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Introduction: The study of attention has been pivotal in advancing our

comprehension of cognition. The goal of this study is to investigate which EEG

data representations or features are most closely linked to attention, and to what

extent they can handle the cross-subject variability.

Methods: Weexplore the features obtained from the univariate time series froma

single EEG channel, such as time domain features and recurrence plots, as well as

representations obtained directly from themultivariate time series, such as global

field power or functional brain networks. To address the cross-subject variability

in EEG data, we also investigate persistent homology features that are robust to

di�erent types of noise. The performance of the di�erent EEG representations

is evaluated with the Support Vector Machine (SVM) accuracy on the WithMe

data derived from a modified digit span experiment, and is benchmarked against

baseline EEG-specific models, including a deep learning architecture known for

e�ectively learning task-specific features.

Results: The raw EEG time series outperform each of the considered data

representations, but can fall short in comparison with the black-box deep

learning approach that learns the best features.

Discussion: The findings are limited to the WithMe experimental paradigm,

highlighting the need for further studies on diverse tasks to provide a more

comprehensive understanding of their utility in the analysis of EEG data.

KEYWORDS
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1 Introduction

Understanding the human processing of multi-sensory stimuli in relation to attention

has been of great interest in the last decades (De Winne et al., 2022). Indeed, detecting

cognitive states and skills can help improve adaptive learning, in which the learning

material and pace are adjusted to match some collected data about learners during a

learning task (Mohamed et al., 2018). Moreover, identifying biomarkers that can be used

to monitor attention, pleasure and reward, and understanding the relationship between

these biomarkers and fine-tuning of stimuli (sound, image, rhythm) can enhance the

interaction between humans and artificial intelligence (AI) agents, which is still lacking the

degree of engagement and entrainment that characterizes interaction between humans.

Such advances in human-centered AI approach open a wealth of applications in public

security, health, revalidation, communication and information sharing, entertainment, etc.

Some examples include driver fatigue detection (Wan et al., 2013), rhythmic auditory
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stimulation to help Parkinson’s patients improve their gait

characteristics and reduce the risk for falling (Moens et al., 2017),

or music systems for synchronization (Moens et al., 2010) and gait

retraining (to prevent running-related injuries; Van Dyck et al.,

2015) which could be improved by selecting the best rhythmic or

music stimulus at the right moment.

A promising methodology for the automated collection of

data during a mental task includes the use of bio-sensors that

could measure subjects’ emotions, attention, and engagement in

a non-invasive and non-intrusive way (Mohamed et al., 2018).

In this work, we focus on capturing human attention from

electroencephalography (EEG) bio-signals. EEG data measures

oscillatory electrical brain activity at the macroscopic scale with

high time resolution (Speckmann et al., 2011; Yu et al., 2016). EEG

has been shown to have a strong potential to provide biomarkers

for diagnoses in many neuropsychiatric disorders (da Silva, 2013;

Yu et al., 2016), including attention deficit hyperactivity disorder

(ADHD; Lubar, 1991; Loo and Barkley, 2005; Liu et al., 2015;

Janssen et al., 2017; Kiiski et al., 2020), but also as indicators of

attention during different visual and cognitive tasks (Mulholland,

1969; Ray and Cole, 1985; Harmony et al., 1996; Klimesch et al.,

1998; Sauseng et al., 2005; Busch and VanRullen, 2010; Liu et al.,

2013; Abiri et al., 2019; Jin et al., 2019).

It is commonly understood that a crucial step in EEG

processing is to extract relevant features for the considered

application (Xu et al., 2021). Moreover, the study of EEG data,

similarly to other neural data, is further complicated by the high

degree of cross-subject variability (due to differences in how

the information is represented in the brain, e.g., in terms of

the representation of stimulus and activity in the brain), and

presence of noise (due to changes in machine calibration, spurious

participant movements, and environmental conditions) (Rieck

et al., 2020).

The goal of this paper is to investigate which type

of representations or features of EEG data are the most

associated with human attention. We will consider a number

of different representations of EEG data (Section 2.2,

Supplementary Material Section 2), including both the features

obtained from the univariate time series from a single EEG channel

(and then concatenated across channels), such as time domain

features and recurrence plots, as well as representations obtained

directly from the multivariate time series, such as global field

power or functional brain networks. These two groups of methods

are related to the two key principles that help in understanding

brain-behavior relationships: segregation, which assumes that

the cerebral cortex can be divided into distinct modules, each

with its unique structure and functionality; and integration,

which assumes that no brain region functions in isolation but

rather requires interactions and information exchange between

different regions (Mohamed et al., 2018). Since we aim to deal

with the issue of person-to-person variability in the EEG data, we

found it particularly interesting to consider some topology-based

features. Indeed, persistent homology (PH), the main tool of

topological data analysis (TDA, Supplementary Material Section 1)

can be made invariant under different type of transformations

(such as translation, rescaling, stretching, or even non-affine

deformations), and the stability theorems (Cohen-Steiner et al.,

2007) imply that the same is true for robustness to noise. Persistent

homology has been widely applied in neuroscience: we provide

a review of relevant literature in the background on TDA

(Supplementary Material Section 1), and in the description of the

PH-based pipelines on univariate (Section 2.2.4) and multivariate

(Section 2.2.8) time series.

We compare the performance of the different EEG

representations on the WithMe data (Section 2.1), obtained

from a modified digit span experiment. The performance is

evaluated as the Support Vector Machine (SVM) accuracy on the

features (Section 2.4). As a baseline, we also include benchmark

EEG-specific models which are shown to work well for theWithMe

data (Mortier et al., 2023), including a deep learning architecture

that learns the best features for the task at hand from the EEG

multivariate time series. In order to investigate the cross-subject

variability, we consider three different scenarios: the accuracy is

evaluated on the model trained on the same participant, on seen or

on new participants. The results are summarized in Section 3, and

in Section 4 we position them relative to the literature, and discuss

the main take-aways and resulting directions for future work.

2 Materials and methods

2.1 WithMe EEG data acquisition

The experiment includes 42 participants EP01-EP42 (20 female

and 21 male, with mean age of 23.71 ± 2.69 years, with no visual

or hearing difficulties), who have 64 electrodes positioned on their

scalp according to the EEG 10 − 10 system (Figure 1, left panel).

The EEG data was acquired with the BioSemi ActiveTwo1 amplifier,

together with their caps and gel-based electrodes, and sampled at

2,048 Hz. Each participant is shown 30 sequences of 10 stimuli

on a computer screen: 5 Targets (black digit in a circle), and 5

Distractors (dark gray digit in a circle, or an empty circle),

with each digit presented with equal probability (for an example

sequence, see Table 1). Each of the sequences is shown under four

different conditions C1, C2, C3, or C4, in a pseudo-randomized

manner, that differ with respect to presence of audio and/or rhythm

with no special mention about them made to the participants, in

order not to draw their attention to it (Figure 1, right panel). We

note that, for conditions C2 and C4 where there is rhythm, each

participant is first shown 5 induction stimuli in each sequence to

induce the rhythm, but these are ignored in our analysis. Therefore,

every participant sees in total 30 × 10 × 4 = 1 200 Target or

Distractor stimuli. Every stimulus is visible for 200 ms, and the

inter-stimulus interval is on average 1.25 s. The task is to remember

theTargets, and the participants need to give their oral responses

after the complete sequence is presented. The participants do not

know that there are always 5 Targets: they are told they will see

“5-7 black numbers,” in order to not be able to predict the end

of the Target stimuli, but to rather keep focusing until the end of

the sequence.

The WithMe experiment is a novel working memory paradigm

that is somewhat inspired by the digit span, oddball and pip-

and-pop tasks. The magical number 7 ± 2 is the average digit

span of healthy adults (Miller, 1956), so that a sequence of five

digits should be fairly easy to remember for a young adult. The

digit span memory task is modified by including Distractors

1 https://www.biosemi.com/Products_ActiveTwo.htm
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between Target stimuli. In the oddball attention task, a series

of repetitive standard stimuli are infrequently interrupted with a

rare oddball stimulus that the participant is instructed to focus on.

In the WithMe experiment, however, there is an equal number of

Target and Distractor stimuli, so there are no oddballs. The

pip-and-pop attention paradigmmakes the Targets immediately

noticeable among the surrounding items (they “pop out”), but

the difference between the WithMe Target and Distractor

stimuli is very subtle. In summary, theWithMe experimental design

complicates the three paradigms, in order to allow to more easily

observe the effect of added support on attention. Further details can

be found in the first paper that introduces the WithMe experiment,

and provides an in-depth analysis of behavioral factors (such

as musical education, audiovisual dominance, noise sensitivity,

gender, age, etc.) on the influence of audio and/or rhythm on

attention for the WithMe data (De Winne et al., 2022).

The data is pre-processed according to standard techniques:

the amplitude values are referenced to the average of the both

earlobes, bad channels are detected after visual inspection and then

interpolated using the spherical splinemethod (Perrin et al., 1989),2

notch filter is applied at 50 Hz, and bandpass filter between 0.2 and

100 Hz. The data is then epoched from -0.2 s to 1 s, and a visual

inspection of ICA components is performed to remove artifacts.

Finally, we downsample the time series with the subsampling

period of 50, resulting in 60 time steps, so that each time step

corresponds to 1,200 ms/59 = 20.34 ms. In most situations,

downsampling the results to 40 or 50 Hz (thus, one time point

every 25 or 20 ms) maintains the advantages of downsampling

with minimal loss of information (Cohen, 2014). Finally, the EEG

amplitude values are cut off within range [−50 µV , 50 µV]. The

WithMe dataset can then be seen as a 42×1 200×64×60 matrix:

• 60 time steps (within 1.2s),

• 64 EEG channels,

• 1,200 epochs, i.e., EEG multivariate time series reflecting a

single stimulus, across channels,

• 42 participants.

Some examples of the WithMe EEG multivariate time series

across 64 electrodes, for a single participant and a single stimulus,

are visualized in Figures 5, 8.

2.2 Multivariate time series analysis

In this section, we describe in detail the different approaches

to multivariate time series analysis that we will evaluate in the

computational experiments. These methods rely on the different

types of features, or representations of multivariate time series,

that belong to two different groups. Firstly, one can consider

2 The manual inspection is the most common, “gold standard” procedure

for bad (flat or excessively noisy channels) channel detection (Komosar

et al., 2022). To maintain the same data dimensionality for every participant,

bad channels are not removed, but rather interpolated. The interpolation

is performed using the interpolate_bads() function of the MNE

Python library, see: https://mne.tools/dev/documentation/implementation.

html#channel-interpolation for details about the procedure.

the individual univariate time series (for each EEG electrode),

and concatenate the information extracted from each of them

separately (Sections 2.2.1–2.2.4). Alternatively, we can focus on the

relationship between the univariate time series (i.e., relationship

between different brain regions), which we summarize in a

few different ways (Sections 2.2.5–2.2.10). The latter approaches

include the baseline xDAWN-RG model (Congedo et al., 2017),

the IEEE Neural Engineering Conference 2015 Brain Computer

Interface (BCI) challenge winner, and EEGNet (Lawhern et al.,

2018), a benchmark deep learning architecture for EEG signal

processing and classification which learns the best representation

for the given task, that have both been shown to perform well on

the WithMe data (Mortier et al., 2023). A visual summary of all of

the different approaches is given in Figure 2.3

2.2.1 Univariate time series (UTS)
Probably the most straightforward way to transform a

multivariate time series into a vector is to concatenate the

univariate time series across all features. For instance, a WithMe

multivariate time series across 64 electrodes and 60 time steps

(matrix of shape 64 × 60) can be represented as a vector of length

3 840 = 64 ∗ 60.

2.2.2 Recurrence plots of univariate time series
(UTS-RP)

A recurrence is a time the trajectory returns to a location it has

visited before. For a univariate time series, the recurrence plot is

a matrix of distances in the signal between every pair of points in

time. AWithMemultivariate time series across 64 electrodes and 60

time steps (matrix of shape 64× 60) can in this way be represented

with a vector of length 230 400 = 64 ∗ 60 ∗ 60, corresponding to

the flattened 60× 60 recurrence plots, concatenated across 64 EEG

electrodes. Recurrence plots have been employed in EEG analysis,

for example for emotion recognition (Bahari and Janghorbani,

2013), or to differentiate between seizure-free, pre-seizure and

seizure states in genetic absence epilepsy rats (Ouyang et al., 2008).

2.2.3 Time-domain features of univariate time
series (UTS-TDF)

Instead of looking at the whole univariate time series for each

channel (UTS pipeline, Section 2.2.1), we can also only extract some

statistics about the time series, such as their maximum, minimum,

mean and variance. Next to considering the largest peaks in the

time series, we include the peaks from within certain intervals, as

these are related to the so-called event-related potentials (ERPs).

An ERP is a stereotyped brain response to a specific sensory,

cognitive, or motor stimulus. ERP waveforms consist of a series

of positive and negative voltage deflections, which are related to

a set of underlying components. Most components are referred to

by a letter (N/P) indicating polarity (negative/positive), followed

by a number indicating either the latency in milliseconds or the

component’s ordinal position in the waveform:

3 Figure 2 focuses on an example WithMe data point, but the pipelines can

be applied to any data set of multivariate time series.
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FIGURE 1

In the WithMe experiment, 64 EEG electrodes are considered, according to the 10–10 system (left panel). Every sequence of numbers is shown to

each participant under four di�erent conditions, C1, C2, C3, or C4, which indicate the presence of auditory and/or rhythmic support (right panel).

TABLE 1 An example of a sequence of stimuli shown to each

experimental participant on a computer screen, with the digits appearing

one by one, Targets in black and Distractors in gray.

Sequence 8© 6© 6© 6© 9© © 9© 7© 5© 4©

Targets 86974

Distractors 66 95

Answer 86694

For the given answer, the participant obtains the following scores on the 10 shown Target

and Distractor stimuli: score(T1) = 0, score(T2) = 0, score(T3) = 0.2, score(T4) = 1,

score(T5) = 0, score(D1) = -1, score(D2) = -1, score(D3) = -1, score(D4) = 0, score(D5) = 0.

• N100 or N1: This is the first substantial peak in the univariate

time series. It is a negative-going peak typically occurring

about 100 ms after a stimulus is presented, but may exhibit

a peak anywhere between 80 and 120 ms (280 and 320 ms

after the start of our time series, see Section 2.1). We therefore

calculate the minimum of the waveform within this range

(between time steps t = 13 and t = 16 in our time series).

• P100 or P1: This is a positive extreme occurring about 100 ms

after a stimulus is presented, but may exhibit a peak anywhere

between 80 and 120 ms. We therefore calculate the maximum

of the time series within this range (between time steps t = 13

and t = 16 in our time series).

• P200 or P2: This is the second substantial peak in the time

series, which often occurs about 200 ms after the stimulus

onset. We calculate it as the maximum of the waveform

between 150 and 275 ms, i.e., between time steps t = 17 and

t = 24 in our time series.

• P300 or P3: This is the third substantial positive-going peak

in the waveform, occurring about 300 ms after a stimulus is

presented. We calculate it as the maximum of the waveform

between 250 and 500 ms, i.e., between time steps t = 22 and

t = 35 in our time series.

A review of EEG/ERP applications can be found in Nidal

and Malik (2014). In particular, multiple ERPs were found to be

associated with mind-wandering (Jin et al., 2019), or different

stages of attention (Abiri et al., 2019). Note that the EEG reflects

thousands of simultaneously ongoing brain processes, making it

challenging to see the brain response to the event of interest in

the EEG recording of a single trial (Blankertz et al., 2011). To see

the brain’s response to a stimulus, the experimenter commonly

conducts many trials and averages the results, causing random

brain activity to be averaged out and the relevant waveform

to remain (Cohen, 2014). However, in this work we focus on

applications that aim to predict the attention from the given EEG

time series corresponding to some stimulus, and we therefore

extract the given metrics for each EEG epoch. We represent

each of the univariate time series with 10 time-domain features:

maximum, minimum, mean, variance, skewness, kurtosis (similar

to Mohamed et al., 2018) N1, P1, P2, and P3 peaks, and then

concatenate the information across EEG electrodes. In this way,

a WithMe 64 × 60 multivariate time series is represented with a

vector of length 640 = 64 ∗ 10.

2.2.4 Persistent homology of univariate time
series (UTS-PH)

The shape of the EEG wave has been shown to contain

useful information about the state of the brain (Kannathal et al.,

2005). For this reason, we represent EEG time series for each

channel with its persistent homology with respect to the lower-

star filtration (Supplementary Material Section 1) directly on the

signal, i.e., on the function f : {t1, . . . , tn} → R. Persistent

homology with respect to such a filtration measures the relative

height of the peaks of the EEG signal, but not their width,

so that it is invariant to expansion and contraction in the

time axis direction (Supplementary Material Section 1, Figure S2;

Supplementary Material Section 1, Figure S4, row 5, columns 2 and

4). Moreover, addition of noise to the signal results in minor

changes of PH (Supplementary Material Section 2, Figure S4, row

5, columns 2 and 5). This makes PH an interesting candidate for
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FIGURE 2

Multivariate time series analysis. A WithMe data observation, an EEG multivariate time series across 64 electrodes and 60 time steps (reflecting the

brain signals for some participant and stimulus shown on the screen) can be represented with di�erent types of features. We can consider the 64

univariate time series (UTS) for each EEG electrode, extract features from each of them separately, and concatenate the information (top branches).

It is also possible to calculate the features from the multivariate time series (MTS) itself, that rely on the relationship between the 64 EEG channels

(bottom branches).

overcoming individual differences across subjects (Dindin et al.,

2020).

A similar pipeline is employed for the epileptic seizure, autism

and arrhythmia detection from EEG or ECG in Wang et al. (2015),

Wang et al. (2019), Majumder et al. (2020), and Dindin et al.

(2020). In this work, we represent the WithMe EEG univariate

time series with their 0-dimensional 10 × 10 persistence images

(Supplementary Material Section 1), so that an EEG epoch for 64

channels and 60 time steps results in a vector of length 6,400 =

64× 10× 10.

2.2.5 Global field power (GFP)
The representations above (Sections 2.2.1–2.2.4) focus on

the features from the univariate time series. However, the

interactions between the different time series (i.e., different brain

regions reflected by the EEG channels) might contain (more)

meaningful information. One of the simplest ways to summarize

this relationship between the time series is via the global field power

(GFP). GFP is a measure of the scalp field strength and corresponds

to the standard deviation of the signal across electrodes at each time

point (Skrandies, 1990). Thus, it is a one-dimensional time series

capturing the spatial variability of the signal across sensor locations.

The WithMe 64 × 60 multivariate time series is thus represented

as a vector of length 60. GFP has found applications in studies

of perceptual, attentional, cognitive and drug-related aspects of

information processing (Michel et al., 1993).

2.2.6 Functional brain network (FBN)
From a multivariate time series, one can construct a graph

or network, with vertices or nodes which reflect the different
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univariate time series, and the edges which describe some

relationship between them. In the context of (WithMe) EEG

multivariate time series, the nodes correspond to the different EEG

electrodes or brain regions, and the weights of the edges correspond

to some measure of connectivity between them, with the resulting

graph commonly referred to as a functional brain network (Stolz

et al., 2018). These functional brain networks provide a new

understanding of the characteristics of the brain, since different

cognitive or perceptual tasks require a coordinated flow of

information within networks of functionally specialized brain areas

(Bastos and Schoffelen, 2016).

Indeed, changes in the topology of EEG functional brain

networks appear to accompany a series of neurological and

psychiatric disorders, such as stroke damage (de Vico Fallani et al.,

2009), schizophrenia (Jalili and Knyazeva, 2011b; Micheloyannis

et al., 2006), amyotrophic lateral sclerosis (ALS; Fraschini et al.,

2016) or Alzheimer’s (Stam et al., 2007; Jalili, 2016; Yu et al.,

2016), and can therefore be used as diagnostic markers for these

conditions (Stolz, 2014). Moreover, several studies have suggested

that EEG interregional correlations are associated with conscious

cognitive processing and active perception (de Vico Fallani et al.,

2009; Tóth et al., 2019).

The correlation between time series (i.e., connectivity between

brain regions) can be calculated in many different ways, such

as cross-correlation, coherence, and synchronization likelihood.

In our computational experiment, we will consider the common

Pearson product-moment correlation coefficients (Jalili and

Knyazeva, 2011a). The distance dij between the two univariate time

series i and j is then calculated as dij = 1 − pij, where pij is the

Pearson correlation. As input for thisFBN pipeline, we will consider

the distance matrix itself, above the diagonal and flattened into a

vector, similarly to Rathore et al. (2019). The WithMe 64 × 60

multivariate time series thus results in a 64 × 64 distance matrix,

that is then flattened into a vector of length 2,016 = 63 ∗ 64/2.

2.2.7 Graph theory of functional brain networks
(FBN-GT)

Instead of feeding the complete correlation or distance matrix

to a machine learning algorithm (FBN pipeline, Section 2.2.6),

it is common to analyze such a matrix (or functional brain

network in the neuroscience context) using graph theory. Typically,

the weighted graph, i.e., the correlation or distance matrix is

thresholded at a prespecified level to produce the binary adjacency

matrix that only indicates if a connection between vertices exists

(Lee et al., 2011). Then, the corresponding graph topology of

the binary matrix can be characterized by calculating the graph

metrics of interest that characterize the functional integration

and segregation.

Indeed, significant differences across some graph theory

metrics have been found between EEG brain networks for control

subjects and patients of a range of neurological and psychiatric

disorders (Bullmore and Sporns, 2009; Fraschini et al., 2016) (such

as stroke, multiple sclerosis, Parkinson’s, epilepsy or depression).

Moreover, in the healthy brain, individual variability in cognitive

functions, learning a new task, or the predisposition to learn

have been correlated with specific patterns of network connectivity

(Khalid et al., 2014). In our computational experiments, we

consider the commonly used assortativity degree, average path

length, edge connectivity, and for each vertex, its degree,

betweenness, and eccentricity,4 that provide insights into how

different brain regions communicate and interact:

• Assortativity measures the tendency of vertices to connect

with other vertices with a similar degree (number of adjacent

edges, see below). High assortativity means that highly

connected vertices (hubs) tend to be connected with other

hubs. In the brain, this can indicate a resilient and efficient

network because hub-to-hub connectivity is critical for global

communication. A low assortativity may imply a more

vulnerable network, where the failure of a single hub can more

easily disrupt information flow.

• Average path length is self-explanatory, it is the average

shortest path length between all vertex pairs. Shorter path

lengths indicate more efficient global communication across

the network. In the brain, a network with a shorter average

path length facilitates fast information flow across distant

brain regions, which is critical for efficient integration of

information between different functional systems.

• Edge connectivity between two vertices is the number of edges

that have to be removed in order to disconnect the two vertices

into two separate components, or equivalently, to eliminate

all paths between them. The edge connectivity of a graph (or

group adhesion) is the minimum of the edge connectivity

of every pair of vertices in the graph. Multiple connections

between regions create redundant routes, which are important

for ensuring reliable communication and cognitive flexibility.

High edge connectivity thus implies that brain networks can

resist damage, maintaining communication pathways and

ensuring stable function.

• The degree of a vertex is its most basic structural property, the

number of edges that are connected to that vertex, measuring

how many direct connections a vertex has with other vertices

in the graph. Vertices with a high degree are considered

hubs and may play a key role in information integration and

transmission across the brain. In functional brain networks,

a region with a high degree is likely involved in widespread

functional connectivity and might be important for global

network communication.

• The betweenness centrality of a vertex is the number

of shortest paths going through it. Vertices with high

betweenness centrality are key to information flow across the

network because they act as critical “bridges” between different

brain regions or modules. Such verticess may be vulnerable to

damage, as their failure could disrupt communication between

distant parts of the brain.

• Eccentricity of a vertex is the shortest path distance from

the farthest other vertex in the graph. Eccentricity provides

information about the relative position of a brain region in the

broader network and its role in global communication. High-

eccentricity vertices are more isolated or peripheral, often

4 These graph theory metrics have been calculated using the igraph

Python library, see: https://igraph.org/r/doc for explicit formulas.
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supporting localized, specialized processing within functional

modules, while low-eccentricity vertices integrate information

from various parts of the brain.

To obtain the graph adjacency matrix, the normalized distance

matrix (see FBN pipeline in Section 2.2.6) is thresholded at 0.1.5

For a WithMe EEG multivariate time series across 64 channels, i.e.,

a 64× 64 functional brain network (distance matrix), this results in

a vector of length 195 = 1+ 1+ 1+ 64 ∗ (1+ 1+ 1).

2.2.8 Persistent homology of the functional brain
network (FBN-PH)

Studying the correlations using graph theory or network

science (FBN-GT pipeline, Section 2.2.7) suffers from

methodological problems. Firstly, finding a proper threshold

is one of the crucial issues, since the graph structure drastically

changes depending on how to threshold a connectivity matrix.

For example, most graph characteristics depend on the number

of edges in the graph, and the estimated graph topology is

therefore biased by the choice of the threshold. This hampers a

meaningful comparison of graph topology between individuals

or groups. Some of the proposed thresholding methods, such as

the multiple comparisons correction and the sparsity control,

assume that the strongly connected edges are only important;

however, it is suggested that the weakly connected edges may

also have discriminative information between networks (Bassett

et al., 2012; Lee et al., 2012). The choice of threshold has a major

influence on the resulting graph (Gracia-Tabuenca et al., 2020)

and inevitably leads to a loss of information. Determining the

threshold can be based on the statistical significance by the false

discovery rate or by fixing the graph metrics such as number

of vertices and edges. However, these methods are fairly ad-hoc

and everyone seem to use different thresholding techniques. This

arbitrariness is demonstrated in Lee et al. (2011, Figure 1), where

it is shown that the number of edges, the number of connected

components and smallworldness of a brain network substantially

change depending on the threshold: by varying the threshold,

the topology changed to random-like, small-world and clustered

network. In addition, it was shown that the clustering coefficient,

modularity, efficiency, efficiency-cost show and assortativity of a

brain network change greatly across different thresholds (reflected

by the network cost, i.e., the total number of edges; Joudaki

et al., 2012, Figures 3–7), and the same was shown to be true

for efficiency, clustering coefficient, small-worldness, modularity,

vertex and edge betweenness centrality, variance of vertex degrees,

assortativity, and synchronizability in Jalili and Knyazeva (2011a,

Figures 5–8). Ideally, graphs should be characterized across a broad

range of thresholds (Rubinov and Sporns, 2010).

Moreover, in many real systems, dyadic relationships between

pairs of vertices fail to accurately capture the rich nature of

the system’s organization, e.g., cognitive functions appear to

be performed by a distributed set of brain regions and their

5 After visual inspection of these graphs, we settled for the threshold value

of 0.1, to draw a balance between graphs that are all very sparse or almost

completely connected. Note that, as we discuss in Section 2.2.8, any method

to choose the threshold is fairly ad-hoc.

interactions (Giusti et al., 2016). Furthermore, another drawback

of the common graph theory approaches is that they require 2-

dimensional embedding of structures that might otherwise be of

higher dimension (Bendich et al., 2016).

Persistent homology (PH) of a graph goes beyond graph-

theoretic analysis by describing the architecture of a graph in

more flexible ways, that investigates the persistence of relationships

between graph vertices across multiple scales (Anderson et al.,

2018). Instead of trying to determine one fixed optimal threshold,

PH allows us to look at the topological changes of graphs

while increasing the threshold continuously. Persistent homology

represents the weighted graph with a finite number of nested

binary graphs over every possible threshold. In contrast to

standard methods of graph or network analysis, PH also encodes

higher order connections and thus allows to go beyond pairwise

connections; this is helpful for gaining global understanding of

low-dimensional structures in graphs (Stolz et al., 2018). Indeed,

experimental results in Guo et al. (2022) show that compared

with the existing methods, PH can extract the topological features

of brain networks more accurately and improves the accuracy of

diagnostic and classification.

The first papers that deal with PH of brain networks (Lee et al.,

2011, 2012) demonstrate differences between the local connectivity

structures in functional brain networks for attention deficit

hyperactivity disorder (ADHD) and autism spectrum disorder

(ASD), and later, in a depressed brain (Khalid et al., 2014; Yoo et al.,

2014). Furthermore, PH metrics have been employed to investigate

how the topological architecture of brain networks is related to

cognitive function, behavior and personality (Anderson et al., 2018;

Liu et al., 2021; Yoo et al., 2016). In this paper, we employ PH

with respect to the rank filtration (Section A.1) on the functional

brain networks. This is useful in neuroscience applications, where

correlations cannot be assumed to give a precise definition of the

distances between graph nodes, and the PH defined in such a way

remains unchanged under nonlinear monotonic transformations

of the distances (see Supplementary Material Section 1, Figure S3).

More precisely, we concatenate both the 0- and 1-dimensional

10 × 10 persistence images (that respectively reflect the connected

components or clusters, and loops) for each graph, so that a

WithMe 64 × 64 functional brain network is represented with a

vector of length 200 = 10 ∗ 10+ 10 ∗ 10.

2.2.9 xDAWN-RG (xDAWN-RG)
As one of the baselines, we consider xDAWN-RG, one of the

benchmark techniques for classification of multivariate bio-signals,

like EEG, MEG, or EMG. xDAWN-RG was the winner of the IEEE

Neural Engineering Conference Brain Computer Interface (BCI)

challenge (Mattout et al., 2014), whose goal was to detect errors

during a spelling task, given subject’s EEG data. It consists of

applying xDAWN spatial filters (Rivet et al., 2009), calculating

covariance matrix between the EEG channels to encode their

statistical dependencies (Barachant and Congedo, 2014; Congedo

et al., 2013), selecting the channels via Riemannian Geometry

(RG) (Barachant and Bonnet, 2011), and projecting the reduced

covariance matrices in the tangent space (Barachant et al., 2011,

2013). A WithMe 64 × 60 multivariate time series is transformed
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into a 8×8 covariance matrix, which is then projected into a vector

of length 36 = (8+ 1) ∗ 8/2.

2.2.10 EEGNet (EEGNet)
As the main baseline, we consider EEGNet (Lawhern et al.,

2018), a benchmark deep learning architecture for EEG signal

processing and classification, with default parameter values.

EEGNet is a convolutional neural network (CNN) that learns the

best representation for the given task directly from the multivariate

time series, with each data observation corresponding to the

matrix of univariate time series across channels. Therefore, the

raw WithMe 64 × 60 multivariate time series is fed directly to

the model.

2.3 Attention score

The focus of this paper and the WithMe data acquisition

(Section 2.1) is attention recognition. Remember that each

experimental participant is shown 30 sequences of 10 Target

or Distractor numbers on the screen, and is instructed to list

the Targets in the correct order of appearance. We are thus

interested to what degree the different pipelines (Section 2.2) can

predict how well a participant was able to remember the Targets

and ignore the Distractors from the EEG data. To do so, we

define a simple scoring function, which reflects the digit recall

accuracy, i.e., how well a participant was paying attention to the

given stimulus.

Note firstly that the attention performance is not always

conclusive, since the Targets and Distractors in a sequence

are not necessarily unique: e.g., if a sequence contains digit 5 both

as a Target and as a Distractor, and a participant reports 5,

we do not know if the participant correctly remembered the target,

or did not properly ignore the distractor. We assign such stimuli a

value of -1.

We define the scoring function for the remaining, well-behaved

stimuli to take values in [0, 1]. The score of 0 indicates perfect

performance: Target stimulus is given in the participant’s answer

in the correct position, or the Distractor stimulus was properly

ignored. On the other extreme, the score of 1 means that the

participant did not remember the Target, or has listed the

Distractor in their answer. The scores of 0.2, 0.4, 0.6, or 0.8,

that are only possible for the Targets, aim to capture that a

participant remembered the Target, but at the wrong position;

the value of the score indicates how wrong is the provided answer.

Note, however, that e.g., a score of 0.2 for some Target stimulus

does not necessarily imply that the subject was not paying “perfect”

attention, since it might rather be that they were not attentive

during a previous Target that they thus did not include in their

answer. Since a stimulus might appear multiple times in a sequence,

note also that the scoring function does not necessarily always

correctly reflect the attention, and a participant might simply “get

lucky” and report the number correctly.

Therefore, our simple scoring function is defined as follows:

score(T) =























































0 T ∈ answer, at the right position

0.2 T ∈ answer, wrong by one position

0.4 T ∈ answer, wrong by two positions

0.6 T ∈ answer, wrong by three positions

0.8 T ∈ answer, wrong by four positions

1 T /∈ answer

−1 T appears in answer less than in Targets

(1)

score(D) =















































0 D appears in answer less than or same as

in Targets

1 D appears in answer more than or same in

Targets+Distractors

−1 D appears in answer less than in

Targets+Distractors, or D is empty

(2)

An example of a sequence, a participant’s answer and their score

for each stimulus is given in Table 1. Figure 3 shows that the large

majority of the stimuli yield the perfect score = 0: the Target

is remembered at the correct position, or the Distractor is

appropriately ignored. This is as expected since, as we discussed

earlier, the literature suggests that a sequence of five digits should

be fairly easy to remember for young adults.

2.4 Experimental set-up

The classification is done with a linear SVM on the features

obtained in the pipelines, except for EEGNet that classifies the

multivariate time series directly. According to a recent review

(Lotte et al., 2018), due to its good performance, SVM is among the

most popular types of classification algorithms for EEG. Moreover,

we also want to evaluate to what extent are the different pipelines

able to deal with the person-to-person variability, as this is an

important challenge of EEG data (Section 1). To this end, we

consider three different experimental scenarios, that differ in the

train and test data used for classification:

• Classification per participant: We start with the simplest

scenario, when the model is trained on 70% of data (randomly

chosen EEG epochs) for a single participant, and the test data

corresponds to the remaining 30% of multivariate time series

for that same participant.

• Classification on seen participants: Next, we train the models

on 70% of randomly chosen multivariate time series, and test

on the remaining data. In this case, the train and test data

consists of all (and therefore, the same) participants.

• Classification on new participants: Finally, we train themodels

on all the EEG data from 70% of the experimental participants,

and test on the complete data for the remaining 30%

participants. Here, the test data consists of new participants

compared to the train data.
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FIGURE 3

Distribution of scores. The number of inconclusive stimuli with score = -1 is not negligible (left plot), but removing them does not lead to a major

data loss, in particular since it allows to focus on the EEG epochs with a meaningful attention score. The number of EEG epochs with score in

{0.2, 0.4, 0.6, 0.8} is too small for a score prediction task (left plot), so that this data is also removed. In this way, score prediction amounts to

classification between score = 0 (attentive) and score = 1 (inattentive) stimuli or EEG epochs.

For each of the three scenarios, we consider three different splits

between train and test data, which are the same across different

pipelines. The drop in accuracy from the test data consisting

of seen and new participants (the last two scenarios above) can

give an idea of how well a pipeline is able to avoid the issue of

cross-subject variability. Note that the size of data differs greatly

between the first, and second and third experimental scenario, since

the former is limited to the EEG data from a single participant.

The data size for each experiment is explicitly mentioned in

Section 3.

Finally, note that the UTS-RP, UTS-TDF and UTS-PH

pipelines that extract features from the univariate time series

yield a large number of features (relative to the number of data

observations, e.g., 230 400 UTS-RP features for 1 200 data samples

in the first experimental scenario where we focus on an individual

subject). To reduce the computational efforts, we limit these

pipelines to the features from the 10 most important EEG channels,

identified by the UTS pipeline: we take these to be the EEG channels

with the largest values of the linear SVM coefficients trained on

the complete data. Removal of noisy of irrelevant channels can also

make the model less prone to overfitting (Montoya-Martínez et al.,

2019), but we did not observe important differences when using

only a subset of features.

For some of the classification problems, the data is very

unbalanced: for instance, the number of EEG epochs with score=1

is quite small in comparison with score = 0 (Figure 3), so that

even a random guess yields a very high accuracy. For this

reason, we consider a balanced accuracy, which is calculated

as the average between the true positive rate or recall TP
TP+FN ,

and the true negative rate TN
TN+FP , where TP,TN, FP and FN

are respectively the number of true positives, true negatives,

false positives and false negatives. If the data is well-balanced,

the accuracy and balanced accuracy tend to converge to the

same value. We opt for an adjusted classification accuracy

in order to allow for a fair comparison across participants

(which would not be the case if we oversampled some epochs

for some participants), simultaneously avoiding data loss due

to undersampling.

3 Results

3.1 Score prediction

The goal of this subsection is to evaluate to what extent

can EEG signals predict the attention score (Section 2.3) that

reflects how well a person has remembered the given Target,

or ignored the given Distractor stimulus, shown on the

computer screen. We thus perform the classification separately

for Target and Distractor stimuli, as the score might

reflect different types of attention. We limit the data to EEG

multivariate series with score = 0 (attentive) and score = 1

(inattentive), in order to focus only on the stimuli for which we

are fairly confident whether a participant was paying attention.

Indeed, as we discuss in Section 2.3, the data samples with

score=-1 are inconclusive, and score ∈ {0.2, 0.4, 0.6, or 0.8}

might often be misleading. Moreover, there is only a limited

number of stimuli with a score of 0.2, 0.4, 0.6, or 0.8 (Figure 3,

left panel) so that any classifier would struggle to learn to

recognize such signals. This results in a somewhat different number

of appropriate EEG epochs across participants (Figure 3, right

panel). To make the comparisons across participants fair, we

select the same number of Target and Distractor EEG

epochs for each participant. Participant EP09 has the minimum

number of Target epochs with a conclusive score (303),

whereas participant EP17 has the least conclusive Distractor

epochs (357). We therefore randomly choose 303 Target and

357 Distractor epochs for every participant. Note that,

since we are evaluating the balanced classification accuracy

(Section 2.4), we do not further enforce the same number of

Target and Distractor epochs, in order to avoid further

data loss.

Figure 4 shows the balanced accuracy for score = 0 vs. score = 1

classification for the different pipelines (Section 2.2), for the

three different experimental scenarios, i.e., train and test data

(Section 2.4). In general, most of the pipelines perform extremely

poorly, and are not much better than a random guess with an

accuracy of 0.5.
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FIGURE 4

Score 0 (attentive) vs. 1 (inattentive) classification accuracy across the pipelines, for the Target (top row) and Distractor (bottom row) stimuli.

3.2 Classification between Target and
Distractor stimuli

In this section, we perform the classification between Target

and Distractor stimuli, since P300 ERP is expected to be

observed when subjects see a Target stimulus, and the amplitude

of the P300 has shown to be proportional to the amount of

attentional resources engaged in processing a given stimulus (Gray

et al., 2004). Indeed, Mortier et al. (2023, Figure 2) shows that

the evoked response for an example WithMe participant exhibits a

clear positive voltage deflection around 300ms post-stimulus in the

parietal-occipital electrodes. This can also be observed in Figure 5,

which shows an example of EEG multivariate time series for a

participant, for the different type of stimuli. Classification between

Targets and Distractors investigates whether the brain

responds differently to the two different stimulus types, which is

thus informative of attention, but does not depend on the particular

choice of the attention score.

Remember that the WithMe experiment is performed under

four experimental conditions C1-C4, that indicate the presence

of rhythmic or auditory support (Section 2.1). Whenever present,

the rhythm and audio accompany the Targets only (and not

the Distractors), and in order to ensure that the classification

above is a differentiation between the Target and Distractor

stimuli rather than a detection of rhythm and auditory support, we

perform the classification separately under each condition. Note,

moreover, that the subjects do not always correctly identify the

Target or Distractor stimulus, so that their EEG signals

do not necessarily exhibit a behavior that might be representative

of the different type of stimuli. To avoid this issue, we limit the

classification only to stimuli that were perfectly remembered or

ignored (score = 0). Restricting the data in such a way results

in somewhat different number of appropriate EEG epochs across

participant, and we randomly select the minimum number of

respectively 109, 84, 87, and 106 EEG epochs for conditions C1-C4.

Figure 6 shows that a number of pipelines achieve a good

classification accuracy of 75% or more. What is probably the

most surprising is that the simplest pipeline UTS (Section 2.2.1),

where the univariate time series across 64 EEG channels are

simply concatenated into a large vector, obtains a very good

performance, at times even outperforming the benchmarkxDAWN-

RG and deep learning EEGNet methods. Overall, in this case, the

pipelines that extract and then concatenate the features from each

of the univariate time series separately (UTS, UTS-RP, UTS-TDF,

UTS-PH) outperform the pipelines that focus on the relationship

between the time series across EEG channels (GFP, FBN, FBN-GT,

and FBN-PH).

3.3 Classification between conditions C1,
C2, C3, and C4

Next to attention recognition, one of the goals of the WithMe

experiment (Section 2.1) is to investigate to what extent can

rhythmic and/or auditory clues (Figure 1, right panel) improve

attention. There is no significant difference among the distribution
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FIGURE 5

An example of EEG signals across 64 EEG electrodes for participant EP01, averaged across Target (top panel) and Distractor (bottom panel)

stimulus.

of attention scores, or scores averaged across participants, for

the four experimental conditions C1-C4. This is because the

perception of the auditory and/or rhythmic support turns out to be

a very individual experience, improving the task performance for

some, and causing distraction for other participants. We therefore

rather visualize the attention score separately for each participant

(Figure 7).

Figure 7 shows that for the majority of the participants, the

presence of rhythm alone (C2) does not improve their attention

score (Section 2.3) during the modified digit span task, although

there are some differences across subjects. However, the presence

of auditory support (C3) commonly helps to achieve a better

score, that is rarely improved further with the additional rhythmic

support (audio and rhythm together, C4). This is consistent with

earlier findings on the WithMe data (De Winne et al., 2022), for

three different scoring functions that look into the performances

across complete sequences of digits shown on the screen (rather

than for each of the 10 individual stimuli in a sequence).

In this section, we classify between the experimental conditions

C1, C2, C3, and C4, to assess to what extent the EEG signals

differ in the presence of rhythm and/or audio. An example of

an EEG multivariate time series for a participant, across different

conditions, is shown in Figure 8.

Since the auditory and/or rhytmic support only accompanies

the Target, we perform the classification separately for Target

and Distractor stimuli. We again also limit the data to EEG
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FIGURE 6

Target vs. Distractor classification accuracy across the pipelines, for conditions C1-C4 shown respectively from (top to bottom row).

epochs with score = 0, resulting in somewhat different number of

appropriate EEG epochs across participant; we randomly select the

minimum number of respectively 137 and 224 EEG epochs for the

two types of stimuli.

The performance of the different EEG representations is

rather poor for this task, never achieving the accuracy of

the EEG-specific deep learning model EEGNet that learns

the best features (Figure 9). The performance is even poorer

for the Distractor stimuli, which comes as no surprise

since there is no rhythm or audio that can change the EEG

signal. However, a good performance of EEGNet in this case

indicates that the support that is present during the Target

stimuli in the sequence might help a person to correctly ignore

the Distractor.
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FIGURE 7

Average attention scores (lower is better) across participants and experimental conditions indicate that the influence of rhythmic and/or auditory

support on the attention score is di�erent across participants. Rhythm (C2) deteriorates the performance more often than improving attention.

Auditory support (C3), however, improves the attention score for the majority of participants.

4 Discussion

4.1 E�ectiveness of EEG representations in
capturing attention

Attention can be captured with EEG, even for short visual

stimulus. The performance for Target vs. Distractor

classification we obtained is similar to the results from other

comparable studies which obtain an accuracy between 56.5 and

84% (Mohamed et al., 2018, Table 3). For example, similar accuracy

from EEG data of 76.82% is obtained when classifying attentive

and inattentive students in Liu et al. (2013), and 84 and 81%

for respectively the focused attention and working memory in

Mohamed et al. (2018). Therefore, EEG-based BCI platforms

have a good potential for utilization real-time classification and

neurofeedback tasks, aiding in the diagnosis and training of

individuals with attention deficits.

Overall, the representations of the EEG data that reflect

the (features extracted from the) univariate time series perform

better than the representations that focus on the relationship

between these time series for different EEG channels. The former,

including the recurrences in the time series, the common time-

domain features, and the persistent homology (reflecting the

local extrema) are thus all indicative of the use of attentional

resources. The latter representations do at times obtain a superior

performance on classification tasks for individual subjects, but

they fail to obtain a good performance on previously unseen

subjects. The communication between different regions in the brain

is thus informative of processing visual stimuli (with rhythmic

and/or auditory support), but is more sensitive to the cross-

subject variability.

It is important to note that the insights might be strongly

influenced by the particular problem (task at hand and the

experimental set-up) and hyperparameters within the different

pipelines. For instance, the WithMe experiment focuses on a

novel digit-span paradigm with young students, and different

EEG features might be most meaningful for other problems. The

WithMe EEG time series reflect the brain signal during only 1.2 s

of a simple visual task; more meaningful relationships between the

different brain regions might be captured for longer resting-state

time series. For example, Vandecappelle et al. (2021) show that the

performance of the state-of-the-art models for classifying auditory

attention drops significantly when shorter windows are used: the

accuracy decreases by 17.6% going from 10 to 1 s. In the literature,

most of the papers that focus on attention detection from EEG,

aim to classify e.g., between long(er) reading or arithmetic task

vs. resting or sleeping state. Moreover, functional brain networks

are more common for diagnostic purposes from long resting-

state fMRI data, as EEG has less discriminating power due to its

limited spatial resolution (Yoo et al., 2014). Cross-task classification

accuracies, where a classifier is trained and tested on EEG features

from different tasks, has been found to be significantly lower

(even than a random guess) compared to within-task condition

(44.8 and 87.1%, respectively), since different tasks invoke highly

dissimilar EEG patterns (Ke et al., 2014). In addition, relative

contribution of different features of stress classification model

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1434444
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Turkeš et al. 10.3389/fnins.2024.1434444

FIGURE 8

An example of EEG signals across 64 EEG electrodes for participant EP01, averaged across experimental conditions C1–C4, respectively from (top to

bottom panel).
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FIGURE 9

C1 vs. C2 vs. C3 vs. C4 classification accuracy across the pipelines, for the Target (top row) and Distractor (bottom row) stimuli.

has been shown to change with the infant’s age (Lavanga et al.,

2020). Our findings are also limited to our particular choice of the

common Pearson correlation used to obtain the functional brain

networks, whereas other measures of correlation might be more

suitable in capturing attention from (raw) EEG. Furthermore, to

address the issue of cross-subject variability, it might be a good

idea to perform participant-based normalization. For example,

Mohamed et al. (2018) use decibel conversion to normalize with

respect to the baseline resting-state EEG data with open and closed

eyes. However, theWithMe data does not include such resting state

baselines, and we can thus recommend collecting such data during

the experiment.

We should note that our goal is not to obtain the best possible

performance. A better performance can likely be achieved by

combining some complementary representations. For example, the

correlation matrix and persistent homology (similar to our FBN

and FBN-PH pipelines) combined has been shown to outperform

the individual approaches for autism detection from fMRI data

(Rathore et al., 2019). However, our goal is to gain insights in how

powerful the different representations are, so that we evaluate the

performance of each representation separately.

4.2 Good performance of raw time series

One of the most surprising insights from our experimental

results is that the UTS pipeline (Section 2.2.1), which simply

concatenates the univariate time series across EEG channels into a

large vector, obtains a very good performance on some classification

tasks, often outperforming the very complex EEG-specific models,

although we have not observed its usage in the literature. It can

therefore be recommended as a good starting baseline, and in case

of good performance can avoid further intricate pre-processing and

representation techniques (that require expertise in the application

domain). This is in contradiction to the common understanding

that extracting relevant features for the considered application is

a crucial step in EEG processing (Xu et al., 2021). Moreover, we

employ a simple SVM on the raw time series (in order to have a

good indication of the discriminative power of the features), but

better results can likely be achieved with more powerful learning

models, such asmultilayer perceptrons (MLPs) or other deep neural

networks. A review of deep learning architectures in the analysis of

EEG signals can be found in Craik et al. (2019).

4.3 Poor performance of persistent
homology

Although topological data analysis, and its main tool, persistent

homology, has found successful applications in neuroscience

(see Sections 2.2.4, 2.2.8, Supplementary Material Section 1 for

references and details), a closer look into the literature often

points to a low effectiveness of these features, and a number of

possible explanations.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1434444
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Turkeš et al. 10.3389/fnins.2024.1434444

The first TDA pipeline in this paper, UTS-PH (Section 2.2.4),

calculates 0-dimensional PH on every univariate time series

that reflects the EEG data for a single participant, stimulus

and EEG channel. This captures the local extrema of the time

series, but in case of the WithMe data these might contain

a lot of noise, since e.g., a time series corresponding to a

Target stimulus might contain the EEG information about

the forthcoming Distractor(s). This might also explain why

the UTS-TDF where the extrema are taken from the interesting

range in the time series, or the UTS representation that considers

the complete time series (and lets the classifier focus on

the important information) outperform the UTS-PH pipeline.

Persistent homology on univariate time series might be more likely

effective in applications where the important difference between

data classes lies in some extreme values of the signal, such as

epileptic seizure, autism and arrhythmia detection from EEG or

ECG (Wang et al., 2015, 2019; Majumder et al., 2020; Dindin et al.,

2020).

The second TDA pipeline in this paper, FBN-PH

(Section 2.2.8), calculates 0- and 1-dimensional PH on a functional

brain 64 × 64 network reflecting the relationship between the

time series across 64 EEG channels, for a single participant and

stimulus. The poor performance in this paper is consistent with

the experimental results in Gracia-Tabuenca et al. (2020, Figure 3),

Rathore et al. (2019, Figure 4), and Guo et al. (2022), that point to

limited or no success of PH features for brain functional networks.

It is also important to note that PH on EEG-based functional brain

networks has commonly been employed on correlations between

the frequency domains, rather than the correlations between

the time series themselves. In this paper, we focus on the latter

approach, since frequency-domains for short time series provide

poor frequency resolution.

Moreover, PH-based representations have previously been

shown to be successful on much longer, resting-state fMRI data

(more informative than EEG), and for diagnostic purposes (likely

an easier task compared to detecting attention during a 1.2-second

long visual stimulus). And even in such applications, success is not

guaranteed: for instance, Gracia-Tabuenca et al. (2020) note only

minor differences and small odd ratios between resting-state fMRI

for diagnosing ADHD. There are only a few examples where PH has

been used for neurotypical development, such as Gracia-Tabuenca

et al. (2023) that however looks into the differences between PH

on adolescent brain and random MRI networks. In addition, it is

more common in the literature to show a statistically significant

difference between the patients and the control group, rather than

evaluating the accuracy of the more challenging classification or

prediction tasks. The potential of PH to reveal the underlying

processes from EEG during a short cognitive task might thus

be limited.

We again note that the performance might be improved

by combining the different representations. Indeed, a number

of studies have suggested that persistent homology can extract

features that are hardly noticed by other methods, so that their

incorporation in deep learning models might yield better results.

However, Rathore et al. (2019) provide a cautionary tale in this

regard, as they show that the additional persistent homology

features do not necessarily significantly improve the performance

of deep learning models. The authors speculate that the poor

performance might be attributed to the wide age group in their

experiment, although persistent homology also underperforms on

the WithMe data in this paper, where the participants are within a

narrow 5-year range.

A survey of some promises and pitfalls of TDA for brain

connectivity analysis is provided in Caputi et al. (2021). The field of

applying topological data analysis, including persistent homology,

to cognitive processes is an active area of research, and new studies

and methods are continuously emerging. We encourage future

research in this direction to help assess the effectiveness or added

value of persistent homology in neuroscience applications.

4.4 Auditory and rhythmic support

Using only the WithMe behavioral data and participants’

answers, De Winne et al. (2022) show the effect of auditory

support, but no difference was observed between rhythmic and

non-rhythmic sounds. These experiments focus on sequence-based

scoring functions (that evaluate attention during a sequence of

10 digits), and we obtain similar findings for our stimulus-based

attention score (Figure 7). To better understand the underlying

processes of attention, as future workDeWinne et al. (2022) suggest

to also analyze the brain activation data such as EEG. Our results

show that, although some pipelines can differentiate between the

EEG data across experimental conditions C1-C4, there is little

difference between EEG signals for the distractor stimuli that are

not accompanied with rhythmic and/or auditory clues.

There is indeed prior evidence in the literature about the

benefit of auditory support (Van der Burg et al., 2008), but the

results about rhythm are conflicting. On the one hand, theories

of dynamic attending and predictive coding suggest that rhythms

generate expectations that open up slots for attending, facilitating

memorization and recall of targets. On the other hand, the

accuracy of task performance has been shown to not depend on

the synchronization between the rhythm and target (Elbaz and

Yeshurun, 2020; Huygelier et al., 2021). A possible explanation

for the rhythm not providing additional support might lie in

the model by Kahneman (1973), which suggests that attentional

resources are drawn from a general, but limited pool of resources:

memory requires the major part of available resources, so that not

enough resources can be assigned to process the rhythmic support.

This explanation is however less likely since healthy adults have

on average a digit span between 5 and 9, so that memorizing

5 targets should not put too big of a demand on the available

cognitive resources.

Amore likely explanation can be found in a fewmethodological

issues. Firstly, in order not to draw attention to the support and

following the directed attention hypothesis, the conditions C1–C4

do not follow a block experimental design but the order is pseudo-

randomized (so that even two auditory or rhythmic conditions

would rarely appear consecutively), and participants were notmade

aware of the sound or rhythm (whereas some research suggests

that conscious attention to both sensory modalities is essential

for performance improvement, Van Ee et al., 2009). Indeed, even

though the presence of rhythm did not improve attention in

general, it did so for the participants who reported experiencing the
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rhythm as supportive (De Winne et al., 2022); however, it might be

that these participants were more alert overall, what led to a better

performance. Secondly, the priming of the rhythm with only five

induction stimuli might have not been sufficient, and the induction

with flashing empty circles might also be improved with moving

stimulus such as a bouncing ball (De Winne et al., 2022).

We stress, however, a difference in the added value of auditory

and/or rhythmic support across participants. This added value

has been shown to be influenced by the audiovisual dominance,

perceived audio/rhythm support and task difficulty, both in earlier

studies as well as recently for the WithMe data (De Winne et al.,

2022).6

4.5 Concluding remarks and future
research

In this work, we examine the effectiveness of various EEG

representations, derived from both univariate and multivariate

time series, in relation to human attention. We observe that

attention can indeed be captured with EEG, even for short visual

stimulus; most of the common EEG representations demonstrate

some utility for at least one of the three considered problems

(attention score prediction, classification between Target

and Distractor stimuli, classification between experimental

conditions C1–C4 that indicate the presence of auditory and/or

rhythmic support).

Notably, we observe that raw representations perform

surprisingly well, while persistent homology features show very

limited effectiveness. In Sections 4.2, 4.3, we provide a more

detailed discussion of these findings; however, we encourage

further application of these techniques across different tasks, to

paint a more complete picture of their utility in EEG data analysis

and neuroscience more broadly.

As anticipated, baseline benchmark models, such as EEGNet—

a (black box) deep learning architecture designed to learn the

best features for a given task— achieve the best performance in

capturing attention. Although maximizing classification accuracy

was not the primary objective of this study (instead, our focus

was on evaluating the power of various EEG features), these

models can be recommended when classification accuracy is of

paramount importance.

Finally, the conflicting results regarding the influence of

auditory and/or rhythmic stimuli on attention underscore the need

for further research in this direction.

6 In De Winne et al. (2022), Kruskal-Wallis stastical test is based on

the following independent variables: condition, sequence, order of the

sequence of digits, musical education and practice, audiovisual dominance,

gender, age, handedness, current emotional state, weekly physical activity,

ca�eine consumption, noise sensitivity, perceived tiredness, memory and

task di�culty, and perceived sound/rhythm support. Female gender, pleasant

emotion, and order of the sequence in the test also predict somewhat better

performance (although interaction with the random participant variable

demonstrates that some subjects show a learning, but others a fatigue e�ect),

whereas the remainder of the personal factors are insignificant.
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