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Gradient-free training of
recurrent neural networks using
random perturbations

Jesús García Fernández*, Sander Keemink and

Marcel van Gerven

Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and

Behaviour, Radboud University, Nijmegen, Netherlands

Recurrent neural networks (RNNs) hold immense potential for computations due

to their Turing completeness and sequential processing capabilities, yet existing

methods for their training encounter e�ciency challenges. Backpropagation

through time (BPTT), the prevailing method, extends the backpropagation (BP)

algorithm by unrolling the RNN over time. However, this approach su�ers from

significant drawbacks, including the need to interleave forward and backward

phases and store exact gradient information. Furthermore, BPTT has been shown

to struggle to propagate gradient information for long sequences, leading to

vanishing gradients. An alternative strategy to using gradient-based methods

like BPTT involves stochastically approximating gradients through perturbation-

based methods. This learning approach is exceptionally simple, necessitating

only forward passes in the network and a global reinforcement signal as

feedback. Despite its simplicity, the random nature of its updates typically leads

to ine�cient optimization, limiting its e�ectiveness in training neural networks. In

this study, we present a new approach to perturbation-based learning in RNNs

whose performance is competitive with BPTT, while maintaining the inherent

advantages over gradient-based learning. To this end, we extend the recently

introduced activity-based node perturbation (ANP)method to operate in the time

domain, leading to more e�cient learning and generalization. We subsequently

conduct a range of experiments to validate our approach. Our results show

similar performance, convergence time and scalability when compared to BPTT,

strongly outperforming standard node perturbation and weight perturbation

methods. These findings suggest that perturbation-based learningmethods o�er

a versatile alternative to gradient-basedmethods for training RNNs which can be

ideally suited for neuromorphic computing applications.

KEYWORDS

recurrent neural network, artificial neural network, gradient approximation, BPTT, node

perturbation learning

1 Introduction

Recurrent neural networks (RNNs), with their ability to process sequential data and

capture temporal dependencies, have found applications in tasks such as natural language

processing (Yao et al., 2013; Cho et al., 2014; Sutskever et al., 2014) and time series

prediction (Hewamalage et al., 2021). They hold immense potential for computation

thanks to their Turing completeness (Chung and Siegelmann, 2021). Furthermore,

due to their sequential processing capabilities, they offer high versatility to process

variable-sequence length inputs and fast inference on long sequences (Orvieto et al.,

2023). Nevertheless, traditional training methods like backpropagation through time
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(BPTT) (Werbos, 1990) are challenging to apply (Bengio et al.,

1994; Lillicrap and Santoro, 2019), particularly with long sequences.

Unrolling the RNN over time for gradient propagation and

weight updating proves to be computationally demanding and

difficult to parallelize with variable-length sequences. Additionally,

employing BPTT can result in issues like vanishing or exploding

gradients (Pascanu et al., 2013). Moreover, the non-locality of

their updates can pose significant challenges when implemented on

unconventional computing platforms (Kaspar et al., 2021).

An alternative approach to training neural networks is

stochastically approximating gradients through perturbation-based

methods (Widrow and Lehr, 1990; Spall, 1992; Werfel et al.,

2003). In this type of learning, synaptic weights are adjusted

based on the impact of introducing perturbations to the network.

When the perturbation enhances performance, the weights are

strengthened, driven by a global reinforcement signal, and vice

versa. This method is computationally simple, relying solely on

forward passes and a reinforcement signal distribution across the

network. It differs from gradient-based methods, such as BP, which

needs a specific feedback circuit to propagate specific signals and a

dedicated backward pass to compute explicit errors. This simplicity

is especially beneficial for RNNs, as it eliminates the need to

unroll the network over time during training (Werbos, 1990).

Examples of gradient-based and perturbation-based approaches

to update the neural weights are visually depicted in Figure 1.

Standard perturbation methods include node perturbation (NP),

where the perturbations are added into the neurons, and weight

perturbation (WP), where the perturbations are added into the

synaptic weights (Werfel et al., 2003; Züge et al., 2023).

Nevertheless, the stochastic nature of perturbation-based

updates can lead to inefficiencies in optimizing the loss

landscape (Lillicrap et al., 2020), resulting in prolonged

convergence times (Werfel et al., 2003). Additionally, perturbation-

based often exhibit poor scalability, leading to inferior performance

when compared to gradient-based methods (Hiratani et al., 2022).

This performance gap increases as the network size increases, and

in large networks, instability often arises manifesting as extreme

weight growth (Hiratani et al., 2022). Due to these challenges,

a number of recent implementations have aimed to establish

perturbation-based learning as an effective gradient-free method

for neural network training. In Lansdell et al. (2019), NP is

utilized to approximate the feedback system in feedforward and

convolutional networks, mitigating the error computation aspect

of the BP algorithm. However, a dedicated feedback system is

still necessary to propagate synapse-specific errors. In Züge et al.

(2023), standard NP andWP are employed on temporally extended

tasks in RNNs, though direct comparisons with gradient-based

algorithms like BP are lacking. Their results suggest that WP may

outperform NP in specific cases.

In this study, we present an implementation of perturbation-

based learning in RNNs whose performance is competitive with

BP, while maintaining the inherent advantages over gradient-

based learning. To this end, we extend the activity-based node

perturbation (ANP) approach (Dalm et al., 2023) to operate in

the time domain using RNNs. This approach relies solely on

neural activities, eliminating the need for direct access to the noise

process. The resulting updates align more closely with directional

derivatives, compared to standard NP, approximating SGD more

accurately. As a result, this approach significantly outperforms the

standard NP in practical tasks. Furthermore, we extend standard

implementations of NP and WP to operate in the time domain,

using them as baselines along with BPTT, referred to as BP in this

study for simplicity. In addition, we augment our time-extended

implementations of ANP, NP, and WP (as well as BP) with a

decorrelation mechanism, as done in the original ANP work (Dalm

et al., 2023). This decorrelation mechanism has been shown to

significantly accelerate the training of deep neural networks (Dalm

et al., 2024) by aligning SGD updates with the natural gradient

through the use of uncorrelated input variables (Desjardins et al.,

2015). We name the resulting decorrelated methods DANP, DNP,

DWP and DBP.

We assess the efficiency of our approach across various tasks.

Firstly, we evaluate learning performance using three common

machine learning benchmarks. Secondly, we examine the scalability

of our approach to larger networks in terms of stability and

task performance. Results indicate similar learning performance,

convergence time, generalization and scalability compared to

BP, with significant superiority over standard NP and WP. In

contrast to gradient-based methods, the proposed method also

offers increased versatility, with its local computations potentially

rendering it compatible with neuromorphic hardware (Schuman

et al., 2022).

In the following sections, we detail our adaptation of the

different perturbation-based methods utilized here, namely NP,

WP and ANP. For standard approaches like NP and WP, we

describe how our time-based extensions diverge from the more

commonly employed temporal extensions. Additionally, we analyse

the operation of the decorrelation mechanism within our RNNs.

Subsequently, we describe the series of experiments conducted in

this study and present the resulting outcomes.

2 Methods

In this section, we describe our original time-extended

implementations of existing perturbation-based algorithms for

feedforward networks, adapted for compatibility with RNNs and

time-extended tasks. We highlight how our implementations differ

from other time-extended methods in the literature. For clarity

and ease of understanding, we present them in the following

order: Node perturbation (NP), activity-based node perturbation

(ANP), and weight perturbation (WP). These three methods will

throughout be compared to backpropagation (BP). BP, WP and NP

will throughout be used as baseline methods, with ANP (extended

to the time-domain) being our novel contribution. Additionally,

we describe the decorrelation mechanism proposed by Dalm et al.

(2023) for feedforward networks, which we incorporate into our

RNN model to enhance the learning efficiency of the algorithms

under consideration.

2.1 Recurrent neural network model

In all our experiments, we employ RNNs with one hidden layer

containing a large number N of units with learnable weights and

non-linearities in the neural outputs. The structure of the neural
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Gradient-based learning through time

1. Forward pass 2. Backward pass 3. Weight updates
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Perturbation-based learning through time

2. Noisy forward pass1. Forward pass 3. Weight updates

Time

FIGURE 1

Gradient-based vs. perturbation-based learning. Example depicts networks unrolled across 3 time steps. (A) General procedure followed by

gradient-based learning approaches. Sequential computation of the forward and backward passes is necessary to calculate updates. (B) General

procedure utilized by perturbation-based learning approaches. The computation of the eligibility trace varies based on the employed algorithm (e.g.,

NP, WP, ANP). In perturbation-based learning, the forward pass and noisy forward pass can be parallelized by employing two models.

networks with recurrently connected hidden units is depicted in

Figure 2, with the forward pass defined as

xt = f (Aut + Rxt−1)

yt = Bxt

where ut , xt and yt denote input, hidden and output activations

at time t, respectively, and f (·) represent a non-linear activation

function. In our networks, we use the hyperbolic tangent activation

function tanh (x) = (ex − e−x)/(ex + e−x). The parameters of the

network are given by the input weights A, the output weights B and

the recurrent weights R.

The output error at each time step is defined as ℓt = ||yt− y∗t ||
2

where y∗t denotes the target output at time t. The loss associated

with output y = (y1, . . . , yT), with T the time horizon, is defined as

the mean of the output errors over the entire sequence:

L =
1

T

T
∑

t=1

ℓt .

During learning, the network’s weights undergo incremental

and iterative updates to minimize the loss according toW ←W −

η1W with W ∈ {A,R,B} the input, output and recurrent weight

FIGURE 2

Recurrent neural network model. Recurrent units are

interconnected and self-connected. Vectors ut, xt and yt denote the

input, recurrent and output layer activations, respectively.

matrices, respectively, and 1W their corresponding updates. Here,

η denotes the learning rate for both forward and recurrent weights.

The updates can be computed using different learning

algorithms. In the case of backpropagation through time, the

updates are given by the gradient ∇L of the loss with respect to the
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parameters, averaged over multiple trajectories. Below, we describe

the different perturbation-based learning methods considered in

this study. Additionally, we describe the employed decorrelation

mechanism and how it is incorporated into the networks.

2.2 Node perturbation through time

The node perturbation approach involves two forward passes:

A standard forward pass and a noisy pass. These passes can take

place either concurrently or sequentially, and the loss is computed

afterwards. The weights are updated in the direction of the noise if

the loss decreases, and in the opposite direction if the loss increases.

During the noisy pass, noise is added to the pre-activation of each

neuron as follows:

x̃t = f (Aut + Rx̃t−1 + ξt)

ỹt = Bx̃t + νt

where x̃t and ỹt denote the noisy neural outputs at time t. The

noise added in the hidden and output layers is generated from zero-

mean, uncorrelated Gaussian random variables ξt ∼ N (0, σ 2Ix)

and νt ∼ N (0, σ 2Iy), respectively, where Ix and Iy are identity

matrices with the dimensions of the hidden and output layers. The

noise injected is different in every timestep t.

In typical implementations of node perturbation in the time

domain, as seen in works like (Fiete and Seung, 2006; Züge et al.,

2023), the reinforcement signal is derived from the difference in

loss,L = L̃−L, where L̃ andL represent the loss of the noisy pass

and the clean pass, respectively. This signal captures the network’s

overall performance across the entire sequence. Additionally, an

eligibility trace, computed as the sum over time of the pre-synaptic

neuron’s output multiplied by the injected perturbation (ξtx
⊤
t , νtx

⊤
t

or ξtx
⊤
t−1, depending on the synaptic weights being updated), is

utilized. According to this method, the learning signals for updating

the weights are defined in Equation 1.

1A = σ−2δL

T
∑

t=1

ξtx
⊤
t , 1B = σ−2δL

T
∑

t=1

νtu
⊤
t ,

1R = σ−2δL

T
∑

t=1

ξtx
⊤
t−1 . (1)

While this approach offers benefits such as enhanced

compatibility with delayed rewards, we here consider a local

approach, where we only consider the local loss difference δℓt =

ℓ̃t−ℓt in individual timesteps when computing updates in contrast

to using the total loss difference L. This reward-per-time step

is employed alongside eligibility traces local on time defined as

the product of the pre-synaptic neuron’s output and the injected

perturbation at each time step (ξtx
⊤
t , νtx

⊤
t or ξtx

⊤
t−1, depending on

the synaptic weights being updated). According to our approach,

the learning signals to update the weights over time are defined in

Equation 2.

1A = σ−2
T

∑

t=1

δℓtξtx
⊤
t , 1B = σ−2

T
∑

t=1

δℓtνtu
⊤
t ,

1R = σ−2
T

∑

t=1

δℓtξtx
⊤
t−1 . (2)

Here, both the clean standard pass and the noisy pass could run

concurrently using two identical copies of the model, which enables

compatibility with online learning setups. This technique allows

our method to compute and implement updates online at every

time step.

Zenke and Neftci (2020) investigate setups similar to the

one proposed here, seeking to bridge the real-time recurrent

learning (RTRL) algorithm (Williams and Zipser, 1989),

which is more effective for online setups than BPTT but

computationally demanding, with biologically plausible learning

rules. They demonstrate that by combining learning algorithms

that approximate RTRL with temporally local losses, effective

approximations can be achieved. These approximations notably

decrease RTRL’s computational cost while preserving strong

learning performance. A similar rationale is used by Bellec et al.

(2020) in the context of recurrent spiking neural networks.

Supplementary materials 1 provides a comparison between the

conventional implementation and our implementation of NP

through time.

2.3 Activity-based node perturbation
through time

Activity-based node perturbation (ANP) is a variant of the

node perturbation approach, proposed by Dalm et al. (2023),

which has been exclusively applied in feedforward networks.

This approach approximates the directional derivatives across the

network, resulting in a closer alignment between the updates

generated by thismethod and those provided by BP (also see Baydin

et al., 2022). Additionally, it does not require direct access to the

noise process itself as it operates solely by measuring changes

in neural activity. Given that NP can be interpreted as a noisy

variant of SGD (Hiratani et al., 2022), ANP can be seen as a more

precise approximation of SGD. For a detailed derivation of the link

between ANP and SGD, we refer to (Dalm et al., 2023).

Similar to the node perturbation approach, the noisy pass is

the same as the one performed in the standard node perturbation

approach. Consistent with our node perturbation implementation

extended over time, we calculate reinforcement signals at each

time step to drive synaptic changes. Let αt = Aut + Rxt−1 and

βt = Bxt are the pre-activations in the clean pass. Similarly, let

α̃t = Aut+Rx̃t−1+ξt and β̃t = Bx̃t+νt denote the pre-activations

in the noisy pass. Define N as the total number of neurons in the

network. We compute the learning signals responsible for weight

updating as defined in Equation 3.

1A = N

T
∑

t=1

ℓt
δαt

||δαt||2
x⊤t , 1B = N

T
∑

t=1

ℓt
δβt

||δβt||2
u⊤t ,

1R = N

T
∑

t=1

ℓt
δαt

||δαt||2
x⊤t−1, (3)

where δαt = α̃t − αt and δβt = β̃t − βt are the pre-activation

differences between the forward passes.
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2.4 Weight perturbation through time

Weight perturbation is an approach akin to node perturbation,

where noise is injected in a second forward pass, and adjustments

to the weights are made based on the resulting increase or decrease

in loss. The key distinction lies in the injection of noise into the

weights rather than the neural pre-activation. The noisy pass is

defined as

x̃t = f ((A+ ξt) ut + (R+ νt) x̃t−1)

ỹt = (B+ ζt) x̃t

where x̃t and ỹt denote the noisy neural outputs at time t. As in node

perturbation, the noise is denoted by the zero-mean, uncorrelated

Gaussian random variables ξt ∼ N (0, σ 2IA), νt ∼ N (0, σ 2IR) and

ζt ∼ N (0, σ 2IB), where IA, IR and IB are identity matrices with the

dimensions of A, R and B, with distinct values for each timestep t.

Similar to node perturbation in the time domain, typical

implementations of weight perturbation in the time domain, such

as those described by (Cauwenberghs, 1992; Züge et al., 2023),

derive the reinforcement signal from the difference in loss δL =

L̃ − L, computed over the entire sequence. According to this

method, the learning signals for updating the weights are defined

as in Equation 4.

1A = σ−2δLξt , 1B = σ−2δLζt , 1R = σ−2δLνt . (4)

This approach inherits the same set of drawbacks and benefits as

seen in node perturbation. Hence, we again employ reinforcement

signals, δℓt , computed at each time step, to drive synaptic changes.

We define the learning signals to update the weights in the time

domain as in Equation 5.

1A = σ−2
T

∑

t=1

δℓtξt , 1B = σ−2
T

∑

t=1

δℓtζt ,

1R = σ−2
T

∑

t=1

δℓtνt . (5)

2.5 Decorrelation of neural inputs

Decorrelating neural input allows for more efficient neural

representation by reducing the redundancy in neural activity,

leading to improved efficiency in learning and faster learning

rates. This phenomenon has found support in both biological

studies (Wiechert et al., 2010; Cayco-Gajic et al., 2017) and artificial

neural network research (Desjardins et al., 2015; Luo, 2017; Huang

et al., 2018; Ahmad et al., 2022). It has also been shown that it

significantly accelerates the training of deep neural networks (Dalm

et al., 2024) by aligning SGD updates with the natural gradient

through the use of uncorrelated input variables (Desjardins et al.,

2015). Additionally, in the context of global reinforcementmethods

such as WP or NP, where weight updates introduce substantial

noise, the addition of decorrelation proves beneficial as it makes

neural networks less sensitive to noise (Tetzlaff et al., 2012).

Given these benefits, we investigate the integration of a

decorrelation mechanism into our networks, presented in Dalm

et al. (2023). We apply this mechanism solely to the hidden

FIGURE 3

RNN with decorrelation scheme. In this setup, we include an extra

matrix, D, and an intermediate state that transforms the correlated

neural input xt, in uncorrelated neural input x∗t . The recurrent

connection, R is placed after the decorrelated state x∗t feeding an

input to xt+1 (in the next time step). The recurrent connection R is

fully connected. xt is the only variable that includes non-linearities,

ut, x
∗
t and yt are linear. The variable x∗t is used to map the recurrent

states to the outputs.

units, as the inputs fed into the network are low-dimensional,

thus decorrelating them would not yield any noticeable changes

and would increase computational costs. This involves the

transformation of correlated hidden layer input xt−1 into

decorrelated input x∗t−1 via a linear transform x∗t−1 = Dxt−1 with

D the decorrelation matrix. The update of recurrent units in the

network is in this case defined as xt = f
(

Aut + Rx∗t−1
)

and the

resulting neural connectivity is depicted in Figure 3.

The updates of the decorrelation weights are performed using a

particularly efficient learning rule proposed by Ahmad et al. (2022),

which aims at reducing the cross-correlation between the neural

outputs. The update is given by D← D − ǫ1D with learning rate

ǫ and update defined in Equation 6.

1D =
(

x∗t
(

x∗t
)⊤
− diag

(

(

x∗t
)2

))

D (6)

for 1 ≤ t ≤ T. The updates of the decorrelation weights are

performed in an unsupervised manner, in parallel with learning of

the forward weights. We use DANP to refer to the combination of

decorrelation with activity-based node perturbation.

2.6 Experimental validation

We evaluate the effectiveness of the described methods in

training RNNs using a series of experiments encompassing several

objectives. Firstly, we evaluate the performance of the networks

using three standard machine learning benchmarks: Mackey-Glass

time series prediction, the copying memory task and a weather

prediction task. These tasks are commonly employed in the

literature to evaluate the performance of RNNs and other time-

series prediction models. Secondly, we assess the scalability of the

considered networks when incorporating an increased number of

units. Lastly, we investigate in more detail the functioning of the

decorrelation mechanism. Five different runs with random seeds

are carried out for each experiment. The averages of these runs are

then depicted with error bars indicating maximum and minimum

values.

Throughout these evaluations, we assess the perturbation-

based learning methods NP, WP, and ANP, alongside the gradient-

based BP learning method in conjunction with the Adam
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optimizer (Kingma and Ba, 2014) for comparative analysis.

Please note that for simplicity, we use the term BP in this

manuscript to refer to both backpropagation and its time-domain

application, backpropagation through time (BPTT) (Werbos,

1990), as they are essentially the same algorithm, with the

distinction being the unrolling of the network over time.

Similarly, the terms NP, WP, and ANP are used in this

context to refer to their application in the time domain.

Subsequently, we enhance all the methods by incorporating

the decorrelation mechanism previously described into the

hidden units of our networks. The resulting extended methods

are named decorrelated node perturbation (DNP), decorrelated

weight perturbation (DWP), decorrelated activity-based node

perturbation (DANP) and decorrelated backpropagation (DBP).

Detailed hyperparameters for each experiment can be found in

Supplementary materials 2.

Our networks and experimental setups are developed using

the programming language Python (Van Rossum et al., 1995)

and the deep learning framework PyTorch (Paszke et al.,

2019). The BPTT algorithm is implemented using the automatic

differentiation tool from PyTorch. For reproducibility and to access

the implementation code, please visit our GitHub repository.1

3 Results

3.1 Mackey-Glass time series task

The Mackey-Glass time series task is a classic benchmark for

assessing the ability of neural networks to capture and predict

chaotic dynamical systems. The data is a sequence of one-

dimensional observations generated using the Mackey-Glass delay

differential equations (Mackey and Glass, 1977), resulting in a

nonlinear, delayed, and chaotic time series. We reproduce the setup

of Voelker et al. (2019), where the model is tasked with predicting

15 time steps into the future with a time constant of 17 steps and a

sequence length of 5000 time steps.

Figure 4 depicts the results for the Mackey-Glass experiment.

Figure 4A visualizes 500 time steps of a synthetically generated

Mackey-Glass time series. Additionally, we depict the predictions

made by a BP-trained model both before and after training. This

example provides a visual understanding of the dataset used in our

study. Figure 4B shows the performance during training over the

train and test set for the different methods. Figure 4C shows the

final performance, computed as themean performance over the last

50 epochs, facilitating a quantitative comparison between methods.

The outcomes of this experiment reveal that standard

perturbation-based methods NP andWP, adapted to operate in the

time domain, exhibit significantly inferior performance compared

to the BP baseline. The convergence time and final performance

of ANP, in contrast, closely approach those of the BP baseline,

especially when augmented with the decorrelation mechanism.

Introducing the decorrelation mechanism to BP does not appear

to result in a pronounced difference in convergence and final

performance.

1 https://github.com/jesusgf96/NP_RNNs

3.2 Copying memory task

The copying memory task is another well-established task for

evaluating thememorization capabilities of recurrent models/units.

In this task, the model must memorize a sequence of bits and return

the exact same sequence after a specified delay period. We build on

the setup of Arjovsky et al. (2016), where the sequence comprises 8

distinct bit values, with 1 extra bit serving to mark the delay period

and another extra bit indicating to the network when to reproduce

the sequence. In our experiments, we use a length sequence of 100

and a delay period equal to 10.

Figure 5 depicts the results for the copying memory task. In

Figure 5A, we present a visualization of a sample of synthetically

generated data for this task along with annotations. Additionally,

we depict the predictions made by a BP-trained model both

before and after training. This example serves to provide a visual

understanding of the dataset used in our study. In Figure 5B, we

present the performance during training over the train and test

sets. Figure 5C shows the final performance, computed as the mean

performance over the last 50 epochs, facilitating a quantitative

comparison between methods.

The outcomes of this experiment reveal that standard

perturbation-based methods NP andWP, adapted to operate in the

time domain, exhibit significantly inferior performance compared

to the BP baseline. The convergence time and final performance of

ANP closely approach those of the BP baseline. In this experiment,

the addition of the decorrelation mechanism does not lead to a

pronounced difference in convergence and final performance, in

both BP and ANP.

3.3 Weather prediction task

In contrast to the other benchmarks used in this paper, this task

relies on real-world rather than synthetically generated data. The

dataset used in this task contains climatological data spanning 1,600

U.S. locations from 2010 to 2013.2 We build on the setup of Zhou

et al. (2021), where each data point consists of one single target

value to be predicted 1, 24 and 48 hours in advance, and various

input climate features. In our specific configuration, we exclude

duplicated features with different units of measurement (retaining

Fahrenheit-measured features) and select the ‘Dry bulb’ feature,

which is a synonym for air temperature, as the target variable. The

training data encompasses the initial 28 months, while the last 2

months are used for testing the model’s performance.

Figure 6 depicts the results for this task. In Figure 6A, we

present a visualization of 2000 time steps of the target feature,

“Dry bulb”, from the weather dataset. Additionally, we depict the

predictions 48 hours ahead made by a BP-trained model both

before and after training. This example serves to provide a visual

understanding of the dataset used in our study. In Figure 6B we

present the performance during training over the train and test set

for the different methods for 48-h ahead prediction. Additionally,

these figures present the final performance, computed as the mean

performance over the last 50 epochs, facilitating a quantitative

2 Data can be obtained from https://www.ncei.noaa.gov/data/local-

climatological-data/.
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A

B

C

FIGURE 4

Mackey-Glass data and results. (A) 500 time steps of a synthetically generated Mackey-Glass time series along with the predictions of a BP-trained

model before and after training. (B) Performance during training over the train and test set for the di�erent methods, represented in a logarithmic

scale. (C) Final performance for the di�erent methods, computed as the mean performance over the last 50 epochs.

comparison between methods. In Supplementary materials 5, we

also include the results for 1-hour ahead and 24-hours ahead

predictions.

The outcomes of this experiment reveal that standard

perturbation-based methods NP and WP, adapted to operate

in the time domain, exhibit significantly inferior performance

compared to the BP baseline. The convergence time and final

performance of ANP closely approach those of the BP baseline,

especially when augmented with the decorrelation mechanism,

making them comparable in terms of generalization. On the

contrary, introducing the decorrelation mechanism to BP results in

faster convergence but compromises generalization performance.

3.4 Scaling performance

Here, we investigate the scalability of the described methods in

RNNs with a single hidden layer and an increasingly larger number

of units. We accomplish this by analyzing the final performance

on the 1-hour ahead weather prediction task for networks with

differing numbers of hidden units, trained using various methods.

We chose this dataset as it is the most challenging among the

considered datasets in this paper. The number of hidden units

ranges from 100 to 3000.

Figure 7 shows the final performance over the train and test sets

of networks with different configurations. Each configuration was

repeated using five random seeds, and the results were computed

as the mean of the successful executions within the set of five runs.

The results of this experiment reveal two key findings. Firstly,

NP and WP exhibit inadequate scalability, leading to unstable

runs or inferior performance when employed in the training of

large networks. Secondly, ANP (and its variation incorporating the

decorrelation mechanism, DANP) is the only perturbation-based

method capable of effective scaling to larger networks, showing

performance on par with BP and enhanced generalization when

augmented with the decorrelation mechanism.
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FIGURE 5

Copying memory data and results. (A) At the top, we depict an example of an input with annotations. The sequence length is 20 and the delay period

is 10. At the bottom, we show the predictions of a BP-trained model before and after training. (B) Performance during training over the train and test

set for the di�erent methods. (C) Final performance for the di�erent methods, computed as the mean performance over the last 50 epochs.

3.5 Decorrelation results

Here, we investigate the functionality of the decorrelation

mechanism within the networks. Using the parameters that yield

optimal task-dependent performance, we compare the degree of

correlation in the neural outputs between a network incorporating

the decorrelation mechanism and one that does not. To achieve

this, we visualize the mean squared correlation across epochs

during training on the 1-hour ahead weather prediction task.

Figure 8 illustrates the degree of correlation within the hidden

units. This represents the decorrelation loss, calculated as the

mean squared off-diagonal values of the lower triangular covariance

matrix, computed with the recurrent inputs, x∗t , to the hidden units

at each timestep during input presentation, across epochs.

The outcomes of these experiments reveal a low degree of

correlation among the hidden units in the network featuring the

decorrelation mechanism compared to the network that does not

incorporate it. However, as depicted in Figure 8, the parameters

that yield optimal task-dependent performance do not lead to

completely decorrelated neural outputs. These results suggest

that a small level of correlation is needed to achieve optimal

task-dependent performance, which may be due to the need for the

weight updates to be able to keep up with decorrelation parameter

updates.
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B

C

FIGURE 6

48-h ahead weather prediction data and results. (A) 2,000 time steps of the target feature, ‘Dry bulb’, from the weather dataset along with the

predictions 48 hours ahead of a BP-trained model before and after training. (B) Performance during training over the train and test set for the

di�erent methods, represented in a logarithmic scale. (C) Final performance for the di�erent methods, computed as the mean performance over the

last 50 epochs.

FIGURE 7

Scalability. Panels show final train and test loss. Each data point represents the mean of five runs. Solid circles denote stability across all runs, with the

mean calculated from the five stable runs. Empty circles indicate instability in some runs, and the mean is computed solely from the remaining stable

executions. The absence of data points indicates that all the runs were unstable.
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FIGURE 8

Decorrelation loss during training. The lower triangular correlation matrix is computed with the hidden units during the input presentation and

subsequently squared and averaged across epochs. On the left, the mean decorrelation loss is depicted. On the right, a boxplot showing the spread

of the decorrelation loss values is shown. Statistics were generated during training on the 1-h ahead weather prediction task.

4 Discussion

Backpropagation through time is the default algorithm to train

RNNs. Like backpropagation, it relies on the computation and

propagation of gradients for weight updates. However, the need to

unroll the RNN over time makes this algorithm computationally

demanding and memory-intensive, especially with long input

sequences. Furthermore, the non-local nature of its updates and

the requirement to backtrack through time once the input sequence

concludes can pose some challenges in implementing this training

method. In this paper, we introduced a viable alternative for

training RNNs. Instead of using explicit gradients, our method

approximates the gradients stochastically via perturbation-based

learning. To this end, we extended the decorrelated activity-

based node perturbation approach (Dalm et al., 2023), which

approximates stochastic gradient descent more accurately than

other perturbation-basedmethods, to operate effectively in the time

domain using RNNs.

The results of our extensive validation show similar

performance, convergence time and scalability of ANP and

DANP when compared to BP. Remarkably, our approach exhibits

superior performance, convergence time and scalability compared

to standard perturbation-based methods, NP and WP. These

promising findings suggest that perturbation-based learning

holds the potential to rival BP’s performance while retaining

inherent advantages over gradient-based learning. Notably, the

computational simplicity of our method stands out, especially

compared to BP, which requires a specific second phase for error

computation across networks and a dedicated circuit for error

propagation. This simplicity is particularly advantageous for

RNNs, eliminating the need for time-unrolling that significantly

increases computational load. Additional experiments, detailed

in Supplementary materials 3, empirically validate our claims

that perturbation-based methods are computationally simpler

and less memory-intensive than the standard gradient-based

backpropagation method. Note that other gradient-free learning

methods for RNNs have been proposed that do not require separate

learning passes, such as the random feedback local online (RFLO)

algorithm (Murray, 2019). In Supplementary materials 4 we show

that our method still compares favorably in terms of learning

efficiency and computational cost. In follow-up work, further

validation on very large neural networks is necessary. This step is

usually a common challenge in assessing the efficacy of alternative

learning algorithms (Bartunov et al., 2018). Other avenues for

further research include exploring performance in more complex

gated recurrent structures like LSTM and GRU units, as well as

further validation on other challenging real-world datasets.

Our extensions differ from typical approaches in how the

reinforcement signal is computed. While conventional extensions

considers a global loss or aggregate local losses over time into a

single loss per sequence and use it as the reinforcement signal,

our methods directly incorporate local losses in time into the

updates as the reinforcement signal. This allows for more informed

and effective updates without increasing the computational load,

considering peaks of high or low performance at specific time

steps. Furthermore, both the clean and the noisy forward pass

can be parallelized in this approach by using two identical copies

of the model, making it compatible with online learning setups.

This enables our synaptic rules to compute and implement updates

online at every time step, reducing memory requirements as

updates are applied immediately without storage. In this sense, our

approach resembles the RTRL algorithm for computing gradients

in RNNs in a forward manner (Williams and Zipser, 1989; Zenke

and Neftci, 2020). A limitation of our approach using local losses is

its limited compatibility with delayed or sparse rewards over time.

However, as demonstrated by our own results, as well as those of

Zenke and Neftci (2020) and Bellec et al. (2020), local methods can

still work well in such delayed settings.

Our approach has several limitations regarding biological

fidelity. Our neural network models are significantly simplified,

lacking spikes, structural plasticity, and detailed temporal dynamics

and neural structure. However, our results are an important step

in developing more biologically realistic learning approaches, while

performing similarly to backpropagation, which is challenging to

implement in biological circuits (Whittington and Bogacz, 2019;

Lillicrap et al., 2020). Numerous methods have been proposed

for learning synaptic weights in artificial neural networks as

alternatives, such as feedback alignment (Lillicrap et al., 2016;

Nøkland, 2016), target propagation (Bengio, 2014, 2020; Lee et al.,

2015; Ahmad et al., 2020), dendritic error propagation (Guerguiev

et al., 2017; Sacramento et al., 2018), and spiking implementations

combining global and local errors (Bellec et al., 2020). However,

these approaches generally still require computing parameter or

neuron-specific errors, necessitating specific and complex circuits

for error propagation. In contrast, our approach uses global

errors akin to neuromodulatory signals in biological neural

networks (Schultz, 1998; Doya, 2002; Marder, 2012; Brzosko et al.,

2019). These global errors are uniformly spread across the network,
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eliminating the need for pathways to compute and deliver specific

errors to each neuron. A key distinction of perturbation-based

learning approaches, like ours, is their use of intrinsic brain

noise for synaptic plasticity (Faisal et al., 2008), viewing noise

as a beneficial feature rather than an obstacle. This mirrors the

biological principle of using noise as a mechanism for learning,

crucial for adapting to dynamic and unpredictable environments.

Finally, our approach’s active decorrelation method is similar to

decorrelation in the brain, thought to be implemented through

neural inhibition (Ecker et al., 2010; Chini et al., 2022). This

process reduces correlations among neurons, promotes efficient

information coding, enhances learning efficiency, and mirrors the

adaptive processes found in biological neural networks.

While not fully biologically realistic, our models have sufficient

fidelity to be highly relevant for neuromorphic computation. The

local nature of the required computations, combined with a global

learning signal, facilitates the deployment of these methods on

neuromorphic hardware (Sandamirskaya et al., 2022; Paredes-

Vall?s et al., 2024), devices that rely on distributed, localized

processing units that mimic biological neurons. Embracing noise as

a mechanism for learning can be highly suitable in settings where

the computational substrate shows a high degree of noise (Gokmen,

2021). This even holds when the noise cannot be measured

since ANP still functions when we compare two noisy passes

rather than a clean and a noisy pass (Dalm et al., 2023). This

resilience to noise underscores the method’s suitability for real-

world neuromorphic devices where noise is ubiquitous and difficult

to control. Additionally, the gradient-free nature of the approach

becomes valuable in settings where the computational graph

contains non-differentiable components as in spiking recurrent

neural networks; a type of network where effective training

methods are still under exploration (Neftci et al., 2019; Tavanaei

et al., 2019; Wang et al., 2020).

Concluding, our present findings open the door to efficient

gradient-free training of RNNs, offering exciting prospects

for future research and applications in artificial intelligence,

neuroscience and neuromorphic computing.
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