Skip to main content

ORIGINAL RESEARCH article

Front. Neurosci.
Sec. Translational Neuroscience
Volume 18 - 2024 | doi: 10.3389/fnins.2024.1435212
This article is part of the Research Topic Translating Therapies for Neurodegenerative Diseases: Considerations for Model Systems, Therapeutics, Testing Modalities, and Clinical Translation View all articles

Identification and Validation of Novel Engineered AAV Capsid Variants Targeting Human Glia

Provisionally accepted

The final, formatted version of the article will be published soon.

    Direct neural conversion of endogenous non-neuronal cells, such as resident glia, into therapeutic neurons has emerged as a promising strategy for brain repair, aiming to restore lost or damaged neurons. Proof-of-concept has been obtained from animal studies, yet these models do not efficiently recapitulate the complexity of the human brain, and further refinement is necessary before clinical translation becomes viable. One important aspect is the need to achieve efficient and precise targeting of human glial cells using non-integrating viral vectors that exhibit a high degree of cell type specificity. While various naturally occurring or engineered adeno-associated virus (AAV) serotypes have been utilized to transduce glia, efficient targeting of human glial cell types remains an unsolved challenge. In this study, we employ AAV capsid library engineering to find AAV capsids that selectively target human glia in vitro and in vivo. We have identified two families of AAV capsids that induce efficient targeting of human glia both in glial spheroids and after glial progenitor cell transplantation into the rat forebrain. Furthermore, we show the robustness of this targeting by transferring the capsid peptide from the parent AAV2 serotype onto the AAV9 serotype, which facilitates future scalability for the larger human brain.

    Keywords: AAV engineering, hGPCs, 3D culture, ex vivo brain slices, Neuroscience, BRAVE library

    Received: 19 May 2024; Accepted: 15 Jul 2024.

    Copyright: © 2024 Giacomoni, Åkerblom, Habekost, Fiorenzano, Kajtez, Davidsson, Parmar and Bjorklund. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Tomas Bjorklund, Lund University, Lund, Sweden

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.