 1) as follows:

 
s P t t tj j~ spike between and spk� �� � �� �

 
(6)

For timestep ∆t  smaller than the duration of changes in the 
underlying firing rate, the spike sampling process approximates the 
discrete-time version of the Poisson distribution with the underlying 
firing rate acting as the Poisson mean λ  (Buesing et  al., 2011; 
Ravichandran et al., 2023c). The scaling factor ( µspk  = ∆maxf t ) scales 
the posterior belief probability to the maximum firing rate set by fmax  
(<1,000 Hz) and this renders the filtered spike statistics of the model to 
be equivalent to the rate-based model (Ravichandran et al., 2023c).

3.4 Structural plasticity for network 
rewiring

Our structural plasticity algorithm (Ravichandran et  al., 2020) 
corresponds to the concept of structural plasticity in the brain which 
removes existing synaptic connections and creates new ones, thereby 
modifying the structure of the network in an activity- and experience-
dependent manner (Bailey and Kandel, 1993; Butz et al., 2009; Holtmaat 
and Svoboda, 2009; Lamprecht and LeDoux, 2004; Stettler et al., 2006). 
Based on the current knowledge about neocortical circuits, 
we incorporated three key experimental findings in our algorithm: (1) 
the number of synaptic contacts (incoming connections) made on 
pyramidal (excitatory) neurons remains roughly constant throughout 
the neocortex, (2) neocortical connectivity is highly patchy, i.e., axons 
originating from pyramidal neurons branch a few times and terminate 
in local spatial clusters making thousands of synapses with spatial extent 
of the same order as a hypercolumn, and (3) many of the synaptic 
contacts made on the pyramidal neurons are “silent,” i.e., synapses 
which are physical present but do not allow synaptic transmission.

Based on these observations, our rewiring algorithm computes 
for each active connection patch between every sending and receiving 
hypercolumn a normalized mutual information score ( M ). The M  
score between each sending and receiving hypercolumn is defined 
as follows:

 

M
p w

c
i j ij ij

j ij
�
�
�

, ,

 

(7)

where the indices i  and j  are minicolumn indices summing 
within their respective hypercolumns. The numerator is equivalent to 
the mutual information computed locally available at each connection 
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patch ( wij  are point wise mutual information as described in 
Equation 3) and the denominator is the number of outgoing 
connections per sending hypercolumn. For each receiving 
hypercolumn, if some silent incoming connection has greater score 
than some incoming active connection, their roles are flipped so that 
the active connection becomes silent and vice versa. The silent 
connections have zero weight but still act as “Hebbian probes” for 
statistics corresponding to the use of silent/active synapses in the 
(Isaac et al., 1995; Kerchner and Nicoll, 2008; Liao et al., 2001) and 
modeling literature (Knoblauch and Sommer, 2016; Stepanyants et al., 
2002). The M  score is maximized by each receiving hypercolumn by 
performing flip operations where we define a flip operation as follows: 
converting a silent connection with the highest M  score into an active 
connection and converting an active connection with the lowest M  
score to a silent connection. We perform N flip

conn  = 100 for every step 
of structural plasticity and we perform structural plasticity step once 
for every Nintv

conn  = 200 training patterns. This way, the rewiring 
algorithm operates on the connectivity matrix of each projection and 
uses the locally available statistics on each connection patch to learn 
a sparse patchy connectivity.

4 Experimental setup

4.1 Core dataset

In this work, we used the MNIST hand-written digits dataset 
(LeCun et al., 1998), a popular image recognition benchmark dataset 
in the machine learning domain (accessible at http://yann.lecun.com/
exdb/mnist/). MNIST consists of 60,000 training images and 10,000 
test images, each with an image and the associative label denoting one 
of the ten classes. The MNIST images are 28 × 28 pixel grayscale 
images with one digit per image. The pixel values are grayscale 
intensities indicating ink stroke (1 for ink and 0 for blank space), 
which can be interpreted as the probability of pixel being turned on 
while feeding into our network. The class labels were not used for 
training our network model.

4.2 Test data for three associative memory 
tasks

We derived three distinct test image datasets from the MNIST 
dataset to evaluate performance in three associative memory tasks, 
namely pattern completion, perceptual rivalry, and distortion resistance. 
In each case we used the first 1,000 samples of the MNIST test dataset 
(for testing the model, not training). We varied the difficulty level of 
each task using the “difficulty level” ∈  {0.2, 0.4, 0.6, 0.8, 1}, and for each 
of the five difficulty levels, we created 1,000 patterns making it 5,000 
patterns in total for each task (what “difficulty” implies for the tasks 
varies in each case and we describe it in detail below).

For the pattern completion task, the associative memory model 
was expected to recover the original memory pattern when presented 
with partial patterns. To simulate this, we modified the MNIST images 
by placing a gray bar of varying width and varying position on the 
image (for examples, see Figure 3A). The bar had pixel intensities of 
0.5, interpreted as turning on the given pixel at a chance level (c.f. 
Equations 4, 5). For each difficulty level, D , the width of the bar (in 

pixels) was computed as follows: width � �14 D  (14 is half the size of 
MNIST image). We chose four positions for the placement of the bars, 
up, down, left and, right, each amounting to 250 patterns per difficulty. 
For the pattern rivalry task, the associative memory model was 
presented with multiple conflicting patterns (typically two), and the 
model was expected to render one pattern to “win over” the others 
rival patterns. To simulate this, we modified the MNIST images by 
replacing a bar of varying width with pixels from another image (for 
examples, see Figure 3B).

For each difficulty level, D , the width of the rival image was 
calculated as width � �14 D . We  choose four positions for the 
placement of the bars, up, down, left and, right, each amounting to 250 
patterns per difficulty. The rival images were chosen pseudo-randomly 
by progressing within the 250 test patterns in the reverse direction, for, 
e.g., the 8th image had the 242nd image as the rival (this rendered the 
procedure deterministic for simplicity).

For the distortion resistance task, the associative memory model 
was presented with patterns under various distortions and the model 
was supposed to restore the original, undistorted ones. To simulate 
this, we modified the MNIST images by performing one of five types 
of distortion (for examples, see Figure 3C). For each difficulty level, 
D , we split the 1,000 test images into 5 distortion types and created 
the following five distortions to the images: noise, grid, clutter, 
deletion and, occlusion, derived from previous work (George et al., 
2017; Ravichandran et al., 2023b).

4.3 Network setup

The INP population constituted HINP  = 784 hypercolumns 
corresponding to pixels of MNIST flattened 28 × 28 image. Each 
hypercolumn was made up of MINP  = 2 minicolumns corresponding 
to the binary nature of the pixel intensity (ON or OFF). The HID 
population constituted HHID  = 100 hypercolumns with MHID  = 100 
minicolumns per hypercolumn. The input reconstruction population, 
INPRC , had the same shape as the INP population, with 
HINPRC  = 784 and MINPRC  = 2. For all the projection types we set 
the parameter Nconn  which determines the number of incoming 
connections per receiving hypercolumn (these connections were 
inherited by all minicolumns units within any given hypercolumn).

4.4 Simulation protocol

The MNIST image was injected as input into the network by 
setting the external current of the INP and INPRC populations. 
We applied the log of the image pixel intensities as the input current. 
Since all the populations in our network use the softmax activation 
function, the logged pixel intensities get transformed to the pixel 
intensities in the range [0, 1] (minicolumn activities). We also clipped 
the input current to a small positive value (1e−10), which prevents the 
exponential term in the softmax from becoming negative infinity 
(they get clipped to −10). For this, the image pixel intensity (indexed 
by j ) is injected into the two minicolumns (indexed by 2 j  and 
2 1j + ) of the j -th hypercolumn as follows:

 
I uj j2

ext = log ,
 

(8)
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I uj j2 1 1� � �� �ext log ,

 
(9)

where uj  is the pixel intensity of the image normalized to be in 
the range [0, 1].

The network was first run in the training mode where the 
feedforward-driven activities are used by the network for synaptic 
learning and structural plasticity. This is done for each pattern by 
updating the p -traces (Equation 2) and computing the weights and 
biases on the last step of each pattern presentation. The network was 
then run in the evaluation mode where the test and modified test 
datasets (for associative memory tasks as described in Section 4.2) 
were run in succession without any learning.

For each pattern in the training mode the network was run in two 
phases, no-input and ffwd phases, and in the evaluation mode the 
network was run in four phases, no-input, ffwd, overlap, and recr, 
in succession:

 1 no-input phase – the network is run without any input in order 
to clear any previous activity and avoid interference,

 2 ffwd phase – the network is driven with the external input to 
the INP population, in turn, the INP population drives the 
HID population,

 3 overlap phase – the HID population is driven both by the INP 
population and itself through recurrent projections, and

 4 recr phase – the input is cutoff, and the HID population is 
running solely through recurrent self-projections.

We set the duration of each phase using parameters, Tno input− , 
Tffwd , Toverlap , and Trecr  respectively. For simulating the four 
phases (illustrated in Figure 4), we controlled the injection of 
input into the populations (Equations 8, 9) as well as the 
propagation of activity through each projection individually 
(Equation 4). Table 1 summarizes all the default parameters used 
in our model for the SpspkFull model.

FIGURE 3

MNIST dataset modified for pattern completion, perceptual rivalry, and distortion resistance tasks sorted by difficulty level (column-wise) and type of 
modification (row-wise). (A) Pattern completion: the images are partially visible as a gray bar of varying width is placed on either the top, bottom, left, 
or right of image. (B) Perceptual rivalry: the images are partially overlapped with varying width by a randomly chosen rival image. (C) Distortion 
resistance: the images are modified by adding random flips (noise), regularly spaced grid lines (grid), randomly spaced black lines (clutter), randomly 
spaced white lines (deletion), or a grey square box (occlusion) with varying degree controlled by the difficulty level.
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4.5 Models under comparison

We compared six different BCPNN models: (1) RateFf: rate-based 
activation in a feedforward network (without recurrent projection), (2) 
RateFull: rate-based activation in a full network (with recurrent 
projection), (3) SpkFf: spiking activation in a feedforward network, (4) 
SpkFull: spiking activation in a full network, (5) SpspkFf: sparsely spiking 
activation (with 100 Hz maximum firing rate) in a feedforward network, 
and (6) SpspkFull: sparsely spiking activation in a full network.

For the rate-based models (RateFf and RateFull), the activation 
was implemented by considering the softmax output value 
(Equation 5), π j , directly as the neuronal signal communicated 
across the network. For spiking (SpkFf and SpkFull) and sparsely 
spiking (SpspkFf and SpspkFull) activation, we further sampled binary 
values (Equation 6), s j , from the softmax output and used these for 
communication. Crucially, all the six models were simulated in the 
same code implementation by modifying the parameter values as 
listed in Table 2.

4.6 Evaluating representations via linear 
classifier

We used a linear classifier trained on the model’s internal 
representations to decode the class labels. Although our model does 
not require class labels for learning, we exploited the label information 
to quantify the class separability as one of the evaluation methods. For 
this, we used a simple linear classifier with N  = 10 softmax output 
units corresponding to the class labels.

We used the z -traces of the hidden population as the input to the 
classifier. For training the classifier, we used the cross-entropy loss 
function and Adam optimizer with parameters α  = 0.001, β1  = 0.9, 
β2  = 0.999 and,   = 10 7−  as originally defined (Kingma and Ba, 

2015). We used minibatches of 64 samples and trained the network for 
10 epochs.

5 Results

5.1 Sparsely firing representations show 
orthogonalization necessary for associative 
memory

Associative memory models require the patterns stored to 
be  sparse orthogonal with minimal overlap, so that the attractor 
memories do not suffer interference or form spurious minima (Amit 
et  al., 1987). We  investigated with our SpspkFull model if the 
feedforward-driven activities form sparse spiking representations that 
have minimal overlap and benefit the formation of robust recurrent-
driven associative memories.

To this end, we first visualized the spike raster and firing rate of 
selected hypercolumns from the INP, HID, and INPRC populations of 
the SpspkFull model (run on evaluation mode). The spike raster of all 
the populations (Figure 5; upper row) shows that the activities are 
mostly silent with occasional brief periods of high frequency bursts. 
We further computed the firing rates by convolving spike trains with 
a Gaussian kernel (σ 2  = 20 ms) (Figure 5; lower row). We observed 
that very few minicolumns produced high firing rates (typically one 

within a hypercolumn module) at any time due to the softmax 
normalization performed by the model. The peak firing rate of these 
units typically reaches 100 Hz confirming our model operating based 
on the scaling operation on the firing probability by the fmax  
parameter ( fmax  = 100 Hz; Equation 6).

Next, we sought to assess the degree of orthogonalization of the 
representations by computing the representational similarity of all 
populations. For this, we computed the pair-wise cosine similarity 
between the z -traces for test patterns ( N test  = 10,000) at two time 
points after the pattern onset: T  = 100 ms ( Tffwd ; feedforward-driven 
activities) and T  = 300 ms ( T T Tffwd overlap recr+ + ; attractor-driven 
activities). For each of the similarity matrices, we  computed the 
orthogonality ratio, sortho , that measures the ratio between average 
within-class similarity and average similarity across all pairs of 
patterns; higher value of sortho  implies higher degree 
of orthogonalization.

The similarity matrix for INP population (Figure 6; left) shows the 
within-class similarities (class-wise diagonal values) are not very 
distinct from the between-class similarities (class-wise off-diagonal 
values), with sortho = 1.04, directly reflecting the nature of the MNIST 
dataset where images are highly correlated. Any potential associative 
memory directly trained on the INP representations would suffer from 
severe interference between memories owing to the high degree of 
overlap. The similarity matrices for HID representations at T  = 100 
and 300 ms (Figure 6; upper and lower center) are strikingly different 
from those corresponding to the INP representations ( sortho  = 3.67 at 
T  = 100 and sortho  = 7.01 at T  = 300 ms), demonstrating a strong 
trend for the orthogonalization of HID representations: mostly zero 
similarity between-class while within-class similarity are visibly 
distinct and high in magnitude. The similarity matrix at T  = 300 ms 
is “crisper” compared to the same at T  = 100 ms, as expected from 
associative memory dynamics acting on the feedforward-driven 
representations. The similarity matrix for INPRC population at 
T  = 100 and 300 ms (Figure 6; upper and lower right) shows stronger 
orthogonalization of the reconstructed representations ( sortho  = 1.07 
at T  = 100 ms and sortho  = 1.14 at T  = 300 ms) in comparison with 
the input representations. This demonstrated that the HID 
representations showed high degree of orthogonalization that would 
benefit the associative memory to store patters without considerable 
interference when compared to the INP representations.

Based on the above experiments, we  concluded that the HID 
activities exhibited properties of sparse orthogonal representations 
that are suitable for associative memory formation. We  further 
qualitatively examined the evolution of INP and INPRC population 
outputs (Figure 7) after stimulating with one example pattern for a 
time-period of T  = 300 ms after the pattern onset (we skipped the 
no-input period). For this, we visualized the raw spiking activities  
( s j ) and the short-term filtered z -traces (for INP population we used 
the zi -traces of feedforward projection and for INPRC population – 
the z j -traces of feedback projection). The INP spiking activity shows 
highly sparse sampling of the input during the first 150 ms 
(feedforward and overlap phase; Tffwd  = 100 ms and Toverlap  = 50 ms) 
and noise in the later phase, 150–300 ms (recurrent phase; 
Trecr  = 50 ms). The INPRC representations reflect that there is an 
initial reconstruction of the presented digit (60–180 ms) corresponding 
to the feedforward-driven representations. After the inputs are 
removed (150–300 ms), the reconstruction settles to a prototypical 
digit, corresponding to the attractor representations in the HID 
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population, which is visible as stochastic samples in the spiking 
activities and clearly visible from the z -traces. Based on similar 
experiments with many more patterns (not shown for brevity), 
we observed similar results where the INPRC representations converge 
to a stable attractor resembling a prototypical digit image.

5.2 Structural plasticity forms stable 
localized receptive fields

We evaluated the effect of the structural plasticity algorithm on the 
network connectivity and the formation of receptive fields over the course 
of training. Since the structural plasticity algorithm acts on patchy 
connections between hypercolumn pairs, we computed the receptive field 
of each hypercolumn module by using the connectivity matrix of 
dimensions ( HHID , HINP ) for the feedforward projections, and the 
transpose of the connectivity matrix of dimension ( HINP , HHID ) for 
the feedback projections. We plotted the receptive fields of the first ten 
HID  hypercolumns in log steps over the course of training for the 
feedforward (Figure 8; left) and feedback (Figure 8; right) projections.

Each hidden hypercolumn is initialized with randomized 
connections with the INP population (Figure  8 top rows). The 
connections converge within the first 10,000 training patterns and 
remain stable over the whole course of training (bottom rows). 
Moreover, the connections converge to a meaningful set of spatially 

localized receptive fields over the input space, even though no 
knowledge of the input space topology was explicitly provided to the 
network. Furthermore, the receptive fields of the feedforward and 
feedback projections mirror each other for each hypercolumn module 
(for instance, first column of left plot and first column of right plot in 
Figure 8), demonstrating again that the structural plasticity finds the 
correlative structure between the INP and HID populations.

We observed that the number of rewiring flip operations for the 
feedforward and feedback projections (Figure 9; upper left and right 
respectively) starts off with a high value at the beginning of the 
training and decreases over the course of training, converging near 
zero. The average M  score (normalized mutual information), which 
is greedily maximized by each hidden hypercolumn individually, 
converges at a high value for both projections (Figure 9; lower left and 
right). It is worth noting though that the score has high variability 
across hypercolumns for the feedback projection. The above results 
demonstrated the structural plasticity algorithm identifies a set of 
meaningful localized receptive fields spanning the input space.

5.3 Short-term z-filtering is essential for 
sparsely spiking networks

The sparsely spiking models (SpspkFf and SpspkFull) were 
designed by scaling down the firing rates to low biologically realistic 

FIGURE 4

Protocol for network simulation. The network is run either in training mode (top row), where the feedforward-driven activities are used for synaptic 
learning and structural plasticity, or in evaluation mode (bottom row), where the feedforward-driven activities are used to cue the recurrence-driven 
associative memories. For each pattern, the network is run either for two phases (no-input and ffwd) in the training mode or for four phases in the 
evaluation mode (no-input, ffwd, overlap, and recr). The gray arrows converging on the INP and INPRC populations indicate injecting the MNIST 
images as inputs to the respective populations. The white unfilled arrows indicate the presence of a projection in the network connecting two 
populations. Blue filling on the projection arrows indicates propagation of activities through the respective projections. Purple filling on the projection 
arrows indicate the projection undergoes synaptic and structural plasticity updates for each pattern. Arrow with both blue and purple filling indicates 
the projection is both propagating and learning. In the no-input phase, the network is run without any input to clear any previous activity. In the ffwd 
phase the network is driven with the external input to the INP and INPRC populations and the INP population drives HID population. In the overlap 
phase the HID population is driven both by the INP population and itself through recurrent projections. In the recr phase the input is cutoff, and the 
HID population is running solely through recurrent self-projections.
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values using the parameter fmax  (Equation 7), for instance 
fmax  = 100 Hz. The crucial difference between our sparsely spiking 

models and other models is the use of filtering using high values for 
time constants τ z  (short-term z -filtering of the pre- and post-
synaptic spikes) and τm  (membrane time constant). The rate-based 
models (RateFf and RateFull) used τ z  = 1 ms and τm  = 1 ms (= ∆t ) 
which effectively amounts to no filtering and the spiking models 
(SpkFf and SpkFull) used relatively low values: τ z  = 5 ms and 
τm  = 5 ms.

For the sparsely spiking models, we hypothesized that the effects 
of scaling down the spiking probability ( fmax  < 1,000 Hz) can 
be  countered using high values for τ z  and τm  parameters. 
Furthermore, we  expected the maximum firing rate fmax  and 
filtering time constants (τ z  and/or τm ) to be inversely related, i.e., 
lower spiking probability (lower fmax ) would be compensated by 
longer filtering (higher τ z  and/or τm ) in order to recapitulate the 
performance of the spiking model (dense spiking; fmax  = 1,000 Hz). 
To this end, we  assessed the SpspkFull model performance by 
systematically varying fmax =  {20, 50, 100, 200, 500, 1,000} (in Hz), 
�m� {1, 2, 5, 10, 20} (in ms), and � z � {1, 2, 5, 10, 20, 50, 100} (in ms) 
while measuring the linear classification accuracy of each model. 
Since this experiment involved running many simulations ( n = 210), 

we  trained the models on a reduced MNIST dataset with 
N train  = 1,000 and N test  = 1,000, unlike the rest of the experiments 
which were trained and tested on the full MNIST dataset with 
N train  = 60,000 and N test  = 10,000.

For unrealistically high firing rates ( fmax  = 200–1,000 Hz) 
we observed the high classification accuracy over a wide range of τm  and 
τ z  since the spikes are dense samples of the underlying firing rate and 
filtering is not necessarily helpful (Figure 10; upper row). For biologically 
realistic firing rates (τ z  = 20–100 Hz) performance with τ z  < 10 ms is 
very low. This is because pre- and post-synaptic spikes are expected to 
coincide within this time-window for learning to occur, while the spikes 
are generated sparsely and irregularly from a Poisson distribution. 
However, for τ z  = 20–50 ms the performance closely approximates the 
densely spiking model since this time window is sufficient to expect pre- 
and post-synaptic spikes to coincide and be  associated through 
Hebbian plasticity.

All the runs irrespective of fmax  drop sharply in performance 
at � z �  100 ms, because the time window provided is too long 
compared to the presentation time of each pattern ( T  = 300 ms) 
and learning wrongly associates the current pattern with 
temporally adjacent patterns. We  found the there was no 
dependence between the value of τm  and performance across all 
values of fmax . Unlike the z -traces controlling the Hebbian 

TABLE 1 Network parameters for SpspkFull model.

Type Parameter Value Description

Network architecture INPH 784 # hypercolumns in input population

INPM 2 # minicolumns per hypercolumn in input population

HIDH 100 # hypercolumns in hidden population

HIDM 100 # minicolumns per hypercolumn in hidden population

INPRCH 784 # hypercolumns in input reconstruction population

INPRCM 2 # minicolumns per hypercolumn in input reconstruction population

→INP
conn HIDN 78 # incoming feedforward connections per hidden hypercolumn

→HID
conn HIDN 100 # incoming recurrent connections per hidden hypercolumn

→HID
conn INPRCN 10 # incoming feedback connections per input hypercolumn

Neural and synaptic time-constants mτ 0.005 s Membrane time constant

,zi zjτ τ 0.020 s Time constant of Z-traces

pτ 5 s Time constant of P-traces

Stimulation protocol ∆t 0.001 s Simulation timestep

spkT 0.001 s Time duration of spike

no inputT − 0.100 s Time duration of no-input phase

ffwdT 0.100 s Time duration of feedforward phase

overlapT 0.050 s Time duration of overlap phase

recrT 0.150 s Time duration of recurrent phase

Data setup trainN 60,000 Number of training patterns

testN 10,000 Number of test patterns

epochN 20 Number of training epochs
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time window of coincidence of pre- and post-synaptic spikes, the 
membrane time constant τm  acts only on the post-synaptic spike 
and has less significance in the learning phase. The results 
demonstrated the importance of τ z  in the functioning of the 
sparsely spiking models and how longer z -filtering can 
compensate for the low firing rates. Based on the results, we used 
τ z  = 20 ms for our sparse spiking models with fmax  = 100 Hz.

We finally trained all six models (parameter values are listed 
in Table  2) on the full MNIST dataset ( N train  = 60,000 and 
N test  = 10,000) for n = 5 runs. The test accuracy results (Table 3) 
show that the SpspkFf model closely approximates the 

performance of SpkFf and RateFf models. Similarity, SpspkFull 
approximates SpkFull and RateFull though we  notice a small 
decrease in performance (around 3%). In all cases, the 
feedforward models (RateFf, SpkFf, and SpspkFf) outperform the 
full models which feature additional recurrent projections 
(RateFull, SpkFull, and SpspkFull). This is due to the associative 
memory changing the feedforward-driven representations into 
attractor representations. Which can occasionally converge to 
wrong attractors. We  discuss this in detail in Section 5.5 and 
provide scenarios where full models with recurrent projections 
prove to be beneficial.

TABLE 2 Parameters for the six models under comparison.

Parameter RateFf RateFull SpkFf SpkFull SpspkFf SpspkFull

Activity
jπ jπ s j s j s j s j

maxf
  (Hz) – – 1,000 1,000 100 100

τ τ,zi zj (s) 0.001 0.001 0.005 0.005 0.020 0.020

mτ   (s) 0.001 0.001 0.001 0.001 0.005 0.005

−no inputT
  (s) 0 0 0.025 0.025 0.100 0.100

ffwdT
  (s) 0.005 0.005 0.025 0.025 0.100 0.100

overlapT
 (s) 0 0 0 0.025 0 0.050

recrT  (s) 0 0.020 0 0.050 0 0.150

FIGURE 5

Spiking activity and firing rate for the INP (left), HID (center), and INPRC (right) populations. The first row shows the spike rasters for the first 10 
minicolumns (arranged within 5 hypercolumns) for the INP and INPRC population and the first 400 minicolumns (arranged within 4 hypercolumns) for 
the HID population. The white bars correspond to the no-input period (100 ms) and the gray bars correspond to the pattern period (ff, overlap, and 
recr combined; 300 ms). The bottom row shows the firing rate of two selected minicolumns (indicated by blue and red spike trains in their respective 
population) computed by convolving the spike trains with a Gaussian kernel (σ2  =  20  ms) demonstrating the minicolumns that spike with the maximum 
firing rate around 100  Hz.
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5.4 Prototype extraction

Associative memory involves grouping similar patterns into 
representative memory objects for storage. Each resulting memory 
object acts therefore as a representative prototype of the grouped 
patterns. This is analogous to clustering in machine learning. The 
prototypes are coded as high-dimensional distributed 

representations converging to attractor states (Lansner et al., 2023; 
Ravichandran et al., 2023b).

From the SpspkFull model, we expected the recurrent projections 
to implement prototype extraction and group similar feedforward-
driven activities into common attractors. Since the activities in the 
HID population are sparse stochastic spikes, we used the z -traces to 
measure the pair-wise similarities across all the MNIST test dataset. 

FIGURE 6

Representational similarity. Pair-wise cosine similarity matrices for N = 10,000 MNIST test patterns sorted by their labels for INP (left), HID (middle) and 
INPRC (right) populations at T = 100 ms (feedforward-driven; upper row) and T = 300 ms (attractor-driven; lower row) representations. The 
orthogonality ratio, sortho, is displayed inside each plot. The INP population shows low orthogonality due to the large similarity values (0.6–0.8) both 
within- and between-classes. The HID population (T = 100 and 300 ms) shows high orthogonality due to low similarity values (0–0.2) between-class 
owing to the sparse distributed nature of representations. The orthogonality ratio also increases from feedforward-driven representations (T = 100 ms) 
to attractor representations (T = 300 ms). The input reconstruction population, INPRC, shows more orthogonality when compared to the 
corresponding INP similarities.

FIGURE 7

Time course of attractor representations for one pattern. The spikes and z-traces of INP and INPRC populations for one example pattern for T = 300 
ms. The spike raster is highly noisy and sparse while the z-traces show a highly stable representation of digits. The INPRC population shows the initial 
reconstruction of feedforward-driven representations (T = 60–180 ms) and the attractor reconstructions (T = 150–300 ms) driven by the recurrent 
projections showing a stable convergence to the prototypical digit (corresponding to one of the class labels) even after the input is no longer fed into 
the network.
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FIGURE 9

Convergence of the structural plasticity algorithm for feedforward (left) and feedback (right) projections. The number of rewiring flip operations (top 
row) and M  score (normalized mutual information; bottom row) per rewiring step over the course of training (mean  ±  std. from n  =  100 HID 
hypercolumns) shows convergence for both feedforward and feedback projections.

For this we used the z -traces of the HID population at the last step of 
each pattern run ( T  = 300 ms) and computed the cosine similarity 
(denoted by S ) removing the diagonal elements. The distribution of 
the cosine similarity was heavily skewed towards zero (due to the 

highly sparse nature of the representations) with a small fraction 
having a large positive value (above 0.1, for instance; Figure 11A). 
We also observed there were no two attractor patterns in the HID 
population that converged on the same unique attractor, as seen by the 

FIGURE 8

Receptive field formation for feedforward (left) and feedback (right) projections. Each column corresponds to connections between one randomly 
chosen hypercolumn of the HID population (column number corresponds to index of HID hypercolumn) and the INP population. Over the course of 
training the connections form spatially localized receptive fields in the image space.
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zero count for S  = 1. Due to this, we used a threshold value on the 
cosine similarity, denoted by Smin , and considered all attractors with 
similarity above Smin  as unique prototypes. Since the number of such 
prototypes found by our method depends on the value of Smin , 
we varied Smin  from 0 to 1 at a regular interval of 0.01 and established 
the relationship between number of prototypes found and Smin  
(Figure 11B). We observed that for small values, Smin  < 0.25, there 
were fewer number of prototypes found (less than 100). For larger 
values, Smin  = 0.75, the number of prototypes quicky approached the 
number of total test patterns ( N test  = 1,000), since there were very few 
attractor patterns that had a cosine similarity S  > 0.75 (Figure 11A) 
and almost all attractor patterns were categorized as unique attractors.

We selected three values of similarity threshold, Smin  = 0.01, 
0.1, and 0.2, and examined the prototypes found by the model 
based on the input reconstructions from the INPRC population 
(Figure  11C). Since this involved many patterns from the test 
dataset converging on the same prototype, we  averaged all the 
INPRC z -traces (from the last time step, T  = 300 ms) that were 
categorized as the same prototype based on the similarity 
threshold. Hence, we found the average input reconstruction per 
prototype as well as a “attraction” index that indicates how many 
patterns converged on the same prototype (displayed as small text 
at the top of each image in Figure 11C). For Smin  = 0.01, there 
were 13 prototypes found that resembled most of the unique digits 
from the dataset (Figure 11C; upper row). For Smin  = 0.1, there 
were 33 prototypes found that covered all the unique digits from 
the dataset, as well as capturing different styles of writing the same 

digit, for instance, upright and slanted one (Figure 11C; middle 
row). For Smin  = 0.2, there were 65 prototypes found that similarly 
captured most of the writing styles of digits. We found a highly 
skewed distribution of the attraction index with only a few 
prototypes being popular and the majority of prototypes having a 
small attraction index. We  also observed that the input 
reconstruction of the prototypes is highly stable, i.e., the average 
input reconstruction of a large number of attractors lead to crisp 
images. For instance, for Smin  = 0.1, for the three most popular 
prototypes the average input reconstructions of around 600 
patterns clearly resembled digits “1,” “8,” and “4.” Considering that 
the cosine similarity in the HID attractor space was a small value 
of Smin .= 0 1 , the image reconstructions were highly similar to 
each other in the input space.

5.5 Associative memory improves the 
robustness of representations

The aim of the following experiments was to compare the capacity 
of our models on three associative memory tasks – (1) pattern 
completion, (2) perceptual rivalry, and (3) distortion resistance. 
Considering that a significant fraction of the image is corrupted, each 
task is considerably harder than the (clean) MNIST test dataset. 
We tested if the full network with recurrent projections can produce 
robust representations by removing the corruptions introduced. Given 
the highly sparse irregular firing dynamics of the SpspkFull model, 

FIGURE 10

Impact of z-filtering on classification performance. Higher value of τz  and τm  implies longer filtering and setting the value to 1  ms (= ∆t ) implies 
essentially no filtering. Longer z -filtering compensates for low firing rates in sparsely firing spiking networks. For high firing rate ( fmax   >  200  Hz; top 
rows), the accuracy is high over a wide range of τz  and τm  values. For sparsely firing networks with biologically realistic firing rates ( fmax <  200  Hz; 
bottom rows), the performance is sensitive to τz , optimal in range of 10–50  ms, and resistant to τm  values.

TABLE 3 Test classification performance of all six models on MNIST test dataset (mean  ±  std. % from n  =  5 runs).

RateFf RateFull SpkFf SpkFull SpspkFf SpspkFull

Test acc. (%) 98.06 ± 0.07 95.59 ± 0.14 97.93 ± 0.08 95.02 ± 0.10 97.2 ± 0.08 92.38 ± 0.17
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we sought to examine if the network can handle associative memory 
tasks and perform competitively with the SpkFull and RateFull model. 
We qualitatively assessed the evolution of INP and INPRC population 
outputs of the SpspkFull model after stimulating with one example 
pattern from each task (difficulty level = 0.6). For this, we visualized 
(Figure 12) the raw spiking activities ( s j ) and the short-term filtered 
z -traces for the INP and INPRC populations from the network at 
regular intervals of 20 ms after the pattern onset. For the INP 
population, we used the zi -traces of feedforward projection and for 
the INPRC population, we used the z j -traces of feedback projection.

For the pattern completion task (Figure 12A), the input image was 
covered with a gray bar on the top covering around 8 pixels, which can 
be seen in the filtered INP z -traces (2nd row in Figure 12A). From 
the feedforward-driven representations coming from the partial input, 
the associative memory model needs to recover the original memory 
pattern. In the initial period with the feedforward-driven 
representations (0–100 ms), the reconstructed images show corrupted 
content with traces of the top bar (INPRC z -traces; 60–120 ms). 
However, in the later phase driven exclusively through recurrent 
associative memory (150–300 ms), the reconstructed images reflect 
the convergence to a cleaned version of the corresponding digit 
completing the pattern (INPRC z -traces; 150–300 ms). The attractor-
driven image reconstructions appear closer to the prototypical digit 
compared to the feedforward-driven image reconstructions.

The visualizations obtained in the perceptual rivalry (Figure 12B) 
and distortion resistance (Figure 12C) tasks showed similar results. 
The perceptual rivalry task involved presenting the network with an 
image combined in a smaller fraction with another rival image, as can 
be seen from the filtered INP z -traces (2nd row in Figure 12B). The 
associative memory needs to converge to the original image 

representation (pattern with the strongest activation) and “win-over” 
the rival image. The feedforward-driven reconstructions (INPRC z
-traces; 60–120 ms in Figure 12B) show faithful reconstructions of the 
image and the rival image. However, the attractor-driven 
reconstructions (INPRC z -traces; 150–300 ms in Figure 12B) show 
that the original digit is completely recovered, i.e., the convergence to 
the prototypical digit without traces of the rival image.

The distortion resistance task involved presenting the network 
with images corrupted with various distortions and the associative 
memory network needs to remove the distortions and recover the 
original pattern. The feedforward-driven reconstructions (INPRC z
-traces; 60–120 ms in Figure  12C) illustrate a highly distorted 
reconstruction image corrupted by the input noise. However, the 
attractor-driven reconstructions (INPRC z -traces; 150–300 ms in 
Figure 12C) reflect the convergence to the prototypical digit without 
any noise from the input.

Next, we sought to quantify the performance of the network using 
the linear classification performance. For this, we tested the six models 
(RateFf, RateFull, SpkFf, SpkFull, SpspkFf, and SpspkFull) on the three 
associative memory tasks (pattern completion, perceptual rivalry, and 
distortion resistance), each on 5 difficulty levels ( N  = 1,000 samples 
per difficulty level). The performance comparison for the models 
( n  = 5 runs) is shown in Figure 13. We observed two main results 
from the experiment: (1) the sparsely spiking models (SpspkFf, 
SpspkFull) perform very closely to their corresponding rate (RateFf, 
RateFull) and spiking (SpkFf, SpkFull) models on all the associative 
memory tasks and on all difficulty levels. Given the highly sparse 
irregular spiking activity of the models, the model performance 
robustly recapitulates the functionality of the rate-based model. (2) 
The full network models (RateFull, SpkFull, and SpspkFull) 

FIGURE 11

Prototype extraction. (A) Distribution of pair-wise similarities (S) of HID attractor representations (T  =  300  ms) with a clear mode close to zero and only 
a smaller fraction of high values. (B) The relationship between similarity threshold, Smin, and the number of prototypes found by grouping attractor 
representations into unique prototypes. (C) The prototypes found for Smin  =  0.01 (upper), 0.1 (middle), and 0.2 (right) by averaging the input 
reconstructions from the z-traces of the INPRC population.

https://doi.org/10.3389/fnins.2024.1439414
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ravichandran et al. 10.3389/fnins.2024.1439414

Frontiers in Neuroscience 17 frontiersin.org

demonstrate a tendency for performance improvement at the high 
levels of task difficulty (>0.4) when compared to the feedforward-only 
models (RateFf, SpkFf, and SpspkFf) models. The associative memory 
function of the recurrent projections provides robustness to 
feedforward-driven representations, and this becomes clearly more 
beneficial in difficult settings when challenging out-of-training-set 
image samples are presented. This effect was quite pronounced in the 
pattern completion task and moderately so in the perceptual rivalry 
and distortion resistance tasks.

6 Discussion

We introduced a novel multi-population SNN model with cortex-
like modular architecture based on a stochastic Poissonian spike 
generation process that acts in synergy with brain-like learning and 
structural rewiring. We  systematically evaluated and compared 

different variants of the basic model and showed that the sparsely 
spiking full (SpspkFull) model recapitulates many of the 
functionalities of the non-spiking rate-based models and 
demonstrated the advantages of recurrent associative memory 
models over feedforward-only models. Crucially, all six models were 
simulated within the same BCPNN implementation by modifying the 
parameters listed in Table  2. Hence, moving from rate-based to 
spiking and sparsely spiking networks needs only minor changes in 
the network parameters, suggesting a continuum from abstract 
non-spiking to more detailed spiking variants for the brain-like 
modeling framework presented here. Our discrete-time analog of 
Poisson spike generation mechanism is arguably simpler than leaky-
integrate-and-fire (LIF) models, but it still recapitulates the in vivo 
irregular cortical pyramidal spiking patterns with realistic firing rates. 
We position our spiking neuron model as an intermediary, bridging 
the gap between artificial neural networks with simplistic neuron-like 
units (e.g., rectified linear units or sigmoidal activation functions) 

FIGURE 12

Time course of attractor representations in the (A) pattern completion, (B) perceptual rivalry, and (C) distortion resistance tasks. The spikes and z-traces 
of INP and INPRC populations for one example pattern are shown for each task (T = 300 ms; similar to the setup in Figure 6). The INP population is 
driven by the spiking inputs from the corrupted image (T = 0–150 ms) with (A) top gray bar, (B) occluded partially by another rival image, and 
(C) randomly occurring black noise. The INPRC population shows the reconstructed image in the feedforward-driven phase (INPRC z-traces; T = 60–
120 ms) is the similar to the corrupted image with traces of the top bar. In the recurrent-driven phase (T = 180–300 ms) the reconstructed image is a 
cleaned version of the pattern and settles on a prototypical digit representation stored in the associative memory.
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and biologically motivated spiking neuron models (e.g., LIF, 
Hodgkin-Huxley neurons). Building an analogous network with LIF 
neurons is a logical next step and there are strong indications that the 
model should perform similarly. For example, in some of our 
previous work focused on modeling memory function using an 
analogous modular recurrent network with columnar architecture 
and excitatory-inhibitory neuron populations we demonstrated that 
the spiking statistics follow Poisson distribution (Lundqvist et al., 
2010). Furthermore, the Hebbian-Bayesian plasticity rule employed 
in our model is identical to that used in earlier SNN memory models 
with LIF neurons (Chrysanthidis et al., 2022; Fiebig and Lansner, 
2017). This consistency is achieved because the z-traces convert 
spikes, whether originating from Poisson neurons or LIF neurons, 
into temporally averaged traces, which are subsequently used for 
p-traces, weights, and biases.

Furthermore, the activities in the SpspkFull model are highly 
sparse, with only around 10 spikes generated at any point of time from 
the HID population with 10,000 minicolumn units. We posit that the 
Hebbian nature of our synaptic and structural plasticity algorithms 
can tolerate such highly irregular sparse spiking activations, which is 
in stark contrast to backprop-based learning algorithms that may not 
be best suited to accommodate spiking neurons.

Given that the spike generation process is a stochastic sampling of 
the underlying probabilistic activation, we do not expect any special 
advantage from using spiking signals and we did not observe any such 
improvements in performance from our experiments. This is contrast 
to many SNN studies where individual spiking timing and inter-spike 
intervals are proposed to provide additional information content in the 
neural coding signal (Eshraghian et al., 2023; Wunderlich and Pehle, 
2021). However, it is still unclear if neocortical neurons communicate 
by means of such precisely timed spiking signals (Shadlen and 
Newsome, 1998; Softky and Koch, 1993). One disadvantage of our 

approach is, however, that the sparsely spiking neurons require long 
running times per pattern stimulation (5–50x) to reproduce the 
performance of their rate-based counterparts. This could possibly 
be mitigated by scaling up the network so that the number of incoming 
synapses per neuron approximates that of mammalian cortical 
pyramidal neurons (around thousand to tens of thousand) (DeFelipe 
and Fariñas, 1992). Integrating over such large number of stochastic 
sparsely spiking pre-synaptic inputs would provide a more robust 
summed synaptic input signal and lead to faster convergence during 
learning. We could also expect the response time of the neurons after 
pattern onset to be made shorter with such biologically realistic network 
scale, in agreement with fast response latency of first spikes observed in 
vivo in cortical visual hierarchy (Thorpe et al., 1996). The large time 
constants for z -traces (20–50 ms), which we showed to be necessary 
for networks with low firing rate (Section 5.3), could also be relaxed to 
shorter time constants with such large-scale networks.

We expect our network to be extendable to more commonly used 
spiking neuron models (such as LIF) without compromising 
performance. Previous modeling studies showed that local excitatory-
inhibitory circuits with LIF neurons produces Poissonian statistics and 
reproduce well many of the in vivo cortical neuron spiking dynamics 
including oscillations and synchronization effects (Brunel, 2000; 
Lundqvist et al., 2010; Rullán Buxó and Pillow, 2020; Van Vreeswijk and 
Sompolinsky, 1996). These results strongly suggest that our spike 
generation process can be reproduced in more biologically detailed 
neuron models and integrated with other biophysical mechanisms such 
as spike-frequency adaptation, synaptic facilitation/depression, realistic 
post-synaptic potentials, axonal and dendritic delays, etc. The network 
can also be  extended into more complex architectures, most 
significantly, into multilayer ones with, for instance, hierarchical feature 
extraction. Also, inclusion of cortical laminar organization with L4, 
L2/3, and L5/6 layers can allow for continuous integration of 
feedforward, recurrent and feedback connections reminicent of the 
corresponding cortical functional architecture. We  used different 
operational phases (Section 4.4) to switch between feedforward and 
recurrent projections in our network to avoid one projection dominating 
the other. Presumably, this could be solved in a biologically plausible 
manner with separate laminar layers with distinct neural populations 
that are tightly coupled within each minicolumn, as modeled by the 
cortical microcircuit architecture (Douglas and Martin, 2004). Another 
biological mechanism could be neuromodulation as a global gating 
signal for synapses corresponding to specific projections.

More extensive comparison with other SNNs (trained with 
surrogate gradients or EventProp, for instance) and brain-inspired 
models will be needed to test the capacity of our model against 
other machine learning models. Also, traditional feedforward-
driven deep learning models have been showed to severely 
deteriorate in performance when tested on untrained noise 
distortions and diverge from human behavioural performance 
(Bowers et al., 2022; George et al., 2017; Tang et al., 2018). Further 
comparisons of our model with deep learning models (such as 
convolutional neural networks) on noise robustness and associative 
memory tasks can elucidate the difference between the models.

Our work represents a step towards an integration of 
biologically plausible spiking models with complex brain 
architectures and offers exciting opportunities for scalable brain-
like algorithms and multi-network models. We believe this offers 

FIGURE 13

Comparison of classification performance on associative memory 
tasks. The sparsely spiking models (SpspkFf, SpspkFull) perform very 
closely to the rate (RateFf, RateFull) and spiking (SpkFf, SpkFull) 
models in all cases. For low difficulty levels (<0.4), the full network 
models (RateFull, SpkFull, and SpspkFull) do not offer a clear 
advantage (sometimes performance slightly worse) compared to 
their corresponding feedforward-only models (RateFf, SpkFf, and 
SpspkFf) models. However, there is a clear trend of improvement for 
the full models compared to the feedforward-only models once the 
difficulty level is above 0.4 in all associative memory tasks. The error 
bars are standard deviation from n = 5 runs.
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high potential for the next-generation neuromorphic algorithms 
and hardware systems.
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