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Circadian fluctuations in physiological setpoints are determined by the 
suprachiasmatic nucleus (SCN) which exerts control over many target structures 
within and beyond the hypothalamus via projections. The SCN, or central 
pacemaker, orchestrates synchrony between the external environment and 
the internal circadian mechanism. The resulting cycles in hormone levels and 
autonomic nervous system (ANS) activity provide precise messages to specific 
organs, adjusting, for example, their sensitivity to approaching hormones or 
metabolites. The SCN responds to both photic (light) and non-photic input. 
Circadian patterns are found in both heart rate and blood pressure, which are 
linked to daily variations in activity and autonomic nervous system activity. 
Variations in blood pressure are of great interest as several cardiovascular diseases 
such as stroke, arrhythmias, and hypertension are linked to circadian rhythm 
dysregulation. The disruption of normal day-night cycles, such as in shift work, 
social jetlag, or eating outside of normal hours leads to desynchronization of the 
central and peripheral clocks. This desynchronization leads to disorganization 
of the cellular processes that are normally driven by the interactions of the SCN 
and photic input. Here, we review autonomic system function and dysfunction 
due to regulation and interaction between different cardiorespiratory brain 
centers and the SCN, as well as social, lifestyle, and external factors that may 
impact the circadian control of blood pressure.
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Introduction

Circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 
24 h (Jonathan Sobel, 2019). Circadian rhythms exist in body temperature (Mellette et al., 
1951), hormone secretion (Retiene et al., 1966), glucose homeostasis (Van Cauter et al., 1991), 
sleep–wake cycles (McGeer and McGeer, 1966), and metabolism (Marcheva et al., 2010). 
Biological rhythms have served to help humans adapt to environmental changes, temperature, 
and food availability (Greenwell et al., 2019).

For several decades, it has been recognized that blood pressure follows a circadian rhythm 
in humans. This regularity of blood pressure is found in mouse and rat models, which are often 
used to simulate human cardiovascular physiology. According to the American Heart 
Association, a ‘normal’ blood pressure range is below 120/80 mmHg, an elevated pressure as 
120–129/<80 mmHg, a stage 1 hypertensive BP as 130–139/80–89 mmHg, and a stage 2 
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hypertensive BP as ≥140/90 mmHg (Whelton et  al., 2017). 
Importantly, hypertension cannot be  diagnosed with a singular 
reading; it must be  consistently elevated over multiple readings. 
Furthermore, the lower limit of hypertensive BP has continued to drop 
(2003, 140/90 mmHg, 2017, 130/80 mmHg), signifying the 
continuously evolving understanding of what even slightly increased 
BPs can amount to over time (Chobanian et al., 2003). Due to its 
impact on chronic cardiovascular disorders and complex events such 
as strokes and heart failure, blood pressure is one of the most 
researched physiological variables with diurnal variation.

Blood pressure follows a 24-h rhythm (Figure 1). Blood pressure 
falls (“dips”) during sleep, rises sharply in the morning (known as the 
“morning surge”), and normally peaks in the late afternoon (O'Brien 
et al., 1988). The morning surge is thought to be regulated by the 
sympathetic nervous system; however, the entire mechanism is 

unclear. Blood pressure dipping is thought to be beneficial for the 
cardiovascular system (Staessen et al., 2001). Among individuals who 
do experience blood pressure dipping, blood pressure decreases by 
approximately 20% between sleep and wake. Blood pressure that does 
not decrease by at least 10% from wake to sleep is termed 
“non-dipping” and is associated with an increased risk for 
hypertension-mediated organ damage, cardiovascular morbidity, and 
mortality (Lurbe et al., 2002). Non-dipping hypertension occurs in as 
many as 45% of individuals overall, and prevalence is even higher in 
patients treated with hypertensives (Sierra et al., 2009). Though there 
is not one specific known cause of non-dipping blood pressure, the 
associated correlations can generally be categorized as factors that lead 
to, or indicate, the dysregulation of the autonomic nervous system 
and/or water-salt control in the body; these include but are not limited 
to hyperuricemia, endothelial dysfunction, changes in sleep timings, 
high salt diet, belonging to the Black population, and aging (Hou et al., 
2000; Kario et al., 2003; Agyemang et al., 2005; Hinderliter et al., 2013; 
Thomas et  al., 2020; Koike et  al., 2023). Furthermore, the loss or 
reversal of nighttime dipping is an important indicator for accelerated 
atherosclerosis, coronary artery disease, and stroke (Kong et al., 2020). 
With such an extensive list of factors (genetic components, habits, 
lifestyles, accumulated lifelong maladies) associated with the 
acquisition of non-dipping blood pressure, and thereby cardiovascular 
morbidity and mortality, it is important to delve further into 
their relationship.

While the relationship between hypertension and changes in the 
circadian rhythm of blood pressure is still a subject of research, it is far 
from settled and there are a myriad of proposed mechanisms (Millar-
Craig et al., 1978; Licht et al., 2013; Douma and Gumz, 2018; Cuspidi 
et al., 2019; Martinez et al., 2020; Viggiano et al., 2023). A nuanced 
understanding of how these systems interact to maintain 
cardiorespiratory homeostasis throughout the 24-h day is needed to 
direct possible therapeutic interventions. Here, we highlight recent 
evidence for the role of cardiorespiratory brain regions in regulation 
of blood pressure and investigate social factors (e.g., shift work, sleep 
disruptions, diet, and activities) in the regulation of circadian blood 
pressure in normal and abnormal sleep conditions.

The SCN acts as an autonomic 
circadian pacemaker through 
interactions with brain nuclei and it 
can be disrupted

The suprachiasmatic nucleus (SCN) of the hypothalamus encodes 
information about the body’s state to synchronize all internal clocks 
with the external environment. Based on morphological differences 
and neurochemical content, the SCN can be thought of as containing 
two different sub-regions, a ventrolateral core and a dorsomedial shell 
(Silver et al., 1996) that seem to modulate each other. It has been 
indicated that vasoactive intestinal peptide SCN core neurons could 
modify arginine vasopressin SCN shell neuronal expression, which in 
turn may change gastrin-releasing peptide expression (Shruti 
et al., 2018).

There are many afferent neural pathways that branch into the SCN 
(Figure 2). Located within the complex neural architecture of the 
brainstem is a network that is responsible for the control of blood 
pressure over a 24-h cycle. This system includes the nucleus tractus 

FIGURE 1

Different dipping patterns of nocturnal BP surge and their causes. 
(A) The fall in blood pressure (dip) is the difference between daytime 
mean systolic and daytime mean nighttime pressure. There are four 
categories of blood pressure dipping. Normal dipping (black) is 
categorized as a daytime and nighttime difference between 10 and 
20%. Non-dipping (green) is a daytime and nighttime difference of 
<10%. Extreme dipping (purple) is a daytime and nighttime systolic 
blood pressure difference of greater than 20%. Reverse dipping (red) 
is defined as the nighttime systolic blood pressure greater than 
daytime systolic blood pressure. (B) Current knowledge on the 
causes of the different blood pressure dipping patterns.
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solitarius (nTS), which is a major integration center for cardiovascular 
input. Blood pressure changes are monitored by baroreceptors located 
in the large arteries which then communicates these changes to the 
nTS via sensory neurons. The nTS then transmits integrated signals to 
the paraventricular nucleus (PVN) of the hypothalamus, which acts 
as the center for autonomic regulation and coordinates sympathetic 

and parasympathetic response (Reddy et al., 2005). This influences 
vascular tone, heart rate, and blood pressure. Additionally, the SCN 
located within the hypothalamus functions to control circadian 
rhythm. The SCN receives external light signals from the 
retinohypothalamic tract (RHT) via monosynaptic glutaminergic 
pathways and projects these glutaminergic inputs to the PVN 
(Johnson et  al., 1988). Ultimately, these signals integrate the 
environmental day-night cycle with the human body’s internal clock. 
The connections between the nTS, PVN, and SCN coordinates the 
timing of blood pressure fluctuation with periods of wakefulness 
and sleep.

The SCN receives non-photic information from the body through 
the geniculohypothalamic (Janik and Mrosovsky, 1994) and the raphe-
hypothalamic tracts (Abrahamson and Moore, 2001). However, the 
primary tract of the SCN is the RHT (Dark and Asdourian, 1975), 
which originates from photosensitive ganglion cells in the retina 
(Gooley et  al., 2001) and project to the core of the SCN after 
stimulation from an environmental light source (Abrahamson and 
Moore, 2001; Muscat et al., 2003). Here, the neurons can cycle between 
day depolarization and night hyperpolarization, increasing or 
decreasing GABA release at their target site, respectively. In the SCN, 
there are acute and tonic responses to light. Together, these oscillating 
networks set the body’s idea of day-length (van Beurden et al., 2022), 
which is critical for coordinating molecular circadian rhythms in 
organs and cells throughout the body (Yoo et al., 2004). Interestingly, 
the shell and core SCN neurons are slightly out of phase with each 
other. The reason suggested for this slight phase difference lies in the 
idea of ‘anticipated’ activity. As mentioned above, the core is the 
efferent site of optic information. Therefore, in order to prepare, the 
shell activity peaks just before the core in ‘preparation’ (Goltsev 
et al., 2022).

Additionally, studies have shown that the release of glutamate in 
the nTS follows a circadian pattern, peaking during the light phase of 
the day as light triggers the release of glutamate initiating a signal 
transduction cascade in the neurons of the SCN. This leads to a phase 
shift in the circadian rhythm (Michel et al., 2002). Circadian regulation 
impacts neuronal activity by influencing the excitability of intrinsic 
membrane properties of the nTS neurons. During light phase, 
enhanced glutamate release has been shown to modulate 
responsiveness of nTS neurons to afferent input. These changes result 
in higher basal neuronal firing rates. The circadian rhythm, combined 
with glutaminergic activity and membrane conductance in the nTS, 
drives day-night variations in both basal and afferent-evoked firing 
(Ragozzino et al., 2023).

Four families of essential clock genes (clock, bmal1, period, and 
cryptochrome) produce a transcription-translation feedback loop in all 
nucleated cells that cycles every 24 h (Buhr and Takahashi, 2013). Positive 
regulators clock and bmal1 dimerize and initiate transcription of the 
period and cryptochrome genes. Because they limit clock::bmal1 
transactivation and thus turn off their own expression, translated period 
and cryptochrome proteins are negative factors in the feedback loop. 
There are other interconnected molecular route loops, such as the 
rhythmic transcription of Rev-erb and Ror, which controls bmal1 
expression cycles (Guillaumond et al., 2005; Zhang et al., 2021). The 
feedback process involves huge protein complexes that include chromatin 
modifiers (Duong and Weitz, 2014; Kim et al., 2014), although this 
process is still poorly understood. One gene thought to contribute to the 
expression of glutamate excitatory amino acid transporter 2 (EAAT2) 

FIGURE 2

Neuroanatomical network involved in 24-h blood pressure control. 
The retinohypothalamic tract (RHT) originates from intrinsically 
photosensitive retinal ganglion cells (ipRGCs), transmitting photic 
information via monosynaptic glutamatergic pathways through the 
optic nerve and chiasma to the ventrolateral suprachiasmatic 
nucleus (SCN). The SCN receives glutamatergic inputs from both the 
RHT and the nucleus of the solitary tract (nTS). The SCN also projects 
glutamatergic pre-autonomic parasympathetic or parasympathetic 
neurons to pre-autonomic neurons paraventricular nucleus (PVN). 
Separate sympathetic and parasympathetic pre-autonomic neurons 
from the PVN project to intermediolateral nucleus (IML). Additionally, 
pre-autonomic sympathetic neurons in the PVN form axon 
collaterals to pre-autonomic parasympathetic neurons in the PVN 
itself and to the nTS. The nTS, located in the brainstem, receives 
information and signals from aortic and carotid baroreceptors, 
traveling via glossopharyngeal and vagal nerves respectively, to 
activate nTS neurons after an increase in blood pressure. The nTS 
then excites caudal ventrolateral medulla (CVLM) via glutamatergic 
fibers, which in turn inhibits rostral ventrolateral medulla (RVLM) 
through GABAergic projections. RVLM neurons project to 
sympathetic pre-ganglionic neurons in the intermediolateral nucleus 
(IML), regulating sympathetic vasomotor tone. The IML the 
sympathetic and parasympathetic branches of the autonomic 
nervous system have opposite effects on BP. The nucleus ambiguus 
(nAmb) in the medullary reticular formation, receiving fibers from 
nTS, sends efferent motor fibers via the vagus nerve (CN X) for 
cardio-inhibitory parasympathetic activity during rapid BP changes. 
Retinohypothalamic tract (RHT); nTS (nucleus of solitary tract); 
Suprachiasmatic nucleus (SCN); caudal ventrolateral medulla 
(CVLM); rostral ventrolateral medulla (RVLM).
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and thereby the expression of glutamate in the SCN is beta-catenin. 
Increased reuptake of glutamate by EAAT2s in the morning leads to a 
reduced level of glutamate in the synaptic cleft, decreased activation of 
the SCN, and can, ultimately, lead to an increase in BP during the day 
(Lutgen et al., 2016). This cycle of expression activation and inhibition 
has a hand in creating the physiological 24-h blood pressure patterning.

The SCN projects to the hypothalamus, where the SCN 
monosynaptically influences the hypothalamic output to the main vagal 
motor nucleus and the sympathetic preganglionic motor neurons of the 
spinal cord. Through constant release of glutamate in the PVN, the SCN 
signals the pineal gland to release melatonin during the dark phase, 
which is prevented through the diurnal rhythm of SCN-induced release 
of GABA into the PVN. Light activates other SCN neurons and inhibits 
(via GABA) the same PVN neurons (Hermes et al., 1996), resulting in 
an immediate halt of secretion of melatonin and lowering of blood 
pressure (Perreau-Lenz et  al., 2003). The SCN also projects to the 
dorsomedial nucleus of the DMH through a primary projection to the 
PVN that controls autonomic nervous system activity but may indirectly 
impact sleep (Horst and Luiten, 1986; Deurveilher et al., 2002).

It has been demonstrated in rodent models that the SCN has an 
endogenous rhythm due to the continued 24-h period of pacemaker 
activity when placed in complete darkness (Pittendrigh and Daan, 
1976). Endogenous rhythms, such as the sleep–wake cycle and 
hormone secretion patterns demonstrate “free-running” in constant 
conditions that is regulated by the internal biological clocks. The SCN 
circadian system is essential for modulating these rhythms and 
remains intact in-vitro, regardless of preparation time (Vanderleest 
et al., 2009). Furthermore, a study by Blagonravov et al. comparing 
hypertensive SHR and normotensive Wistar-Kyoto rats under a 24-h 
light deprivation and free-run rhythm, highlights the role of the 
sympathetic nervous system in regulating heart rate and suggests 
implications for cardiovascular adaptations in response to changes in 
light–dark cycles (Blagonravov et al., 2018). Disruptions in the SCN 
circadian system have been associated with a variety of physiological 
problems in rodents, including erasure or attenuation of daily rhythms 
in locomotor activity (Schwartz and Zimmerman, 1991), temperature 
(Warren et al., 1994), and breathing (Purnell and Buchanan, 2020). In 
Sprague Dawley rats, destruction of the SCN abolished circadian 
rhythmicity of outputs such as blood pressure and heart rate (Witte 
et al., 1998). Additionally, there are many feedback mechanisms that 
can modify the circadian rhythm of blood pressure. Though there are 
wide-ranging causes of each of these interferences (sleep 
fragmentation/stimulation during sleep, restless leg syndrome, various 
means of Renin-Angiotensin-Aldosterone activation, obstructive 
sleep apnea, and many more pathologies), a few salient categories of 
pathology lead to the formation of non-dipping blood pressure and its 
deleterious end-results: water-salt dysregulation, increased 
sympathetic activity, and chronic inflammation. Though these all are 
attributed to the acquisition of hypertension, questions remain as to 
the direct pathophysiology of set-point alteration into hypertensive 
blood pressure ranges.

Shiftwork, sleep dysregulation, and 
circadian misalignment

Circadian misalignment is defined as a non-congruent 
endogenous circadian rhythm and environmental (light) or behavior 

cycle (Morris et al., 2016). Of the many factors that can contribute to 
circadian misalignment, shift employment has been implicated due to 
its tendency to cause shorter duration sleep and interrupted sleep 
cycles via an atypical circadian phase (Juda et al., 2013). In the past 
20 years, approximately one out of every five working Americans has 
participated in shift work, with 29% of full-time professionals working 
shifts that include evenings (McMenamin, 2007; Alterman et al., 2013; 
U.S. Bureau of Labor Statistics, 2019). This was of great importance 
during the initial stages of the COVID-19 pandemic, as essential 
workers, such as health care workers, were working more rotating and 
longer shifts and those working at home were spreading their work 
out over the day (Li et al., 2021; Aughinbaugh and Rothstein, 2022; 
Djupedal et al., 2022).

Sleep deprivation and short sleep duration (<6 h) result from 
circadian misalignment as suggested by shift work (Herrero San 
Martin et al., 2020). Circadian misalignment causes shift workers’ 
blood pressure to rise, in part, due to changes in the dipping status of 
blood pressure (Morris et al., 2016). This is especially true for those 
exposed to chronic shift work or who are older in age. Sleep 
disruptions caused by even intermittent night work prevent the 
nocturnal dip in blood pressure (Verdecchia et al., 1994). Additionally, 
shift workers may exhibit lower heart rate variability (HRV), an 
indicator of cardiovascular health; low HRV suggests poorer cardiac 
health, while high HRV suggests greater cardiovascular fitness 
(Hulsegge et al., 2018). Though evidence of nocturnal blood pressure 
dipping alteration and HRV in the setting of shift work have been 
demonstrated, the direct association between rotating shift work, 
night shift work, circadian misalignment, and hypertension are not as 
well defined. Some studies have found an elevated risk of hypertension 
among shift workers, particularly rotating and night shift workers 
(Morikawa et al., 1999; Suwazono et al., 2008; Lieu et al., 2012). On 
the other hand, other studies have found no correlation between shift 
work and hypertension (Murata et al., 2005; Sfreddo et al., 2010).

Aging as a factor in circadian 
misalignment

Sleep disorders are prevalent in the elderly, who generally report 
decreased total sleep time, lower sleep efficiency, frequent night 
awakenings, excessive tiredness during the day, and impaired sleep 
adaptation due to unfavorable circadian phases and sleep-wakefulness 
misalignment. For example, sleep disordered breathing (SDB), 
insufficient sleep duration, and sleep architecture problems may 
influence neurohormonal axes, particularly in the sympathetic 
nervous system, resulting in hypertension. Over 65% of Americans 
over the age of 60 have been diagnosed with hypertension, which may 
be  linked to disturbances in the normal circadian rhythm. The 
mechanisms by which aging affects circadian control of blood pressure 
are not fully understood.

Studies have shown that the 24-h blood pressure profile was 
markedly flattened with increasing age. Non-dipping or less dipping 
was associated with more brain atrophy in older participants, and both 
were also associated with slower gait speed and a worse functional 
result following stroke (Hajjar et  al., 2010). Animal studies have 
helped shed light on possible reasons for this interruption in circadian 
blood pressure. Nakamura et al. (2011) examined aging mice in vivo 
and discovered decreased amplitude electrical activity from the SCN, 
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as well as decreased neuronal efferent connections from the SCN to 
the hypothalamic subparaventricular zone (Nakamura et al., 2011), 
whereas in younger mice, SCN activity was higher (Nakamura et al., 
2011). Treatment of altered circadian rhythms at the SCN level may 
alleviate nocturnal sleep disruptions, daytime weariness, and increases 
in blood pressure among some older adults.

Aging adults can also begin to lose circadian adaptation to shift 
work schedules. They accrue more sleep loss than younger shift 
workers (Rosa et al., 1996), are less able to adapt to the circadian 
misalignment of shift work (Härmä et al., 1994), and report higher 
levels of sleepiness and disrupted sleep due to shift work than younger 
shift workers (Härmä et al., 1994; Smith and Mason, 2001; Sack et al., 
2007). A substantial percentage of shift workers develop shift work 
sleep disorder, which is triggered by circadian misalignment resulting 
in insomnia and excessive sleepiness (Akerstedt et al., 2010). Those 
with shift work sleep disorder also experience disrupted melatonin 
rhythmicity (Dumont et al., 2012; Papantoniou et al., 2014), which 
normally fluctuates diurnally as melatonin production peaks at night 
and dwindles during the day (Iigo et al., 2003). This trend was thought 
to become a problem over time with chronic shift work. While it is 
true that the degree of these effects correlates with age and the number 
of years completing shift work, there is evidence to suggest that even 
solitary night shifts can affect heart rate variability for days. However, 
the full length of recovery required for this single event is unknown 
(Li et al., 2017).

Comparisons between juveniles and adults have pointed to some 
possible explanations for differences in sleep and autonomic regulation 
between the two. Using brain tissue from the Netherlands Brain Bank, 
Hofman and Swaab (1993) found that among young donors 
(6–47 years of age) who died during the day (10:00–18:00 h), the SCN 
contained more than twice the number of immunocytochemically 
labeled vasopressin neurons as those who died at night (22:00–06:00 h) 
(Hofman and Swaab, 1993). The vasopressin cell count peaked in the 
early morning (06:00–10:00 h). This significant circadian variation is 
absent in donors over age 50, establishing a potential biological basis 
for sleep difficulties in the elderly (Hofman and Swaab, 1993). These 
differences in neuronal expression at older ages may account for why 
older shift workers do not adapt well to rotating schedules and have a 
higher incidence of cardiovascular events. Further work by Huang 
et al. (2023) has demonstrated a similar set of parameters affecting 
older individuals which make them more prone to circadian 
misalignment, mainly a decreased responsiveness to the sympathetic 
pathway or light and a diminished release of neurotransmitters 
(Huang et al., 2023). Collectively, these findings point to a decreased 
reactivity to circadian rhythm perturbations as humans age, and 
therefore, a proclivity to misalignment both through action (shift 
work) and age-related dysregulation (decreased responsiveness).

Social jetlag

Social jetlag is the difference in sleep timing between work/school 
and free days (Wittmann et al., 2006). This is a consequence of the 
discrepancy between the social clock and one’s individual circadian 
rhythm (Sűdy et al., 2019). Social jetlag, or “living against the clock” 
(Roenneberg et al., 2003; Wittmann et al., 2006), affects the majority 
of adolescents and adults (Wittmann et al., 2006). SJL can also occur 
when one goes to sleep and wakes at a different time than they would 

during a normal weekday (Forbush et  al., 2017). Social jetlag is 
assessed subjectively using questionnaires, such as the Munich 
Chronotype Questionnaire (MCTQ), which compare the phase of 
entrainment of work/school and free days that a person experiences. 
In adolescents and college-aged students, social jetlag negatively 
impacts academic performance (Haraszti et al., 2014; Díaz-Morales 
and Escribano, 2015). Many factors contribute to social jetlag in 
adolescents, including staying out late, the use of blue-light-emitting 
devices near bedtime due to increased nighttime texting, social media 
use, and video gaming later in the night (Hena and Garmy, 2020). It 
is estimated that 70% of students experience at least 1 h of social jetlag, 
while almost half experience 2 h or more (Wittmann et  al., 2006; 
Roenneberg et al., 2012).

Social jetlag adversely affects the circulatory system and increases 
the risk of cardiovascular disease under chronic conditions (Grimaldi 
et al., 2016; Forbush et al., 2017). Several studies have investigated the 
association between autonomic cardiac function of subjects with high 
social jetlag and those with low social jetlag. Südy used HRV, which is 
the measure of variation in time between heartbeats, as a marker for 
autonomic control (Sűdy et  al., 2019). They found an association 
within the high-SJL group and reduced HRV on both work and free 
days (Sűdy et al., 2019). Additionally, those who had 2 h or more of 
social jetlag had a higher resting heart rate than those with 1 h or less 
of social jetlag. Each hour of social jetlag is associated with an 11% 
increase in the likelihood of cardiovascular disease. This increase in 
risk is independent of sleep duration and insomnia (Forbush et al., 
2017). Reducing SJL potentially reduces cardiovascular disease risk 
(Gamboa Madeira et al., 2021), and consequently the cardiovascular 
disease risk increases with sustained SJL (Roenneberg et al., 2019).

Shift workers and those with social jetlag show changes in meal 
patterns, including consuming more food at unconventional times 
(Morikawa et  al., 2008). As shift workers become accustomed to 
working later shifts, several changes in eating habits and patterns 
typically occur. The frequency and quantity of meals consumed during 
nighttime hours generally increases as the body’s circadian rhythm 
adjusts to being awake and active at night. Shift workers also show an 
increased consumption of unhealthy foods, such as those with 
increased saturated fats and sugar. The adjustment in eating habits 
may be  influenced by the body’s natural response to changes in 
sleeping patterns and increased hunger (Gupta et al., 2019). Shift work 
was identified as a risk factor for obesity and increased weight gain in 
a meta-analysis of 28 studies (Liu et al., 2018). Eating unhealthy foods, 
increased weight, and obesity are all implicated in hypertension.

Role of food in regulating circadian 
blood pressure

Diet can remodel the circadian rhythms of autonomic function, 
metabolism, and behavior. Timing of food intake has become an 
important factor in cardiovascular health including blood pressure 
(Figure 3). Zhang demonstrated the importance of the timing of food 
intake in the circadian rhythms of blood pressure in mice (Zhang 
et al., 2021). When mice were allowed food ad libitum, blood pressure 
followed diurnal rhythms—high during the active period (lights-off) 
and low during the inactive period (lights-on) (Zhang et al., 2021). 
However, when food was restricted to only the inactive period, the 
circadian rhythm of blood pressure was inverted. Further evidence has 
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shown that the dorsomedial hypothalamus, when exposed to a 
high-fat diet, has an abatement of normal action potential generation 
and an over sensitization to ghrelin. These could contribute to an 
emergence of abnormal daytime feeding and may lend itself to the 
development of obesity (Palus-Chramiec et  al., 2022; Sanetra 
et al., 2022).

In humans, weight may contribute to blood pressure changes and 
dipping vs. non-dipping. For instance, obesity may contribute to 
blood pressure abnormalities including loss of nocturnal blood 
pressure dipping (Pandey, 2015; Moczulska et al., 2020). A loss of 5% 
or more of weight was associated with an average dip increase of 8.4%, 
representing a significant improvement in nocturnal blood pressure. 
Additionally, patients gained weight increased their blood pressure by 
3.2% (Pandey, 2015). In a study of 35 patients, 10 h restricted feeding 
reduced blood pressure and improved both cardiac and overall health 
(Wilkinson et al., 2020).

Restricted feeding can also affect blood pressure and its circadian 
rhythm. In diabetic mice, restricted feeding is associated with a 
non-dipping blood pressure. But imposing a diurnal food rhythm, or 
time-restricted feeding, prevented the loss of non-dipping blood 
pressure in these same diabetic mice (Hou et al., 2021). This suggests 
that food timing could affect the risk of hypertension among diabetics 
by maintaining nocturnal dipping. Studies in rodent models were so 
convincing that the University of Wisconsin, Madison, in collaboration 
with the American Heart Association, is recruiting for a clinical trial 
to examine correlations between meal timing and blood pressure 
(University of Wisconsin, Madison, 2022). The overall goal of the 
study is to determine whether restricted feeding normalizes blood 
pressure patterns and improves neurovascular control.

Growing literature demonstrates that, compared with white 
individuals, Black individuals are at substantially higher risk for 

cardiovascular morbidity and mortality (Thomas et al., 2005; Ong 
et al., 2007; Lloyd-Jones et al., 2010). Black individuals had higher 
daytime and nighttime blood pressures and an increased risk of 
cardiovascular disease (Yano et al., 2019). The etiology of differences 
in blood pressure is unclear, but dietary habits have been implicated 
(Langford, 1983; Douglas, 2005). One study used the Dietary 
Approaches to Stop Hypertension (DASH) diet, which is rich in fruits 
and vegetables, fiber, protein, and low-fat dairy products. The DASH 
diet has been found to reduce blood pressure in hypertensive patients 
(Appel et al., 1997). Black individuals have higher nocturnal blood 
pressure and a blunted dip in blood pressure (Fumo et  al., 1992; 
Profant and Dimsdale, 1999; Jehn et al., 2008). Prather studied racial 
differences in nocturnal blood pressure dipping (Prather et al., 2011). 
The authors found that blacks randomized to regular diet, altered diet, 
or the DASH diet displayed marked improvement in nocturnal blood 
pressure dipping relative to white individuals (Prather et al., 2011).

Increased sodium intake is correlated with hypertension and loss 
of nocturnal blood pressure dipping. Excess sodium consumption 
(defined by the World Health Organization as >5 g sodium per day) 
(World Health Organization, 2012) elevates blood pressure 
significantly and has been associated with the development of 
hypertension and its cardiovascular consequences (Pasquale et al., 
2009). Reducing sodium intake, on the other hand, not only lowers 
blood pressure and the incidence of hypertension, but also correlates 
with decreased cardiovascular morbidity and death (Kodjoe, 2022).

Socioeconomic status, psychosocial 
factors, and race in blood pressure 
regulation

Social environment and socioeconomic status may promote 
non-dipping blood pressure (Stepnowsky et  al., 2004). Increased 
cardiovascular morbidity and mortality have been observed among 
persons with lower socioeconomic status (Tremblay et al., 2024) who 
are likely to be  subjected to more frequent and severe stressors, 
resulting in more frequent sympathetic activation. Perceived 
neighborhood concerns are associated with cardiovascular risk factors 
(Gary et al., 2008; Mujahid et al., 2008); those with more severe self-
reported neighborhood concerns have less nighttime dipping in 
comparison to those who did not have neighborhood concerns and 
normal dipping (Euteneuer et al., 2014).

Race and healthcare disparities also play a role in adverse 
cardiovascular health, however the exact mechanism behind these 
discrepancies remains unclear and multifaceted (Prather et al., 2011). 
In non-white Hispanics, lower education and lower wealth are 
independently linked with more common blood pressure non-dipping 
in a predominantly normotensive non-white Hispanic group 
(Rodriguez et al., 2013). Black Hispanics are significantly more likely 
to be non-dippers than white Hispanic individuals (Rodriguez et al., 
2013). A meta-analysis of 18 studies found that Black individuals had 
higher sleep blood pressure and less blood pressure dipping than whites 
(Profant and Dimsdale, 1999). In a large population-based clinical 
study, The Coronary Artery Risk Development in Young Adults 
(CARDIA) study, researchers investigated racial and gender differences 
in sleep blood pressure (Profant and Dimsdale, 1999). Black individuals 
had greater sleeping systolic blood pressure (SBP) and diastolic blood 
pressure (DBP), as well as a higher prevalence of hypertension, than 

FIGURE 3

Food intake can alter 24-h blood pressure. 24-h blood pressure can 
be altered with timing and type of food intake. Normal blood 
pressure peaks in the morning and decreases at night and during 
sleep (black), which follows intake of food. Elevated blood pressure 
or hypertension can occur with an increase in weight due to 
increased sodium, fat, and carbohydrates (purple). Elevated blood 
pressure due to poor diet can be accompanied by a non-dipping 
pattern. The DASH diet (green) decreases blood pressure in those 
who are hypertensive with or without pharmacological intervention. 
The DASH diet is high in fruits and veggies, low in fat and sodium. An 
inverted blood pressure (red) occurs with overnight shifts and 
inverted eating schedule.
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white individuals. Men exhibited greater sleeping SBP and DBP and 
were more likely to experience nocturnal hypertension than women. 
Overall, sleeping blood pressure was lowest among white women, 
followed by white men, then Black women, and highest among Black 
men. In addition, SBP and DBP drop from wake to sleep was steeper 
in White (vs. Black) individuals, and non-dipping SBP was more 
prevalent in Blacks (vs. white individuals) (Profant and Dimsdale, 1999).

Many studies have examined the link between dipping and 
hypertension. Lead by the CDC, the Comparison of Three 
Combination Therapies in Lowering Blood Pressure in Black Africans 
(CREOLE) study was a randomized, single-blind study with 
uncontrolled hypertension in six countries of sub-Saharan Africa (Ojji 
et  al., 2019). In a secondary analysis of data from this trial, the 
prevalence of the non-dipping blood pressure pattern was higher 
among Black Africans (Ingabire et  al., 2021) with uncontrolled 
hypertension. Studies have also suggested that Mexican–Americans 
(Hyman et al., 2000) and Caribbean Hispanics (Phillips et al., 2000) 
are more likely to be non-dippers than non-Hispanic whites. In the 
general population, non-dipping was associated with increased total 
mortality and cardiovascular event (Hermida et al., 2013).

Data from the United States Bureau of Labor Statistics showed 
that the prevalence of shift work was highest among African 
Americans (23.2%) and continued to increase in their latest report 
published in 2019 (24.1%) [U.S. Bureau of Labor 61; 62]. Shift workers 
were more likely to be men and those of African American, Hispanic, 
or American Indian descent (Ferguson et al., 2023). Furthermore, 
during the COVID-19 pandemic, those most likely to be considered 
essential workers were also African American (Rogers et al., 2020). 
These individuals not only found themselves more prone to infection 
with COVID-19 but were also required to continue these variable 
working hours. In the general population, non-dipping was associated 
with increased total mortality and cardiovascular events (Hansen 
et al., 2011). Research has shown that African Americans are more 
likely to be non-dippers and morning surge in blood pressure being 
named the more important prognosticating feature of development of 
MACE in those with hypertension. This phenomenon of non-dipping 
prevalence in non-white individuals goes beyond those of African 
descent (Ojji et al., 2019) and extends to Mexican–Americans (Hyman 
et al., 2000) and Caribbean Hispanics (Phillips et al., 2000).

Daylight savings time controversy and 
increase in cardiovascular incidents

In the United States, except for Arizona and Hawaii, clocks are 
turned forward by 1 h in the spring and backward by 1 h in the fall. 
Studies have shown that spring DST shift causes an elevated degree of 
acute myocardial infarction (Rodríguez-Cortés et al., 2023), cardiac 
arrest (Hook et al., 2021), and stroke (Sipilä et al., 2016). Other studies 
have found a 24 percent increase in the number of heart attacks 
occurring the Monday after initiation of DST (Amneet et al., 2014). 
Interestingly, stroke, myocardial infarction, and sudden cardiac death 
have historically had a daily pattern, occurring mostly in the morning 
(Muller et al., 1985, 1987).

These forward and backward shifts in time are similar to 
experiencing eastern and western jetlag, respectively. The SCN is 
able to respond to these deviations from the entrained circadian 
rhythm by enacting phase delays in western travel and phase 

advances in eastern travel. As described above, this man-made 
phenomenon seems to come with its consequences. A mouse model 
by Kilgallen et al. suggested a reason for why myocardial infarctions 
are more severe in the morning. They found that intact clock gene 
oscillators experienced hyperacute inflammation immediately 
preceding the infarction (Kilgallen et al., 2022). Thus, interruptions 
to the circadian clock, such as shifts into and out of daylight savings 
time (DST), may contribute to an increased cardiovascular risk.

There is much scientific, public, and political debate about DST 
and its presumed health consequences. The European Biological 
Rhythms Society (EBRS), European Sleep Research Society (ESRS), 
Society for Research on Biological Rhythms (SRBR), and the National 
Sleep Foundation declared that permanent standard time is the best 
option for public health. In 2019, Roenneberg et  al., published a 
position paper about the need to abandon the idea of DST and return 
to Standard Time, a time when the social clock and the sun clock time 
are the closest match (Roenneberg et al., 2019). The recent passing of 
the US Senate bill to make daylight saving time permanent has been 
quite controversial: permanent DST would result in more light in the 
evening, but more darkness in the morning; this could be problematic 
to the circadian rhythm. The effect of this change would be felt most 
strongly in the winter, as daylight in many areas will not occur until 
close to 9 am. There is broad scientific consensus against permanent 
DST and in support of permanent Standard Time due to the health 
consequences. However, there are still some who suggest that, while 
the data could be correct, it is in fact rather weak, or possibly sample 
biased, evidence (Martín-Olalla and Mira, 2023).

Conclusion

Circadian blood pressure is regulated by many different brain 
processes. These regulatory processes can be  disrupted through 
interruptions, disruptions, or misalignment of sleep. Recent evidence 
demonstrates that a change in feeding time influences circadian blood 
pressure control and may influence the circadian misalignment faced 
by shift workers. While we have only presented a part of the system 
that regulates blood pressure, the periphery also has its own clock that 
works in tandem with the central clock. The SCN and other brain 
regions responsible for autonomic processes are likely affected by 
social jetlag and shift work, but the mechanism for this relationship 
and its long-term effects, if any, remain poorly understood. In addition 
to the regulatory processes presented, other mechanisms of circadian 
control of blood pressure should be explored in future studies. The 
next question to address is how cardiorespiratory regulatory brain 
centers are involved in circadian control of blood pressure? Future 
research is needed to investigate the influence of the circadian clock 
on downstream pathways involved in hypertension due to loss of 
circadian blood pressure control, which could lead to advances in our 
knowledge and treatment of this silent killer.
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